Articles | Volume 24, issue 12
https://doi.org/10.5194/hess-24-6047-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-6047-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: Mobile open dynamic chamber measurement of methane macroseeps in lakes
Frederic Thalasso
CORRESPONDING AUTHOR
Biotechnology and Bioengineering Department, Cinvestav, Avenida IPN
2508, Mexico City, 07360, Mexico
Katey Walter Anthony
CORRESPONDING AUTHOR
Water and Environmental Research Center, University of Alaska
Fairbanks, Fairbanks, Alaska 99775, USA
International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA
Olya Irzak
Frost Methane, Oakland, California 94612, USA
Ethan Chaleff
Frost Methane, Oakland, California 94612, USA
Laughlin Barker
Frost Methane, Oakland, California 94612, USA
Peter Anthony
Water and Environmental Research Center, University of Alaska
Fairbanks, Fairbanks, Alaska 99775, USA
Philip Hanke
Water and Environmental Research Center, University of Alaska
Fairbanks, Fairbanks, Alaska 99775, USA
Rodrigo Gonzalez-Valencia
Biotechnology and Bioengineering Department, Cinvestav, Avenida IPN
2508, Mexico City, 07360, Mexico
Related authors
Frederic Thalasso, Brenda Riquelme, Andrés Gómez, Roy Mackenzie, Francisco Javier Aguirre, Jorge Hoyos-Santillan, Ricardo Rozzi, and Armando Sepulveda-Jauregui
Biogeosciences, 20, 3737–3749, https://doi.org/10.5194/bg-20-3737-2023, https://doi.org/10.5194/bg-20-3737-2023, 2023
Short summary
Short summary
A robust skirt-chamber design to capture and quantify greenhouse gas emissions from peatlands is presented. Compared to standard methods, this design improves the spatial resolution of field studies in remote locations while minimizing intrusion.
K. Martinez-Cruz, A. Sepulveda-Jauregui, K. Walter Anthony, and F. Thalasso
Biogeosciences, 12, 4595–4606, https://doi.org/10.5194/bg-12-4595-2015, https://doi.org/10.5194/bg-12-4595-2015, 2015
Short summary
Short summary
We assessed the importance of aerobic CH4 oxidation in Alaskan lakes. We conducted field measurement of dissolved CH4 and O2 together with determination of the CH4 oxidation rate. We found that during winter, CH4 oxidation was limited by O2 concentration and during summer, by CH4 concentration. In addition to seasonal variations, the type of permafrost on which the lakes were located was identified as a key factor, indicating that landscape processes play an important role in lake CH4 cycling.
A. Sepulveda-Jauregui, K. M. Walter Anthony, K. Martinez-Cruz, S. Greene, and F. Thalasso
Biogeosciences, 12, 3197–3223, https://doi.org/10.5194/bg-12-3197-2015, https://doi.org/10.5194/bg-12-3197-2015, 2015
Short summary
Short summary
This study of methane (CH4) and carbon dioxide (CO2) emission modes from 40 lakes along a latitudinal transect in Alaska revealed that thermokarst lakes formed in Pleistocene-aged icy, organic-rich yedoma-type permafrost had the highest emissions. Ebullition and diffusion were the dominant modes of CH4 and CO2 emissions, respectively. Accounting for the global warming potentials of the gases, the climate warming impact of lake CH4 emissions was 2 times higher than that of CO2.
Frederic Thalasso, Brenda Riquelme, Andrés Gómez, Roy Mackenzie, Francisco Javier Aguirre, Jorge Hoyos-Santillan, Ricardo Rozzi, and Armando Sepulveda-Jauregui
Biogeosciences, 20, 3737–3749, https://doi.org/10.5194/bg-20-3737-2023, https://doi.org/10.5194/bg-20-3737-2023, 2023
Short summary
Short summary
A robust skirt-chamber design to capture and quantify greenhouse gas emissions from peatlands is presented. Compared to standard methods, this design improves the spatial resolution of field studies in remote locations while minimizing intrusion.
McKenzie A. Kuhn, Ruth K. Varner, David Bastviken, Patrick Crill, Sally MacIntyre, Merritt Turetsky, Katey Walter Anthony, Anthony D. McGuire, and David Olefeldt
Earth Syst. Sci. Data, 13, 5151–5189, https://doi.org/10.5194/essd-13-5151-2021, https://doi.org/10.5194/essd-13-5151-2021, 2021
Short summary
Short summary
Methane (CH4) emissions from the boreal–Arctic region are globally significant, but the current magnitude of annual emissions is not well defined. Here we present a dataset of surface CH4 fluxes from northern wetlands, lakes, and uplands that was built alongside a compatible land cover dataset, sharing the same classifications. We show CH4 fluxes can be split by broad land cover characteristics. The dataset is useful for comparison against new field data and model parameterization or validation.
Lydia Stolpmann, Caroline Coch, Anne Morgenstern, Julia Boike, Michael Fritz, Ulrike Herzschuh, Kathleen Stoof-Leichsenring, Yury Dvornikov, Birgit Heim, Josefine Lenz, Amy Larsen, Katey Walter Anthony, Benjamin Jones, Karen Frey, and Guido Grosse
Biogeosciences, 18, 3917–3936, https://doi.org/10.5194/bg-18-3917-2021, https://doi.org/10.5194/bg-18-3917-2021, 2021
Short summary
Short summary
Our new database summarizes DOC concentrations of 2167 water samples from 1833 lakes in permafrost regions across the Arctic to provide insights into linkages between DOC and environment. We found increasing lake DOC concentration with decreasing permafrost extent and higher DOC concentrations in boreal permafrost sites compared to tundra sites. Our study shows that DOC concentration depends on the environmental properties of a lake, especially permafrost extent, ecoregion, and vegetation.
