Articles | Volume 25, issue 9
https://doi.org/10.5194/hess-25-5193-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-5193-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A global algorithm for identifying changing streamflow regimes: application to Canadian natural streams (1966–2010)
Masoud Zaerpour
CORRESPONDING AUTHOR
Department of Building, Civil and Environmental Engineering, Concordia
University, Montreal, Quebec, Canada
Shadi Hatami
Department of Building, Civil and Environmental Engineering, Concordia
University, Montreal, Quebec, Canada
Javad Sadri
Oppimi Group, Montréal, Quebec, Canada
Ali Nazemi
CORRESPONDING AUTHOR
Department of Building, Civil and Environmental Engineering, Concordia
University, Montreal, Quebec, Canada
Related authors
No articles found.
Anthony A. P. Baron, Helen M. Baulch, Ali Nazemi, and Colin J. Whitfield
Hydrol. Earth Syst. Sci., 29, 1449–1468, https://doi.org/10.5194/hess-29-1449-2025, https://doi.org/10.5194/hess-29-1449-2025, 2025
Short summary
Short summary
We aimed to understand how climate variability and flow management affected the water quality of a key drinking water source. Our focus was on dissolved organic carbon (DOC), and our work demonstrated that DOC can change rapidly, reaching high concentrations in wet periods, when flow sources are dominated by the local catchment. Results indicate that the impacts of high local flow and low inflows from managed sources are compounding water quality challenges, creating issues for water treatment.
Robert Sarpong and Ali Nazemi
EGUsphere, https://doi.org/10.5194/egusphere-2024-4150, https://doi.org/10.5194/egusphere-2024-4150, 2025
Short summary
Short summary
We benchmark the ERA5-Land's snow cover, snow depth, and snow water equivalent across 21 ecological regions in Canada and Alaska using MODIS and CMC snow analysis products at monthly, seasonal and annual scales. Particular attention is given to inspect whether ERA5-Land snow fields are able to reconstruct the spatial structure of snow variables inferred by the reference products and whether there is any spatial structure within the ERA5-Lands discrepancies.
Cited articles
Aksamit, N. O. and Whitfield, P. H.: Examining the pluvial to nival river
regime spectrum using nonlinear methods: Minimum delay embedding dimension,
J. Hydrol., 572, 851–868,
https://doi.org/10.1016/j.jhydrol.2019.03.058, 2019.
Amir Jabbari, A. and Nazemi, A.: Alterations in Canadian Hydropower
Production Potential Due to Continuation of Historical Trends in Climate
Variables, Resources, 8, 163, https://doi.org/10.3390/resources8040163,
2019.
Arheimer, B. and Lindström, G.: Climate impact on floods: changes in high flows in Sweden in the past and the future (1911–2100), Hydrol. Earth Syst. Sci., 19, 771–784, https://doi.org/10.5194/hess-19-771-2015, 2015.
Arnell, N. W. and Gosling, S. N.: The impacts of climate change on river flow
regimes at the global scale, J. Hydrol., 486, 351–364,
https://doi.org/10.1016/j.jhydrol.2013.02.010, 2013.
Assani, A. A., Landry, R., and Laurencelle, M.: Comparison of interannual
variability modes and trends of seasonal precipitation and streamflow in
southern Québec (Canada), River Res. Appl., 28,
1740–1752, https://doi.org/10.1002/rra.1544, 2012.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a
warming climate on water availability in snow-dominated
regions, Nature, 438, 303, https://doi.org/10.1038/nature04141, 2005.
Bawden, A. J., Burn, D. H., and Prowse, T. D.: Recent changes in patterns of
western Canadian river flow and association with climatic drivers, Hydrol.
Res., 46, 551–565, https://doi.org/10.2166/nh.2014.032, 2015.
Bensaid, A. M., Hall, L. O., Bezdek, J. C., Clarke, L. P., Silbiger, M. L.,
Arrington, J. A., and Murtagh, R. F.: Validity-guided (re) clustering with
applications to image segmentation, IEEE T. Fuzzy Syst.,
4, 112–123, https://doi.org/10.1109/91.493905, 1996.
Bezdek, J. C.: Pattern Recognition With Fuzzy Objective Function Algorithms,
Plenum, New York, https://doi.org/10.1007/978-1-4757-0450-1_3, 1981.
Brabets, T. P. and Walvoord, M. A.: Trends in streamflow in the Yukon River
Basin from 1944 to 2005 and the influence of the Pacific Decadal
Oscillation, J. Hydrol., 371, 108–119,
https://doi.org/10.1016/j.jhydrol.2009.03.018, 2009.
Brahney, J., Weber, F., Foord, V., Janmaat, J., and Curtis, P. J.: Evidence
for a climate-driven hydrologic regime shift in the Canadian Columbia
Basin, Can. Water Resour. J., 42, 179–192, https://doi.org/10.1080/07011784.2016.1268933,
2017.
