Articles | Volume 25, issue 6
https://doi.org/10.5194/hess-25-3397-2021
© Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.
Machine learning deciphers CO2 sequestration and subsurface flowpaths from stream chemistry
Cited articles
Alexandrov, B. S. and Vesselinov, V. V.: Blind source separation for
groundwater pressure analysis based on nonnegative matrix
factorization, Water Resour. Res., 50, 7332–7347, 2014.
Bailey, S. W., Mayer, B., and Mitchell, M. J.: Evidence for influence of
mineral weathering on stream water sulphate in Vermont and New Hampshire
(USA), Hydrol. Process., 18, 1639–1653, 2004.
Bernhardt, E., Likens, G. E., and Rosi, E.: Continuous precipitation and
stream chemistry data, Hubbard Brook Ecosystem Study, 1963–present,
Environmental Data Initiative, Hubbard Brook Data Catalog,
https://doi.org/10.6073/pasta/4022d829f3a1fa4057b63b5db8b1a172, 2019.
Berry, M. W., Browne, M., Langville, A. N., Pauca, V. P., and Plemmons, R.
J.: Algorithms and applications for approximate nonnegative matrix
factorization, Comput. Stat. Data An., 52, 155–173, 2007.
Brantley, S. L., Holleran, M. E., Jin, L., and Bazilevskaya, E.: Probing
deep weathering in the Shale Hills Critical Zone Observatory, Pennsylvania
(USA): the hypothesis of nested chemical reaction fronts in the
subsurface, Earth Surf. Proc. Land., 38, 1280–1298, 2013a.