Kimberley L. Davies, Richard D. Pancost, Mary E. Edwards, Katey M. Walter Anthony, Peter G. Langdon, and Lidia Chaves Torres
Biogeosciences, 13, 2611–2621, https://doi.org/10.5194/bg-13-2611-2016, https://doi.org/10.5194/bg-13-2611-2016, 2016
P. R. Lindgren, G. Grosse, K. M. Walter Anthony, and F. J. Meyer
Biogeosciences, 13, 27–44, https://doi.org/10.5194/bg-13-27-2016, https://doi.org/10.5194/bg-13-27-2016, 2016
Short summary
Short summary
We mapped and characterized methane ebullition bubbles trapped in lake ice, and estimated whole-lake methane emission using high-resolution aerial images of a lake acquired following freeze-up. We identified the location and relative sizes of high- and low-flux seepage zones within the lake. A large number of seeps showed spatiotemporal stability over our study period. Our approach is applicable to other regions to improve the estimation of methane emission from lakes at the regional scale.
J. E. Vonk, S. E. Tank, W. B. Bowden, I. Laurion, W. F. Vincent, P. Alekseychik, M. Amyot, M. F. Billet, J. Canário, R. M. Cory, B. N. Deshpande, M. Helbig, M. Jammet, J. Karlsson, J. Larouche, G. MacMillan, M. Rautio, K. M. Walter Anthony, and K. P. Wickland
Biogeosciences, 12, 7129–7167, https://doi.org/10.5194/bg-12-7129-2015, https://doi.org/10.5194/bg-12-7129-2015, 2015
Short summary
Short summary
In this review, we give an overview of the current state of knowledge regarding how permafrost thaw affects aquatic systems. We describe the general impacts of thaw on aquatic ecosystems, pathways of organic matter and contaminant release and degradation, resulting emissions and burial, and effects on ecosystem structure and functioning. We conclude with an overview of potential climate effects and recommendations for future research.
K. Martinez-Cruz, A. Sepulveda-Jauregui, K. Walter Anthony, and F. Thalasso
Biogeosciences, 12, 4595–4606, https://doi.org/10.5194/bg-12-4595-2015, https://doi.org/10.5194/bg-12-4595-2015, 2015
Short summary
Short summary
We assessed the importance of aerobic CH4 oxidation in Alaskan lakes. We conducted field measurement of dissolved CH4 and O2 together with determination of the CH4 oxidation rate. We found that during winter, CH4 oxidation was limited by O2 concentration and during summer, by CH4 concentration. In addition to seasonal variations, the type of permafrost on which the lakes were located was identified as a key factor, indicating that landscape processes play an important role in lake CH4 cycling.
J. K. Heslop, K. M. Walter Anthony, A. Sepulveda-Jauregui, K. Martinez-Cruz, A. Bondurant, G. Grosse, and M. C. Jones
Biogeosciences, 12, 4317–4331, https://doi.org/10.5194/bg-12-4317-2015, https://doi.org/10.5194/bg-12-4317-2015, 2015
Short summary
Short summary
The relative magnitude of thermokarst lake CH4 production in surface sediments vs. deeper-thawed permafrost is not well understood. We assessed CH4 production potentials from a lake sediment core and adjacent permafrost tunnel in interior Alaska. CH4 production was highest in the organic-rich surface lake sediments and recently thawed permafrost at the bottom of the talik, implying CH4 production is highly variable and that both modern and ancient OM are important to lake CH4 production.
A. Sepulveda-Jauregui, K. M. Walter Anthony, K. Martinez-Cruz, S. Greene, and F. Thalasso
Biogeosciences, 12, 3197–3223, https://doi.org/10.5194/bg-12-3197-2015, https://doi.org/10.5194/bg-12-3197-2015, 2015
Short summary
Short summary
This study of methane (CH4) and carbon dioxide (CO2) emission modes from 40 lakes along a latitudinal transect in Alaska revealed that thermokarst lakes formed in Pleistocene-aged icy, organic-rich yedoma-type permafrost had the highest emissions. Ebullition and diffusion were the dominant modes of CH4 and CO2 emissions, respectively. Accounting for the global warming potentials of the gases, the climate warming impact of lake CH4 emissions was 2 times higher than that of CO2.
M. Langer, S. Westermann, K. Walter Anthony, K. Wischnewski, and J. Boike
Biogeosciences, 12, 977–990, https://doi.org/10.5194/bg-12-977-2015, https://doi.org/10.5194/bg-12-977-2015, 2015
Short summary
Short summary
Methane production rates of Arctic ponds during the freezing period within a typical tundra landscape in northern Siberia are presented. Production rates were inferred by inverse modeling based on measured methane concentrations in the ice cover. Results revealed marked differences in early winter methane production among ponds showing different stages of shore degradation. This suggests that shore erosion can increase methane production of Arctic ponds by 2 to 3 orders of magnitude.
S. Greene, K. M. Walter Anthony, D. Archer, A. Sepulveda-Jauregui, and K. Martinez-Cruz
Biogeosciences, 11, 6791–6811, https://doi.org/10.5194/bg-11-6791-2014, https://doi.org/10.5194/bg-11-6791-2014, 2014
Short summary
Short summary
Methane (CH4) bubbles emitted from the anoxic sediments of northern lakes constitute a significant methane flux to the atmosphere, but entrapment by seasonal lake ice impedes bubble release to the atmosphere. Using numerical modeling and field measurement of a lake in Alaska, we found that 80% of CH4 in ice-trapped bubbles dissolves into the water column. Microbes consume half of that CH4. Emission by bubbling is greatest in summer but continues in winter through some open holes in lake ice.