Brimley, B., Cantin, J. F., Harevey, D., Kowalchuk, M., Marsh, P., Ouarda, T. B. M. J., Phinney, B., Pilon, P., Renouf, M., Tassone, B., Wedel, R., and Yuzyk, T.: Establishment of the reference hydrometric basin network (RHBN), Research Report, Environment Canada, 41 pp., 1999.
Brunner, M. I., Viviroli, D., Furrer, R., Seibert, J., and Favre, A. C.:
Identification of flood reactivity regions via the functional clustering of
hydrographs, Water Resour. Res., 54, 1852–1867,
https://doi.org/10.1002/2017WR021650, 2018.
Brunner, M. I., Farinotti, D., Zekollari, H., Huss, M., and Zappa, M.: Future shifts in extreme flow regimes in Alpine regions, Hydrol. Earth Syst. Sci., 23, 4471–4489, https://doi.org/10.5194/hess-23-4471-2019, 2019.
Brunner, M. I., Melsen, L. A., Newman, A. J., Wood, A. W., and Clark, M. P.: Future streamflow regime changes in the United States: assessment using functional classification, Hydrol. Earth Syst. Sci., 24, 3951–3966, https://doi.org/10.5194/hess-24-3951-2020, 2020.
Burn, D. H.: Climatic influences on streamflow timing in the headwaters of
the Mackenzie River Basin, J. Hydrol., 352, 225–238,
https://doi.org/10.1016/j.jhydrol.2008.01.019, 2008.
Burn, D. H. and Whitfield, P. H.: Changes in floods and flood regimes in
Canada, Can. Water Resour. J., 41, 139–150,
https://doi.org/10.1080/07011784.2015.1026844, 2016.
Burn, D. H. and Whitfield, P. H.: Changes in cold region flood regimes
inferred from long-record reference gauging stations. Water Resour.
Res., 53, 2643–2658, https://doi.org/10.1002/2016WR020108, 2017.
Burn, D. H. and Whitfield, P. H.: Changes in flood events inferred from
centennial length streamflow data records, Adv. Water Resour., 121,
333–349, https://doi.org/10.1016/j.advwatres.2018.08.017, 2018.
Burn, D. H., Whitfield, P. H., and Sharif, M.: Identification of changes in
floods and flood regimes in Canada using a peaks over threshold approach,
Hydrol. Process., 30, 3303–3314,
https://doi.org/10.1002/hyp.10861, 2016.
Bush, E. and Lemmen, D. S. (Eds.): Canada's Changing Climate Report,
Government of Canada, Ottawa, ON, 444 pp., 2019.
Buttle, J. M., Allen, D. M., Caissie, D., Davison, B., Hayashi, M., Peters,
D. L., Pomeroy, J. W., Simonovic, S., St-Hilaire, A., and Whitfield, P. H.:
Flood processes in Canada: regional and special aspects, Can. Water
Resour. J., 41, 7–30,
https://doi.org/10.1080/07011784.2015.1131629, 2016.
Champagne, O., Arain, M. A., Leduc, M., Coulibaly, P., and McKenzie, S.: Future shift in winter streamflow modulated by the internal variability of climate in southern Ontario, Hydrol. Earth Syst. Sci., 24, 3077–3096, https://doi.org/10.5194/hess-24-3077-2020, 2020.
Coops, N. C., Wulder, M. A., Duro, D. C., Han, T., and Berry, S.: The
development of a Canadian dynamic habitat index using multi-temporal
satellite estimates of canopy light absorbance, Ecol. Ind., 8,
754–766, https://doi.org/10.1016/j.ecolind.2008.01.007, 2008.
Cox, M. A. and Cox, T. F.: Multidimensional scaling, in: Handbook of data visualization, Springer, Berlin, Heidelberg, 315–347, https://doi.org/10.1007/978-3-540-33037-0_14, 2008.
DeBeer, C. M., Wheater, H. S., Carey, S. K., and Chun, K. P.: Recent climatic, cryospheric, and hydrological changes over the interior of western Canada: a review and synthesis, Hydrol. Earth Syst. Sci., 20, 1573–1598, https://doi.org/10.5194/hess-20-1573-2016, 2016.
Déry, S. J. and Wood, E. F.: Decreasing river discharge in northern
Canada, Geophys. Res. Lett., 32, L10401,
https://doi.org/10.1029/2005GL022845, 2005.
Déry, S. J., Stahl, K., Moore, R. D., Whitfield, P. H., Menounos, B.,
and Burford, J. E.: Detection of runoff timing changes in pluvial, nival,
and glacial rivers of western Canada, Water Resour. Res., 45, W04426,
https://doi.org/10.1029/2008WR006975, 2009.
Déry, S. J., Mlynowski, T. J., Hernández-Henríquez, M. A., and
Straneo, F.: Interannual variability and interdecadal trends in Hudson Bay
streamflow, J. Marine Syst., 88, 341–351,
https://doi.org/10.1016/j.jmarsys.2010.12.002, 2011.
