Articles | Volume 25, issue 5
https://doi.org/10.5194/hess-25-2649-2021
https://doi.org/10.5194/hess-25-2649-2021
Research article
 | 
20 May 2021
Research article |  | 20 May 2021

A novel method for cold-region streamflow hydrograph separation using GRACE satellite observations

Shusen Wang, Junhua Li, and Hazen A. J. Russell

Data sets

NASA/GSFC/HSL, GLDAS Noah Land Surface Model L4 3 hourly 0.25 x 0.25 degree V2.1, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) H. Beaudoing and M. Rodell https://doi.org/10.5067/E7TYRXPJKWOQ

Snow water equivalent data from the EALCO model for the Albany watershed S. Wang ftp://ftp.ccrs.nrcan.gc.ca/ad/EMS/EALCO/

Historical hydrometric data Government of Canada https://wateroffice.ec.gc.ca

CSR/GFZ/JPL TELLUS GRACE Level-3 monthly land water-equivalent-thickness surface mass anomaly Release 6.0 version 03 in netCDF/ASCII/GeoTiff format. Ver. RL06 v03. PO.DAAC, CA, USA F. Landerer https://doi.org/10.5067/TELND-3AC63

Download
Short summary
Separating river flow into baseflow and surface runoff provides useful information for hydrology and climate studies, but traditional methods have critical limitations in the lack of physics, identifying snowmelt runoff and watershed size. This study developed a novel model using the GRACE satellite observations to address these limitations. It also includes estimates for watershed hydraulic conductivity and drainable water storage, which help assess aquifer properties and water resources.