M. Engram, K. W. Anthony, F. J. Meyer, and G. Grosse
The Cryosphere, 7, 1741–1752, https://doi.org/10.5194/tc-7-1741-2013, https://doi.org/10.5194/tc-7-1741-2013, 2013
Related subject area
Subject: Rivers and Lakes | Techniques and Approaches: Instruments and observation techniques
Hydrological, meteorological, and watershed controls on the water balance of thermokarst lakes between Inuvik and Tuktoyaktuk, Northwest Territories, Canada
Influence of vegetation maintenance on flow and mixing: case study comparing fully cut with high-coverage conditions
Assessing the influence of lake and watershed attributes on snowmelt bypass at thermokarst lakes
Technical note: Analyzing river network dynamics and the active length–discharge relationship using water presence sensors
Technical note: Efficient imaging of hydrological units below lakes and fjords with a floating, transient electromagnetic (FloaTEM) system
Drastic decline of flood pulse in the Cambodian floodplains (Mekong River and Tonle Sap system)
Seasonality of density currents induced by differential cooling
Implications of variations in stream specific conductivity for estimating baseflow using chemical mass balance and calibrated hydrograph techniques
Enhanced flood hazard assessment beyond decadal climate cycles based on centennial historical data (Duero basin, Spain)
Contrasting hydrological and thermal intensities determine seasonal lake-level variations – a case study at Paiku Co on the southern Tibetan Plateau
A Fast-Response Automated Gas Equilibrator (FaRAGE) for continuous in situ measurement of CH4 and CO2 dissolved in water
Technical note: Greenhouse gas flux studies: an automated online system for gas emission measurements in aquatic environments
Evolution and dynamics of the vertical temperature profile in an oligotrophic lake
Long-term changes in central European river discharge for 1869–2016: impact of changing snow covers, reservoir constructions and an intensified hydrological cycle
Reliable reference for the methane concentrations in Lake Kivu at the beginning of industrial exploitation
Small dams alter thermal regimes of downstream water
Oxycline oscillations induced by internal waves in deep Lake Iseo
Turbulent mixing and heat fluxes under lake ice: the role of seiche oscillations
New profiling and mooring records help to assess variability of Lake Issyk-Kul and reveal unknown features of its thermohaline structure
Evaluation of lacustrine groundwater discharge, hydrologic partitioning, and nutrient budgets in a proglacial lake in the Qinghai–Tibet Plateau: using 222Rn and stable isotopes
Long-term temporal trajectories to enhance restoration efficiency and sustainability on large rivers: an interdisciplinary study
Active heat pulse sensing of 3-D-flow fields in streambeds
Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations
Effectiveness of distributed temperature measurements for early detection of piping in river embankments
Citizen observations contributing to flood modelling: opportunities and challenges
Dead Sea evaporation by eddy covariance measurements vs. aerodynamic, energy budget, Priestley–Taylor, and Penman estimates
Technical note: Stage and water width measurement of a mountain stream using a simple time-lapse camera
Identifying, characterizing and predicting spatial patterns of lacustrine groundwater discharge
Information content of stream level class data for hydrological model calibration
Hydrology of inland tropical lowlands: the Kapuas and Mahakam wetlands
Technical Note: Monitoring of unsteady open channel flows using the continuous slope-area method
Application of CryoSat-2 altimetry data for river analysis and modelling
Technical Note: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs)
Using radon to understand parafluvial flows and the changing locations of groundwater inflows in the Avon River, southeast Australia
Influence of environmental factors on spectral characteristics of chromophoric dissolved organic matter (CDOM) in Inner Mongolia Plateau, China
DAHITI – an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry
The Global Network of Isotopes in Rivers (GNIR): integration of water isotopes in watershed observation and riverine research
A 2600-year history of floods in the Bernese Alps, Switzerland: frequencies, mechanisms and climate forcing
Technical Note: Semi-automated effective width extraction from time-lapse RGB imagery of a remote, braided Greenlandic river
Characterization of sediment layer composition in a shallow lake: from open water zones to reed belt areas
Morphological, hydrological, biogeochemical and ecological changes and challenges in river restoration – the Thur River case study
Dynamics of auto- and heterotrophic picoplankton and associated viruses in Lake Geneva
Historic maps as a data source for socio-hydrology: a case study of the Lake Balaton wetland system, Hungary
Spatio-temporal heterogeneity of riparian soil morphology in a restored floodplain
Flood discharge measurement of a mountain river – Nanshih River in Taiwan
Hydrochemical variability at the Upper Paraguay Basin and Pantanal wetland
Measurement of spatial and temporal fine sediment dynamics in a small river
Technical Note: How image processing facilitates the rising bubble technique for discharge measurement
Discharge estimation in a backwater affected meandering river
Ephemeral stream sensor design using state loggers
Evan J. Wilcox, Brent B. Wolfe, and Philip Marsh
Hydrol. Earth Syst. Sci., 27, 2173–2188, https://doi.org/10.5194/hess-27-2173-2023, https://doi.org/10.5194/hess-27-2173-2023, 2023
Short summary
Short summary
The Arctic is warming quickly and influencing lake water balances. We used water isotope concentrations taken from samples of 25 lakes in the Canadian Arctic and estimated the average ratio of evaporation to inflow (E / I) for each lake. The ratio of watershed area (the area that flows into the lake) to lake area (WA / LA) strongly predicted E / I, as lakes with relatively smaller watersheds received less inflow. The WA / LA could be used to predict the vulnerability of Arctic lakes to future change.
Monika Barbara Kalinowska, Kaisa Västilä, Michael Nones, Adam Kiczko, Emilia Karamuz, Andrzej Brandyk, Adam Kozioł, and Marcin Krukowski
Hydrol. Earth Syst. Sci., 27, 953–968, https://doi.org/10.5194/hess-27-953-2023, https://doi.org/10.5194/hess-27-953-2023, 2023
Short summary
Short summary
Vegetation is commonly found in rivers and channels. Using field investigations, we evaluated the influence of different vegetation coverages on the flow and mixing in the small naturally vegetated channel. The obtained results are expected to be helpful for practitioners, enlarge our still limited knowledge, and show the further required scientific directions for a better understanding of the influence of vegetation on the flow and mixing of dissolved substances in real natural conditions.