Déry, S. J., Hernández-Henríquez, M. A., Owens, P. N., Parkes,
M. W., and Petticrew, E. L.: A century of hydrological variability and
trends in the Fraser River Basin, Environ. Res. Lett., 7,
024019, https://doi.org/10.1088/1748-9326/7/2/024019, 2012.
Déry, S. J., Stadnyk, T. A., MacDonald, M. K., and Gauli-Sharma, B.: Recent trends and variability in river discharge across northern Canada, Hydrol. Earth Syst. Sci., 20, 4801–4818, https://doi.org/10.5194/hess-20-4801-2016, 2016.
Déry, S. J., Stadnyk, T. A., MacDonald, M. K., Koenig, K. A., and Guay,
C.: Flow alteration impacts on Hudson Bay river discharge, Hydrol.
Process., 32, 3576–3587, https://doi.org/10.1002/hyp.13285, 2018.
Dierauer, J. R., Whitfield, P. H., and Allen, D. M.: Climate Controls on Runoff
and Low Flows in Mountain Catchments of Western North America, Water
Resour. Res., 54, 7495–7510, https://doi.org/10.1029/2018WR023087, 2018.
Dierauer, J. R., Allen, D. M., and Whitfield, P. H.: Climate change impacts on snow and streamflow drought regimes in four ecoregions of British Columbia, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2019-676, 2020.
Eaton, B. and Moore, R. D.: Regional hydrology, in: Compendium of Forest Hydrology and Geomorphology in British Columbia, edited by: Pike, R. G., Redding, T. E., Moore, R. D., Winkler, R. D., and Bladon, K. D., vol. 1 of Land Management Handbook 66, Chap. 4, B. C. Ministry of Forests, 85–110, available at: http://www.for.gov.bc.ca/hfd/pubs/Docs/Lmh/Lmh66.htm (last access: August 2020), 2010.
Fleming, S. W. and Clarke, G. K.: Glacial control of water resource and
related environmental responses to climatic warming: empirical analysis
using historical streamflow data from northwestern Canada, Can. Water
Resour. J., 28, 69–86, https://doi.org/10.4296/cwrj2801069, 2003.
Fleming, S. W. and Weber, F. A.: Detection of long-term change in
hydroelectric reservoir inflows: Bridging theory and practise, J. Hydrol., 470, 36–54, https://doi.org/10.1016/j.jhydrol.2012.08.008, 2012.
Forbes, W. L., Mao, J., Ricciuto, D. M., Kao, S. C., Shi, X., Tavakoly, A.
A., Jin, M., Guo, W., Zhao, T., Wang, Y., Thornton, P. E., and Hoffman, F.,
M.: Streamflow in the Columbia River Basin: Quantifying changes over the
period 1951–2008 and determining the drivers of those changes, Water
Resour. Res., 55, 6640–6652, https://doi.org/10.1029/2018WR024256,
2019.
Fukuyama, Y. and Sugeno, M.: A new method of choosing the number of clusters for the fuzzy c-mean method, in: Proceedings of the 5th Fuzzy Systems Symposium, Japanese Fuzzy System Association, 247–250, Ankara, Turkey, July 1989 (in Japanese).
Genest, C. and Favre, A. C.: Everything you always wanted to know about
copula modeling but were afraid to ask, J. Hydrol. Eng.,
12, 347–368, https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(347),
2007.
Guetter, A. K. and Georgakakos, K. P.: River outflow of the conterminous
United States, 1939–1988, B. Am. Meteorol.
Soc., 74, 1873–1892,
https://doi.org/10.1175/1520-0477(1993)074%3C1873:ROOTCU%3E2.0.CO;2,
1993.
Hall, J., Arheimer, B., Borga, M., Brázdil, R., Claps, P., Kiss, A., Kjeldsen, T. R., Kriaučiūnienė, J., Kundzewicz, Z. W., Lang, M., Llasat, M. C., Macdonald, N., McIntyre, N., Mediero, L., Merz, B., Merz, R., Molnar, P., Montanari, A., Neuhold, C., Parajka, J., Perdigão, R. A. P., Plavcová, L., Rogger, M., Salinas, J. L., Sauquet, E., Schär, C., Szolgay, J., Viglione, A., and Blöschl, G.: Understanding flood regime changes in Europe: a state-of-the-art assessment, Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, 2014.
Hamududu, B. and Killingtveit, A.: Assessing climate change impacts on
global hydropower, Energies, 5, 305–322,
https://doi.org/10.3390/en5020305, 2012.
Hannachi, A., Unkel, S., Trendafilov, N. T., and Jolliffe, I. T.:
Independent component analysis of climate data: a new look at EOF
rotation, J. Climate, 22, 2797–2812,
https://doi.org/10.1175/2008JCLI2571.1, 2009.