Evan J. Wilcox, Brent B. Wolfe, and Philip Marsh
Hydrol. Earth Syst. Sci., 26, 6185–6205, https://doi.org/10.5194/hess-26-6185-2022, https://doi.org/10.5194/hess-26-6185-2022, 2022
Short summary
Short summary
We estimated how much of the water flowing into lakes during snowmelt replaced the pre-snowmelt lake water. Our data show that, as lake depth increases, the amount of water mixed into lakes decreased, because vertical mixing is reduced as lake depth increases. Our data also show that the water mixing into lakes is not solely snow-sourced but is a mixture of snowmelt and soil water. These results are relevant for lake biogeochemistry given the unique properties of snowmelt runoff.
Francesca Zanetti, Nicola Durighetto, Filippo Vingiani, and Gianluca Botter
Hydrol. Earth Syst. Sci., 26, 3497–3516, https://doi.org/10.5194/hess-26-3497-2022, https://doi.org/10.5194/hess-26-3497-2022, 2022
Short summary
Short summary
River networks are highly dynamical. Characterizing expansion and retraction of flowing streams is a significant scientific challenge. Electrical resistance sensors were used to monitor stream network patterns in an alpine catchment. Our data show the presence of spatial heterogeneity in network dynamics and that the active length is more sensitive than discharge to small rain events. The study unravels potentials and limitations of the sensors for the characterization of temporary streams.
Pradip Kumar Maurya, Frederik Ersted Christensen, Masson Andy Kass, Jesper B. Pedersen, Rasmus R. Frederiksen, Nikolaj Foged, Anders Vest Christiansen, and Esben Auken
Hydrol. Earth Syst. Sci., 26, 2813–2827, https://doi.org/10.5194/hess-26-2813-2022, https://doi.org/10.5194/hess-26-2813-2022, 2022
Short summary
Short summary
In this paper, we present an application of the electromagnetic method to image the subsurface below rivers, lakes, or any surface water body. The scanning of the subsurface is carried out by sailing an electromagnetic sensor called FloaTEM. Imaging results show a 3D distribution of different sediment types below the freshwater lakes. In the case of saline water, the system is capable of identifying the probable location of groundwater discharge into seawater.
Samuel De Xun Chua, Xi Xi Lu, Chantha Oeurng, Ty Sok, and Carl Grundy-Warr
Hydrol. Earth Syst. Sci., 26, 609–625, https://doi.org/10.5194/hess-26-609-2022, https://doi.org/10.5194/hess-26-609-2022, 2022
Short summary
Short summary
We found that the annual flood at the Cambodian floodplains decreased from 1960 to 2019. Consequently, the Tonle Sap Lake, the largest lake in Southeast Asia, is shrinking. The results are worrying because the local fisheries and planting calendar might be disrupted. This drastic decline of flooding extent is caused mostly by local factors, namely water withdrawal for irrigation and channel incision from sand mining activities.
Tomy Doda, Cintia L. Ramón, Hugo N. Ulloa, Alfred Wüest, and Damien Bouffard
Hydrol. Earth Syst. Sci., 26, 331–353, https://doi.org/10.5194/hess-26-331-2022, https://doi.org/10.5194/hess-26-331-2022, 2022
Short summary
Short summary
At night or during cold periods, the shallow littoral region of lakes cools faster than their deeper interior. This induces a cold downslope current that carries littoral waters offshore. From a 1-year-long database collected in a small temperate lake, we resolve the seasonality of this current and report its frequent occurrence from summer to winter. This study contributes to a better quantification of lateral exchange in lakes, with implications for the transport of dissolved compounds.
Ian Cartwright
Hydrol. Earth Syst. Sci., 26, 183–195, https://doi.org/10.5194/hess-26-183-2022, https://doi.org/10.5194/hess-26-183-2022, 2022
Short summary
Short summary
Using specific conductivity (SC) to estimate groundwater inflow to rivers is complicated by bank return waters, interflow, and flows off floodplains contributing to baseflow in all but the driest years. Using the maximum SC of the river in dry years to estimate the SC of groundwater produces the best baseflow vs. streamflow trends. The variable composition of baseflow hinders calibration of hydrograph-based techniques to estimate groundwater inflows.
Gerardo Benito, Olegario Castillo, Juan A. Ballesteros-Cánovas, Maria Machado, and Mariano Barriendos
Hydrol. Earth Syst. Sci., 25, 6107–6132, https://doi.org/10.5194/hess-25-6107-2021, https://doi.org/10.5194/hess-25-6107-2021, 2021
Short summary
Short summary
Climate change is expected to increase the intensity of floods, but changes are difficult to project. We compiled historical and modern flood data of the Rio Duero (Spain) to evaluate flood hazards beyond decadal climate cycles. Historical floods were obtained from documentary sources, identifying 69 floods over 1250–1871 CE. Discharges were calculated from reported flood heights. Flood frequency using historical datasets showed the most robust results, guiding climate change adaptation.
Yanbin Lei, Tandong Yao, Kun Yang, Lazhu, Yaoming Ma, and Broxton W. Bird
Hydrol. Earth Syst. Sci., 25, 3163–3177, https://doi.org/10.5194/hess-25-3163-2021, https://doi.org/10.5194/hess-25-3163-2021, 2021
Short summary
Short summary
Lake evaporation from Paiku Co on the TP is low in spring and summer and high in autumn and early winter. There is a ~ 5-month lag between net radiation and evaporation due to large lake heat storage. High evaporation and low inflow cause significant lake-level decrease in autumn and early winter, while low evaporation and high inflow cause considerable lake-level increase in summer. This study implies that evaporation can affect the different amplitudes of lake-level variations on the TP.