Harvey, K. D., Pilon, P. J., and Yuzyk, T. R.: Canada's reference hydrometric basin network (RHBN), in: Proceedings of the CWRA 51st Annual Conference, Can. Water Resour. Assoc., Nova Scotia, June 1999.
Hassanzadeh, E., Elshorbagy, A., Nazemi, A., Jardine, T. D., Wheater, H.,
and Lindenschmidt, K. E.: The ecohydrological vulnerability of a large
inland delta to changing regional streamflows and upstream irrigation
expansion, Ecohydrology, 10, e1824, https://doi.org/10.1002/eco.1824,
2017.
Hatami, S., Zandmoghaddam, S., and Nazemi, A.: Statistical Modeling of
Monthly Snow Depth Loss in Southern Canada, J. Hydrol. Eng., 24, 04018071,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001763, 2018.
Hock, R., Jansson, P., and Braun, L. N.: Modelling the response of mountain
glacier discharge to climate warming. In Global Change and Mountain Regions, Springer, Dordrecht, 243–252,
https://doi.org/10.1007/1-4020-3508-X_25, 2005.
Hodgkins, G. A., Whitfield, P. H., Burn, D. H., Hannaford, J., Renard, B.,
Stahl, K., Fleig, A. K., Madsen, H., Mediero, L., Korhonen, J., and Murphy,
C.: Climate-driven variability in the occurrence of major floods across
North America and Europe, J. Hydrol., 552, 704–717,
https://doi.org/10.1016/j.jhydrol.2017.07.027, 2017.
Ireson, A. M., Barr, A. G., Johnstone, J. F., Mamet, S. D., Van der Kamp, G.,
Whitfield, C. J., Michel, N. L., North, R. L., Westbrook, C. J., DeBeer, C. and
Chun, K. P.: The changing water cycle: the Boreal Plains ecozone of Western
Canada. Wiley Interdisciplinary Reviews: Water, 2, 505–521,
https://doi.org/10.1002/wat2.1098, 2015.
Islam, S. U., Curry, C. L., Déry, S. J., and Zwiers, F. W.: Quantifying projected changes in runoff variability and flow regimes of the Fraser River Basin, British Columbia, Hydrol. Earth Syst. Sci., 23, 811–828, https://doi.org/10.5194/hess-23-811-2019, 2019.
Janowicz, J. R.: Apparent recent trends in hydrologic response in permafrost
regions of northwest Canada, Hydrol. Res., 39, 267–275,
https://doi.org/10.2166/nh.2008.103, 2008.
Janowicz, J. R.: Streamflow responses and trends between permafrost and
glacierized regimes in northwestern Canada, IAHS Publ., 346, 9–14, 2011.
Jaramillo, P. and Nazemi, A.: Assessing urban water security under changing
climate: Challenges and ways forward, Sustain. Cities Soc., 41,
907–918, https://doi.org/10.1016/j.scs.2017.04.005, 2018.
Jehn, F. U., Bestian, K., Breuer, L., Kraft, P., and Houska, T.: Using hydrological and climatic catchment clusters to explore drivers of catchment behavior, Hydrol. Earth Syst. Sci., 24, 1081–1100, https://doi.org/10.5194/hess-24-1081-2020, 2020.
Johnston, C. A. and Shmagin, B. A.: Regionalization, seasonality, and
trends of streamflow in the US Great Lakes Basin, J. Hydrol., 362, 69–88, https://doi.org/10.1016/j.jhydrol.2008.08.010,
2008.
Kang, D. H., Gao, H., Shi, X., ul Islam, S., and Déry, S. J.: Impacts of
a rapidly declining mountain snowpack on streamflow timing in Canada's
Fraser River basin, Sci. Rep.-UK, 6, 19299,
https://doi.org/10.1038/srep19299, 2016.
Kendall, M. G.: Rank Correlation Methods. Griffin and Co, London, ISBN
0-85264-199-0, 1975.
Kingston, D. G., Hannah, D. M., Lawler, D. M., and McGregor, G. R.: Regional
classification, variability, and trends of northern North Atlantic river
flow, Hydrol. Process., 25, 1021–1033,
https://doi.org/10.1002/hyp.7655, 2011.
Knoben, W. J., Woods, R. A., and Freer, J. E.: A Quantitative Hydrological
Climate Classification Evaluated With Independent Streamflow Data, Water
Resour. Res., 54, 5088–5109,
https://doi.org/10.1029/2018WR022913, 2018.
Knouft, J. H. and Ficklin, D. L.: The potential impacts of climate change
on biodiversity in flowing freshwater systems, Annu. Rev. Ecol.
Evol., 48, 111–133,
https://doi.org/10.1146/annurev-ecolsys-110316-022803, 2017.