Shangbin Xiao, Liu Liu, Wei Wang, Andreas Lorke, Jason Woodhouse, and Hans-Peter Grossart
Hydrol. Earth Syst. Sci., 24, 3871–3880, https://doi.org/10.5194/hess-24-3871-2020, https://doi.org/10.5194/hess-24-3871-2020, 2020
Short summary
Short summary
To better understand the fate of methane (CH4) and carbon dioxide (CO2) in freshwaters, dissolved CH4 and CO2 need to be measured with a high temporal resolution. We developed the Fast-Response Automated Gas Equilibrator (FaRAGE) for real-time in situ measurement of dissolved gases in water. FaRAGE can achieve a short response time (CH4:
t95 % = 12 s; CO2:
t95 % = 10 s) while retaining a high equilibration ratio and accuracy.
Nguyen Thanh Duc, Samuel Silverstein, Martin Wik, Patrick Crill, David Bastviken, and Ruth K. Varner
Hydrol. Earth Syst. Sci., 24, 3417–3430, https://doi.org/10.5194/hess-24-3417-2020, https://doi.org/10.5194/hess-24-3417-2020, 2020
Short summary
Short summary
Under rapid ongoing climate change, accurate quantification of natural greenhouse gas emissions in aquatic environments such as lakes and ponds is needed to understand regulation and feedbacks. Building on the rapid development in wireless communication, sensors, and computation technology, we present a low-cost, open-source, automated and remotely accessed and controlled device for carbon dioxide and methane fluxes from open-water environments along with tests showing their potential.
Zvjezdana B. Klaić, Karmen Babić, and Mirko Orlić
Hydrol. Earth Syst. Sci., 24, 3399–3416, https://doi.org/10.5194/hess-24-3399-2020, https://doi.org/10.5194/hess-24-3399-2020, 2020
Short summary
Short summary
Fine-resolution lake temperature measurements (2 min, 15 depths) show different lake responses to atmospheric forcings: (1) continuous diurnal oscillations in the temperature in the first 5 m of the lake, (2) occasional diurnal oscillations in the temperature at depths from 7 to 20 m, and (3) occasional surface and internal seiches. Due to the sloped lake bottom, surface seiches produced the high-frequency oscillations in the lake temperatures with periods of 9 min at depths from 9 to 17 m.
Erwin Rottler, Till Francke, Gerd Bürger, and Axel Bronstert
Hydrol. Earth Syst. Sci., 24, 1721–1740, https://doi.org/10.5194/hess-24-1721-2020, https://doi.org/10.5194/hess-24-1721-2020, 2020
Short summary
Short summary
In the attempt to identify and disentangle long-term impacts of changes in snow cover and precipitation along with reservoir constructions, we employ a set of analytical tools on hydro-climatic time series. We identify storage reservoirs as an important factor redistributing runoff from summer to winter. Furthermore, our results hint at more (intense) rainfall in recent decades. Detected increases in high discharge can be traced back to corresponding changes in precipitation.
Bertram Boehrer, Wolf von Tümpling, Ange Mugisha, Christophe Rogemont, and Augusta Umutoni
Hydrol. Earth Syst. Sci., 23, 4707–4716, https://doi.org/10.5194/hess-23-4707-2019, https://doi.org/10.5194/hess-23-4707-2019, 2019
Short summary
Short summary
Dissolved methane in Lake Kivu (East Africa) represents a precious energy deposit, but the high gas loads have also been perceived as a threat by the local population. Our measurements confirm the huge amount of methane and carbon dioxide present, but do not support the current theory of a significant recharge. Direct measurements of gas pressure indicate no imminent danger due to limnic eruptions. A continuous survey is mandatory to support responsible action during industrial exploitation.
André Chandesris, Kris Van Looy, Jacob S. Diamond, and Yves Souchon
Hydrol. Earth Syst. Sci., 23, 4509–4525, https://doi.org/10.5194/hess-23-4509-2019, https://doi.org/10.5194/hess-23-4509-2019, 2019
Short summary
Short summary
We found that small dams in rivers alter the thermal regimes of downstream waters in two distinct ways: either only the downstream daily minimum temperatures increase, or both the downstream daily minimum and maximum temperatures increase. We further show that only two physical dam characteristics can explain this difference in temperature response: (1) residence time, and (2) surface area. These results may help managers prioritize efforts to restore the fragmented thermalscapes of rivers.
Giulia Valerio, Marco Pilotti, Maximilian Peter Lau, and Michael Hupfer
Hydrol. Earth Syst. Sci., 23, 1763–1777, https://doi.org/10.5194/hess-23-1763-2019, https://doi.org/10.5194/hess-23-1763-2019, 2019
Short summary
Short summary
This paper provides experimental evidence of the occurrence of large and periodic movements induced by the wind at 95 m in depth in Lake Iseo, where a permanent chemocline is located. These movements determine vertical oscillations of the oxycline up to 20 m. Accordingly, in 3 % of the sediment area alternating redox conditions occur, which might force unsteady sediment–water fluxes. This finding has major implications for the internal matter cycle in Lake Iseo.
Georgiy Kirillin, Ilya Aslamov, Matti Leppäranta, and Elisa Lindgren
Hydrol. Earth Syst. Sci., 22, 6493–6504, https://doi.org/10.5194/hess-22-6493-2018, https://doi.org/10.5194/hess-22-6493-2018, 2018
Short summary
Short summary
We have discovered transient appearances of strong turbulent mixing beneath the ice of an Arctic lake. Such mixing events increase heating of the ice base up to an order of magnitude and can significantly accelerate ice melting. The source of mixing was identified as oscillations of the entire lake water body triggered by strong winds over the lake surface. This previously unknown mechanism of ice melt may help understand the link between the climate conditions and the seasonal ice formation.
Peter O. Zavialov, Alexander S. Izhitskiy, Georgiy B. Kirillin, Valentina M. Khan, Boris V. Konovalov, Peter N. Makkaveev, Vadim V. Pelevin, Nikolay A. Rimskiy-Korsakov, Salmor A. Alymkulov, and Kubanychbek M. Zhumaliev
Hydrol. Earth Syst. Sci., 22, 6279–6295, https://doi.org/10.5194/hess-22-6279-2018, https://doi.org/10.5194/hess-22-6279-2018, 2018
Short summary
Short summary
This paper reports the results of field surveys conducted in Lake Issyk-Kul in 2015–2017 and compares the present-day data with the available historical records. Our data do not confirm the reports of progressive warming of the deep Issyk-Kul waters as suggested in some previous publications. However, they do indicate a positive trend of salinity in the lake’s interior over the last 3 decades. An important newly found feature is a persistent salinity maximum at depths of 70–120 m.
Xin Luo, Xingxing Kuang, Jiu Jimmy Jiao, Sihai Liang, Rong Mao, Xiaolang Zhang, and Hailong Li
Hydrol. Earth Syst. Sci., 22, 5579–5598, https://doi.org/10.5194/hess-22-5579-2018, https://doi.org/10.5194/hess-22-5579-2018, 2018
David Eschbach, Laurent Schmitt, Gwenaël Imfeld, Jan-Hendrik May, Sylvain Payraudeau, Frank Preusser, Mareike Trauerstein, and Grzegorz Skupinski
Hydrol. Earth Syst. Sci., 22, 2717–2737, https://doi.org/10.5194/hess-22-2717-2018, https://doi.org/10.5194/hess-22-2717-2018, 2018
Short summary
Short summary
In this study we show the relevance of an interdisciplinary study for improving restoration within the framework of a European LIFE+ project on the French side of the Upper Rhine (Rohrschollen Island). Our results underscore the advantage of combining functional restoration with detailed knowledge of past trajectories in complex hydrosystems. We anticipate our approach will expand the toolbox of decision-makers and help orientate functional restoration actions in the future.
Eddie W. Banks, Margaret A. Shanafield, Saskia Noorduijn, James McCallum, Jörg Lewandowski, and Okke Batelaan
Hydrol. Earth Syst. Sci., 22, 1917–1929, https://doi.org/10.5194/hess-22-1917-2018, https://doi.org/10.5194/hess-22-1917-2018, 2018
Short summary
Short summary
This study used a portable 56-sensor, 3-D temperature array with three heat pulse sources to measure the flow direction and magnitude below the water–sediment interface. Breakthrough curves from each of the sensors were analyzed using a heat transport equation. The use of short-duration heat pulses provided a rapid, accurate assessment technique for determining dynamic and multi-directional flow patterns in the hyporheic zone and is a basis for improved understanding of biogeochemical processes.
Nicholas Voichick, David J. Topping, and Ronald E. Griffiths
Hydrol. Earth Syst. Sci., 22, 1767–1773, https://doi.org/10.5194/hess-22-1767-2018, https://doi.org/10.5194/hess-22-1767-2018, 2018
Short summary
Short summary
This paper describes instances in the Grand Canyon study area and a laboratory experiment in which very high suspended-sediment concentrations result in incorrectly low turbidity recorded with a commonly used field instrument. If associated with the monitoring of a construction or dredging project, false low turbidity could result in regulators being unaware of environmental damage caused by the actually much higher turbidity.
Silvia Bersan, André R. Koelewijn, and Paolo Simonini
Hydrol. Earth Syst. Sci., 22, 1491–1508, https://doi.org/10.5194/hess-22-1491-2018, https://doi.org/10.5194/hess-22-1491-2018, 2018
Short summary
Short summary
Backward erosion piping is the cause of a significant percentage of failures and incidents involving dams and river embankments. In the past 20 years fibre-optic Distributed Temperature Sensing (DTS) has proved to be effective for the detection of leakages and internal erosion in dams. This work investigates the effectiveness of DTS for monitoring backward erosion piping in river embankments. Data from a large-scale piping test performed on an instrumented dike are presented and discussed.
Thaine H. Assumpção, Ioana Popescu, Andreja Jonoski, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 22, 1473–1489, https://doi.org/10.5194/hess-22-1473-2018, https://doi.org/10.5194/hess-22-1473-2018, 2018
Short summary
Short summary
Citizens can contribute to science by providing data, analysing them and as such contributing to decision-making processes. For example, citizens have collected water levels from gauges, which are important when simulating/forecasting floods, where data are usually scarce. This study reviewed such contributions and concluded that integration of citizen data may not be easy due to their spatio-temporal characteristics but that citizen data still proved valuable and can be used in flood modelling.
Jutta Metzger, Manuela Nied, Ulrich Corsmeier, Jörg Kleffmann, and Christoph Kottmeier
Hydrol. Earth Syst. Sci., 22, 1135–1155, https://doi.org/10.5194/hess-22-1135-2018, https://doi.org/10.5194/hess-22-1135-2018, 2018
Short summary
Short summary
This paper is motivated by the need for more precise evaporation rates from the Dead Sea (DS) and methods to estimate and forecast evaporation. A new approach to measure lake evaporation with a station located at the shoreline, also transferable to other lakes, is introduced. The first directly measured DS evaporation rates are presented as well as applicable methods for evaporation calculation. These results enable us to further close the DS water budget and to facilitate the water management.
Pauline Leduc, Peter Ashmore, and Darren Sjogren
Hydrol. Earth Syst. Sci., 22, 1–11, https://doi.org/10.5194/hess-22-1-2018, https://doi.org/10.5194/hess-22-1-2018, 2018
Short summary
Short summary
We show the utility of ground-based time-lapse cameras for automated monitoring of stream stage and flow characteristics. High-frequency flow stage, water surface width and other information on the state of flow can be acquired for extended time periods with simple local calibration using a low-cost time-lapse camera and a few simple field measurements for calibration and for automated image selection and sorting. The approach is a useful substitute or complement to the conventional stage data.