Kuentz, A., Arheimer, B., Hundecha, Y., and Wagener, T.: Understanding hydrologic variability across Europe through catchment classification, Hydrol. Earth Syst. Sci., 21, 2863–2879, https://doi.org/10.5194/hess-21-2863-2017, 2017.
Legates, D. R. and McCabe Jr., G. J.: Evaluating the use of
“goodness-of-fit” measures in hydrologic and hydroclimatic model
validation, Water Resour. Res., 35, 233–241,
https://doi.org/10.1029/1998WR900018, 1999.
MacDonald, M. K., Stadnyk, T. A., Déry, S. J., Braun, M., Gustafsson, D.,
Isberg, K., and Arheimer, B.: Impacts of 1.5 and 2.0 ∘C Warming on
Pan-Arctic River Discharge Into the Hudson Bay Complex Through 2070,
Geophys. Res. Lett., 45, 7561–7570,
https://doi.org/10.1029/2018GL079147, 2018.
Mann, H. B.: Nonparametric Tests Against Trend, Econometrica, 13, 245,
https://doi.org/10.2307/1907187, 1945.
Matalas, N. C. and Reiher, B. J.: Some comments on the use of factor
analyses, Water Resour. Res., 3, 213–223,
https://doi.org/10.1029/WR003i001p00213, 1967.
Marshall, I. B., Schut, P. H., and Ballard, M.: A National Ecological
Framework for Canada: Attribute Data. Agriculture and Agri-Food Canada,
Research Branch, Centre for Land and Biological Resources Research and
Environment Canada, State of the Environment Directorate, Ecozone Analysis
Branch, Ottawa/Hull, 1999.
Maurer, E. P., Lettenmaier, D. P., and Mantua, N. J.: Variability and
potential sources of predictability of North American runoff, Water
Resour. Res., 40, W09306, https://doi.org/10.1029/2003WR002789, 2004.
Mekonnen, B. A., Nazemi, A., Mazurek, K. A., Elshorbagy, A., and Putz, G.:
Hybrid modelling approach to prairie hydrology: fusing data-driven and
process-based hydrological models, Hydrol. Sci. J., 60,
1473–1489, https://doi.org/10.1080/02626667.2014.935778, 2015.
Milly, P. C., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z.
W., Lettenmaier, D. P., and Stouffer, R. J.: Stationarity is dead: Whither
water management?, Science, 319, 573–574,
https://doi.org/10.1126/science.1151915, 2008.
Moore, R. D., Trubilowicz, J. W., and Buttle, J. M.: Prediction of
Streamflow Regime and Annual Runoff for Ungauged Basins Using a Distributed
Monthly Water Balance Model 1, J. Am. Water Resour.
As., 48, 32–42, https://doi.org/10.1111/j.1752-1688.2011.00595.x,
2012.
Natural Resources Canada: The Atlas of Canada: Lakes, Rivers and Names of
Canada, available at:
https://open.canada.ca/data/en/dataset/e625c0b0-2d5f-50d8-9e0c-a6e0fd5876ee (last access: August 2020),
2007.
Nazemi, A. and Elshorbagy, A.: Application of copula modelling to the
performance assessment of reconstructed watersheds, Stoch. Env.
Res. Risk A., 26, 189–205,
https://doi.org/10.1007/s00477-011-0467-7, 2012.
Nazemi, A. and Wheater, H. S.: On inclusion of water resource management in Earth system models – Part 1: Problem definition and representation of water demand, Hydrol. Earth Syst. Sci., 19, 33–61, https://doi.org/10.5194/hess-19-33-2015, 2015a.
Nazemi, A. and Wheater, H. S.: On inclusion of water resource management in Earth system models – Part 2: Representation of water supply and allocation and opportunities for improved modeling, Hydrol. Earth Syst. Sci., 19, 63–90, https://doi.org/10.5194/hess-19-63-2015, 2015b.
Nazemi, A., Wheater, H. S., Chun, K. P., Bonsal, B., and Mekonnen, M.: Forms
and drivers of annual streamflow variability in the headwaters of Canadian
Prairies during the 20th century, Hydrol. Process., 31, 221–239,
https://doi.org/10.1002/hyp.11036, 2017.
Nazemi, A., Zaerpour, M., and Hassanzadeh, E.: Uncertainty in Bottom-Up
Vulnerability Assessments of Water Supply Systems due to Regional Streamflow
Generation under Changing Conditions, J. Water Resour. Plan.
Manage., 146, 04019071,
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001149, 2020.
Nazemi, A. A. and Wheater, H. S.: Assessing the vulnerability of water
supply to changing streamflow conditions, Eos, 95, 288–288, https://doi.org/10.1002/2014EO320007,
2014.
Nazemi, A. R., Akbarzadeh, M. R., and Hosseini, S. M.: Fuzzy-stochastic
linear programming in water resources engineering. 2002 Annual Meeting of
the North American Fuzzy Information Processing Society Proceedings,
NAFIPS-FLINT 2002 (Cat. No. 02TH8622), IEEE, 227–232,
https://doi.org/10.1109/NAFIPS.2002.1018060, 2002.
Olden, J. D. and Poff, N. L.: Redundancy and the choice of hydrologic indices
for characterizing streamflow regimes, River Res. Appl.,
19, 101–121, https://doi.org/10.1002/rra.700, 2003.
Olden, J. D., Kennard, M. J., and Pusey, B. J.: A framework for hydrologic
classification with a review of methodologies and applications in
ecohydrology, Ecohydrology, 5, 503–518,
https://doi.org/10.1002/eco.251, 2012.
O'Neil, H. C. L., Prowse, T. D., Bonsal, B. R., and Dibike, Y. B.: Spatial
and temporal characteristics in streamflow-related hydroclimatic variables
over western Canada. Part 1: 1950–2010, Hydrol. Res., 48, 915–931,
https://doi.org/10.2166/nh.2016.057, 2017.
Overland, J. E. and Preisendorfer, R. W.: A significance test for principal
components applied to a cyclone climatology, Mon. Weather Rev., 110,
1–4,
https://doi.org/10.1175/1520-0493(1982)110%3C0001:ASTFPC%3E2.0.CO;2,
1982.
Pearse, P. H., Bertrand, F., and MacLaren, J. W.: Currents of Change: Final
Report of the Inquiry on Federal Water Policy, Environment Canada, Ottawa,
1985.
Pike, R. G., Redding, T. E., Moore, R. D., Winker, R. D., and Bladon, K. D. (Eds.):
Compendium of forest hydrology and geomorphology in British Columbia, B.C.
Min. For. Range, For. Sci. Prog., Victoria, B.C. and FORREX Forum for
Research and Extension in Natural Resources, Kamloops, B.C. Land Manag.
Handb., 66, available at: http://www.for.gov.bc.ca/hfd/pubs/Docs/Lmh/Lmh66.htm (last access: August 2020), 2010.
Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter,
B. D., Sparks, R. E., and Stromberg, J. C.: The natural flow regime, BioScience,
47, 769–784, https://doi.org/10.2307/1313099, 1997.
Poff, N. L., Richter, B. D., Arthington, A. H., Bunn, S. E., Naiman, R. J.,
Kendy, E., Acreman, M., Apse, C., Bledsoe, B. P., Freeman, M. C., and
Henriksen, J.: The ecological limits of hydrologic alteration (ELOHA): a new
framework for developing regional environmental flow standards, Freshwater
Biol., 55, 147–170, https://doi.org/10.1111/j.1365-2427.2009.02204.x,
2010.
Power, K. and Gillis, M. D.: Canada's forest inventory 2001, vol. 408,
Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia, 2006.
Richter, B. D., Baumgartner, J. V., Powell, J., and Braun, D. P.: A method for
assessing hydrologic alteration within ecosystems, Conserv. Biol.,
10, 1163–1174, https://doi.org/10.1046/j.1523-1739.1996.10041163.x,
1996.
Rood, S. B., Pan, J., Gill, K. M., Franks, C. G., Samuelson, G. M., and
Shepherd, A.: Declining summer flows of Rocky Mountain rivers: Changing
seasonal hydrology and probable impacts on floodplain forests, J. Hydrol., 349, 397–410, https://doi.org/10.1016/j.jhydrol.2007.11.012,
2008.
Rood, S. B., Foster, S. G., Hillman, E. J., Luek, A., and Zanewich, K. P.:
Flood moderation: Declining peak flows along some Rocky Mountain rivers and
the underlying mechanism, J. Hydrol., 536, 174–182,
https://doi.org/10.1016/j.jhydrol.2016.02.043, 2016.
Rottler, E., Francke, T., Bürger, G., and Bronstert, A.: Long-term changes in central European river discharge for 1869–2016: impact of changing snow covers, reservoir constructions and an intensified hydrological cycle, Hydrol. Earth Syst. Sci., 24, 1721–1740, https://doi.org/10.5194/hess-24-1721-2020, 2020.
Rowe, J. S. and Sheard, J. W.: Ecological land classification: a survey
approach, Environ. Manage., 5, 451–464,
https://doi.org/10.1007/BF01866822, 1981.
Satopaa, V., Albrecht, J., Irwin, D., and Raghavan, B.: Finding a “kneedle” in a haystack: Detecting knee points in system behavior, in: 2011 31st international conference on distributed computing systems workshops, Minneapolis, MN, USA, IEEE, 166–171, https://doi.org/10.1109/ICDCSW.2011.20, June 2011.
Schnorbus, M., Werner, A., and Bennett, K.: Impacts of climate change in
three hydrologic regimes in British Columbia, Canada, Hydrol.
Process., 28, 1170–1189, https://doi.org/10.1002/hyp.9661, 2014.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau,
J. Am. Stat. Assoc., 63, 1379–1389,
https://doi.org/10.1080/01621459.1968.10480934, 1968.