Christina Tecklenburg and Theresa Blume
Hydrol. Earth Syst. Sci., 21, 5043–5063, https://doi.org/10.5194/hess-21-5043-2017, https://doi.org/10.5194/hess-21-5043-2017, 2017
Short summary
Short summary
We characterized groundwater–lake exchange patterns and identified their controls based on extensive field measurements. Our measurement design bridges the gap between the detailed local characterisation and low resolution regional investigations. Results indicated strong spatial variability in groundwater inflow rates: large scale inflow patterns correlated with topography and the groundwater flow field and small scale patterns correlated with grainsize distributions of the lake sediment.
H. J. Ilja van Meerveld, Marc J. P. Vis, and Jan Seibert
Hydrol. Earth Syst. Sci., 21, 4895–4905, https://doi.org/10.5194/hess-21-4895-2017, https://doi.org/10.5194/hess-21-4895-2017, 2017
Short summary
Short summary
We tested the usefulness of stream level class data for hydrological model calibration. Only two stream level classes, e.g. above or below a rock in the stream, were already informative, particularly when the boundary was chosen at a high stream level. There was hardly any improvement in model performance when using more than five stream level classes. These results suggest that model based streamflow time series can be obtained from citizen science based water level class data.
Hidayat Hidayat, Adriaan J. Teuling, Bart Vermeulen, Muh Taufik, Karl Kastner, Tjitske J. Geertsema, Dinja C. C. Bol, Dirk H. Hoekman, Gadis Sri Haryani, Henny A. J. Van Lanen, Robert M. Delinom, Roel Dijksma, Gusti Z. Anshari, Nining S. Ningsih, Remko Uijlenhoet, and Antonius J. F. Hoitink
Hydrol. Earth Syst. Sci., 21, 2579–2594, https://doi.org/10.5194/hess-21-2579-2017, https://doi.org/10.5194/hess-21-2579-2017, 2017
Short summary
Short summary
Hydrological prediction is crucial but in tropical lowland it is difficult, considering data scarcity and river system complexity. This study offers a view of the hydrology of two tropical lowlands in Indonesia. Both lowlands exhibit the important role of upstream wetlands in regulating the flow downstream. We expect that this work facilitates a better prediction of fire-prone conditions in these regions.
Kyutae Lee, Ali R. Firoozfar, and Marian Muste
Hydrol. Earth Syst. Sci., 21, 1863–1874, https://doi.org/10.5194/hess-21-1863-2017, https://doi.org/10.5194/hess-21-1863-2017, 2017
Short summary
Short summary
Accurate estimation of stream/river flows is important in many aspects, including public safety during floods, effective uses of water resources for hydropower generation and irrigation, and environments. In this paper, we investigated a feasibility of the continuous slope area (CSA) method which measures dynamic changes in instantaneous water surface elevations, and the results showed promising capabilities of the suggested method for the accurate estimation of flows in natural streams/rivers.
Raphael Schneider, Peter Nygaard Godiksen, Heidi Villadsen, Henrik Madsen, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 21, 751–764, https://doi.org/10.5194/hess-21-751-2017, https://doi.org/10.5194/hess-21-751-2017, 2017
Short summary
Short summary
We use water level observations from the CryoSat-2 satellite in combination with a river model of the Brahmaputra River, extracting satellite data over a dynamic river mask derived from Landsat imagery. The novelty of this work is the use of the CryoSat-2 water level observations, collected using a complex spatio-temporal sampling scheme, to calibrate a hydrodynamic river model. The resulting model accurately reproduces water levels, without precise knowledge of river bathymetry.
Matthew T. Perks, Andrew J. Russell, and Andrew R. G. Large
Hydrol. Earth Syst. Sci., 20, 4005–4015, https://doi.org/10.5194/hess-20-4005-2016, https://doi.org/10.5194/hess-20-4005-2016, 2016
Short summary
Short summary
Unmanned aerial vehicles (UAVs) have the potential to capture information about the earth’s surface in dangerous and previously inaccessible locations. Here we present a method whereby image acquisition and subsequent analysis have enabled the highly dynamic and oft-immeasurable hydraulic phenomenon present during high-energy flash floods to be quantified at previously unattainable spatial and temporal resolutions.
Ian Cartwright and Harald Hofmann
Hydrol. Earth Syst. Sci., 20, 3581–3600, https://doi.org/10.5194/hess-20-3581-2016, https://doi.org/10.5194/hess-20-3581-2016, 2016
Short summary
Short summary
This paper uses the natural geochemical tracer Rn together with streamflow measurements to differentiate between actual groundwater inflows and water that exits the river, flows through the near-river sediments, and subsequently re-enters the river downstream (parafluvial flow). Distinguishing between these two components is important to understanding the water balance in gaining streams and in managing and protecting surface water resources.
Z. D. Wen, K. S. Song, Y. Zhao, J. Du, and J. H. Ma
Hydrol. Earth Syst. Sci., 20, 787–801, https://doi.org/10.5194/hess-20-787-2016, https://doi.org/10.5194/hess-20-787-2016, 2016
Short summary
Short summary
The study indicated that CDOM in rivers had higher aromaticity, molecular weight, and vascular plant contribution than in terminal lakes in the Hulun Buir plateau, Northeast China. The autochthonous sources of CDOM in plateau waters were higher than in other freshwater rivers reported in the literature. Study of the optical–physicochemical correlations is helpful in the evaluation of the potential influence of water quality factors on non-water light absorption in plateau water environments.