Shook, K., Pomeroy, J., and van der Kamp, G.: The transformation of
frequency distributions of winter precipitation to spring streamflow
probabilities in cold regions; case studies from the Canadian Prairies,
J. Hydrol., 521, 395–409,
https://doi.org/10.1016/j.jhydrol.2014.12.014, 2015.
Sikorska, A. E., Viviroli, D., and Seibert, J.: Flood-type classification in
mountainous catchments using crisp and fuzzy decision trees, Water Resour.
Res., 51, 7959–7976, https://doi.org/10.1002/2015WR017326, 2015.
Smith, L. C., Pavelsky, T. M., MacDonald, G. M., Shiklomanov, A. I., and
Lammers, R. B.: Rising minimum daily flows in northern Eurasian rivers: A
growing influence of groundwater in the high-latitude hydrologic cycle,
J. Geophys. Res.-Biogeo., 112, G04S47,
https://doi.org/10.1029/2006JG000327, 2007.
Spence, C. and Phillips, R. W.: Refining understanding of hydrological
connectivity in a boreal catchment, Hydrol. Process., 29,
3491–3503, https://doi.org/10.1002/hyp.10270, 2015.
Spence, C., Guan, X. J., Phillips, R., Hedstrom, N., Granger, R., and Reid,
B.: Storage dynamics and streamflow in a catchment with a variable
contributing area, Hydrol. Process., 24, 2209–2221,
https://doi.org/10.1002/hyp.7492, 2010.
Srinivas, V. V., Tripathi, S., Rao, A. R., and Govindaraju, R. S.: Regional
flood frequency analysis by combining self-organizing feature map and fuzzy
clustering, J. Hydrol., 348, 148–166,
https://doi.org/10.1016/j.jhydrol.2007.09.046, 2008.
Stahl, K. and Moore, R. D.: Influence of watershed glacier coverage on summer
streamflow in British Columbia, Canada, Water Resour. Res., 42, W06201,
https://doi.org/10.1029/2006WR005022, 2006.
Stahl, K., Hisdal, H., Hannaford, J., Tallaksen, L. M., van Lanen, H. A. J., Sauquet, E., Demuth, S., Fendekova, M., and Jódar, J.: Streamflow trends in Europe: evidence from a dataset of near-natural catchments, Hydrol. Earth Syst. Sci., 14, 2367–2382, https://doi.org/10.5194/hess-14-2367-2010, 2010.
St. Jacques, J. M. and Sauchyn, D. J.: Increasing winter baseflow and mean
annual streamflow from possible permafrost thawing in the Northwest
Territories, Canada, Geophys. Res. Lett., 36, L01401, https://doi.org/10.1029/2008GL035822, 2009.
Tarasova, L., Merz, R., Kiss, A., Basso, S., Blöschl, G., Merz, B.,
Viglione, A., Plötner, S., Guse, B., Schumann, A., and Fischer, S.:
Causative classification of river flood events, Wiley Interdisciplinary
Reviews: Water, 6, e1353, https://doi.org/10.1002/wat2.1353, 2019.
Ternynck, C., Ben Alaya, M. A., Chebana, F., Dabo-Niang, S., and Ouarda, T.
B.: Streamflow hydrograph classification using functional data analysis,
J. Hydrometeorol., 17, 327–344,
https://doi.org/10.1175/JHM-D-14-0200.1, 2016.
Thistle, M. E. and Caissie, D.: Trends in air temperature, total
precipitation, and streamflow characteristics in eastern Canada, Can. Tech.
Rep. Fish. Aquat. Sci., 3018, xi + 97 pp., 2013.
Thorne, R. and Woo, M. K.: Streamflow response to climatic variability in a
complex mountainous environment: Fraser River Basin, British Columbia,
Canada, Hydrol. Process., 25, 3076–3085,
https://doi.org/10.1002/hyp.8225, 2011.
Trunk, G. V.: A problem of dimensionality: A simple example, IEEE
T. Pattern Anal., 3, 306–307,
https://doi.org/10.1109/TPAMI.1979.4766926, 1979.
Vormoor, K., Lawrence, D., Heistermann, M., and Bronstert, A.: Climate change impacts on the seasonality and generation processes of floods – projections and uncertainties for catchments with mixed snowmelt/rainfall regimes, Hydrol. Earth Syst. Sci., 19, 913–931, https://doi.org/10.5194/hess-19-913-2015, 2015.
Wade, N. L., Martin, J., and Whitfield, P. H.: Hydrologic and climatic zonation
of Georgia basin, British Columbia, Can. Water Resour. J., 26,
43–70, https://doi.org/10.4296/cwrj2601043, 2001.
Walvoord, M. A. and Striegl, R. G.: Increased groundwater to stream
discharge from permafrost thawing in the Yukon River basin: Potential
impacts on lateral export of carbon and nitrogen, Geophys. Res.
Lett., 34, L12402, https://doi.org/10.1029/2007GL030216, 2007.
Wang, X., Yang, T., Yong, B., Krysanova, V., Shi, P., Li, Z., and Zhou, X.:
Impacts of climate change on flow regime and sequential threats to riverine
ecosystem in the source region of the Yellow River, Environ. Earth
Sci., 77, 465, https://doi.org/10.1007/s12665-018-7628-7, 2018.
Water Survey of Canada: HYDAT Database, Environment Canada, Ottawa, Canada, available at: https://www.canada.ca/en/environment-climate-change/services/water-overview/quantity/monitoring/survey/data-products-services/national-archive-hydat.html (last access: August 2020), 2017.
Water Survey of Canada: National Water Data Archive: HYDAT, Environment Canada: Ottawa, Canada [data set], available at: https://collaboration.cmc.ec.gc.ca/cmc/hydrometrics/www/, last access: August 2020.
Whitfield, P. H.: Linked hydrologic and climate variations in British
Columbia and Yukon, Environ. Monit. Assess., 67, 217–238,
https://doi.org/10.1023/A:1006438723879, 2001.
Whitfield, P. H. and Cannon, A. J.: Recent variations in climate and
hydrology in Canada, Canadian Water Resour. J., 25, 19–65,
https://doi.org/10.4296/cwrj2501019, 2000.
Whitfield, P. H. and Pomeroy, J. W.: Changes to flood peaks of a mountain
river: implications for analysis of the 2013 flood in the Upper Bow River,
Canada, Hydrol. Process., 30, 4657–4673,
https://doi.org/10.1002/hyp.10957, 2016.
Whitfield, P. H., Shook, K. R., and Pomeroy, J. W.: Spatial patterns of
temporal changes in Canadian Prairie streamflow using an alternative trend
assessment approach, J. Hydrol., 582, 124541,
https://doi.org/10.1016/j.jhydrol.2020.124541, 2020.
Wiken, E. B.: Terrestrial ecozones of Canada, Environment Canada, Lands Directorate, Environment Canada, 1986.
Wolfe, J. D., Shook, K. R., Spence, C., and Whitfield, C. J.: A watershed classification approach that looks beyond hydrology: application to a semi-arid, agricultural region in Canada, Hydrol. Earth Syst. Sci., 23, 3945–3967, https://doi.org/10.5194/hess-23-3945-2019, 2019.
Wong, J. S., Razavi, S., Bonsal, B. R., Wheater, H. S., and Asong, Z. E.: Inter-comparison of daily precipitation products for large-scale hydro-climatic applications over Canada, Hydrol. Earth Syst. Sci., 21, 2163–2185, https://doi.org/10.5194/hess-21-2163-2017, 2017.
Woo, M. K., Thorne, R., Szeto, K., and Yang, D.: Streamflow hydrology in the
boreal region under the influences of climate and human
interference, Philos. T. Roy. Soc. B, 363, 2249–2258, https://doi.org/10.1098/rstb.2007.2197,
2008.
Xie, X. L. and Beni, G. A.: Validity measure for fuzzy clustering, IEEE Trans.
PAMI, 3, 841–846, https://doi.org/10.1109/34.85677,
1991.
Yang, D., Shi, X., and Marsh, P.: Variability and extreme of Mackenzie River
daily discharge during 1973–2011, Quaternary Int., 380, 159–168,
https://doi.org/10.1016/j.quaint.2014.09.023, 2015.
Yue, S., Pilon, P., and Phinney, B. O. B.: Canadian streamflow trend
detection: impacts of serial and cross-correlation, Hydrol. Sci.
J., 48, 51–63, https://doi.org/10.1623/hysj.48.1.51.43478, 2003.
Zadeh, L. A.: Fuzzy sets, Inform. Control, 8, 338–353,
https://doi.org/10.1016/S0019-9958(65)90241-X, 1965.
Zaerpour, M.: Streamflow Regime Changes in Canada, HydroShare [video supplement], https://doi.org/10.4211/hs.da68a6ec2e2946b48075ac1ba4bb21cd, 2021.
Zandmoghaddam, S., Nazemi, A., Hassanzadeh, E., and Hatami, S.: Representing
local dynamics of water resource systems through a data-driven emulation
approach, Water Resour. Managem., 33, 3579–3594, 2019.
Short summary
Streamflow regimes are changing globally particularly in cold regions. We develop a novel algorithm for detecting shifting streamflow regimes using changes in first and second moments of ensemble streamflow features. This algorithm is generic and can be used globally. To showcase its application, we assess alterations in Canadian natural streams from 1966 to 2010 to provide the first temporally consistent, pan-Canadian assessment of change in natural streamflow regimes, coast to coast to coast.
Streamflow regimes are changing globally particularly in cold regions. We develop a novel...