C. Schwatke, D. Dettmering, W. Bosch, and F. Seitz
Hydrol. Earth Syst. Sci., 19, 4345–4364, https://doi.org/10.5194/hess-19-4345-2015, https://doi.org/10.5194/hess-19-4345-2015, 2015
J. Halder, S. Terzer, L. I. Wassenaar, L. J. Araguás-Araguás, and P. K. Aggarwal
Hydrol. Earth Syst. Sci., 19, 3419–3431, https://doi.org/10.5194/hess-19-3419-2015, https://doi.org/10.5194/hess-19-3419-2015, 2015
Short summary
Short summary
We introduce a new online global database of riverine water stable isotopes (Global Network of Isotopes in Rivers) and evaluate its longer-term data holdings. A regionalized, cluster-based precipitation isotope model was used to compare measured to predicted isotope compositions of riverine catchments. The study demonstrated that the seasonal isotopic composition and variation of river water can be predicted, which will improve the application of water stable isotopes in rivers.
L. Schulte, J. C. Peña, F. Carvalho, T. Schmidt, R. Julià, J. Llorca, and H. Veit
Hydrol. Earth Syst. Sci., 19, 3047–3072, https://doi.org/10.5194/hess-19-3047-2015, https://doi.org/10.5194/hess-19-3047-2015, 2015
Short summary
Short summary
A 2600-year long composite palaeoflood record is reconstructed from high-resolution delta plain sediments of the Hasli-Aare floodplain on the northern slope of the Swiss Alps. Natural proxies compiled from sedimentary, geochemical and geomorphological data were calibrated by textual and factual sources and instrumental data. Geomorphological, historical and instrumental data provide evidence for flood damage intensities and discharge estimations of severe and catastrophic historical floods.
C. J. Gleason, L. C. Smith, D. C. Finnegan, A. L. LeWinter, L. H Pitcher, and V. W. Chu
Hydrol. Earth Syst. Sci., 19, 2963–2969, https://doi.org/10.5194/hess-19-2963-2015, https://doi.org/10.5194/hess-19-2963-2015, 2015
Short summary
Short summary
Here, we give a semi-automated processing workflow to extract hydraulic parameters from over 10,000 time-lapse images of the remote Isortoq River in Greenland. This workflow allows efficient and accurate (mean accuracy 79.6%) classification of images following an automated similarity filtering process. We also give an effective width hydrograph (a proxy for discharge) for the Isortoq using this workflow, showing the potential of this workflow for enhancing understanding of remote rivers.
I. Kogelbauer and W. Loiskandl
Hydrol. Earth Syst. Sci., 19, 1427–1438, https://doi.org/10.5194/hess-19-1427-2015, https://doi.org/10.5194/hess-19-1427-2015, 2015
M. Schirmer, J. Luster, N. Linde, P. Perona, E. A. D. Mitchell, D. A. Barry, J. Hollender, O. A. Cirpka, P. Schneider, T. Vogt, D. Radny, and E. Durisch-Kaiser
Hydrol. Earth Syst. Sci., 18, 2449–2462, https://doi.org/10.5194/hess-18-2449-2014, https://doi.org/10.5194/hess-18-2449-2014, 2014
A. Parvathi, X. Zhong, A. S. Pradeep Ram, and S. Jacquet
Hydrol. Earth Syst. Sci., 18, 1073–1087, https://doi.org/10.5194/hess-18-1073-2014, https://doi.org/10.5194/hess-18-1073-2014, 2014
A. Zlinszky and G. Timár
Hydrol. Earth Syst. Sci., 17, 4589–4606, https://doi.org/10.5194/hess-17-4589-2013, https://doi.org/10.5194/hess-17-4589-2013, 2013
B. Fournier, C. Guenat, G. Bullinger-Weber, and E. A. D. Mitchell
Hydrol. Earth Syst. Sci., 17, 4031–4042, https://doi.org/10.5194/hess-17-4031-2013, https://doi.org/10.5194/hess-17-4031-2013, 2013
Y.-C. Chen
Hydrol. Earth Syst. Sci., 17, 1951–1962, https://doi.org/10.5194/hess-17-1951-2013, https://doi.org/10.5194/hess-17-1951-2013, 2013
A. T. Rezende Filho, S. Furian, R. L. Victoria, C. Mascré, V. Valles, and L. Barbiero
Hydrol. Earth Syst. Sci., 16, 2723–2737, https://doi.org/10.5194/hess-16-2723-2012, https://doi.org/10.5194/hess-16-2723-2012, 2012
Y. Schindler Wildhaber, C. Michel, P. Burkhardt-Holm, D. Bänninger, and C. Alewell
Hydrol. Earth Syst. Sci., 16, 1501–1515, https://doi.org/10.5194/hess-16-1501-2012, https://doi.org/10.5194/hess-16-1501-2012, 2012
K. P. Hilgersom and W. M. J. Luxemburg
Hydrol. Earth Syst. Sci., 16, 345–356, https://doi.org/10.5194/hess-16-345-2012, https://doi.org/10.5194/hess-16-345-2012, 2012
H. Hidayat, B. Vermeulen, M. G. Sassi, P. J. J. F. Torfs, and A. J. F. Hoitink
Hydrol. Earth Syst. Sci., 15, 2717–2728, https://doi.org/10.5194/hess-15-2717-2011, https://doi.org/10.5194/hess-15-2717-2011, 2011
R. Bhamjee and J. B. Lindsay
Hydrol. Earth Syst. Sci., 15, 1009–1021, https://doi.org/10.5194/hess-15-1009-2011, https://doi.org/10.5194/hess-15-1009-2011, 2011
Cited articles
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., and Enrich-Prast,
A.: Freshwater Methane Emissions Offset the Continental Carbon Sink,
Science, 331, p. 50, https://doi.org/10.1126/science.1196808,
2011.
Bowen, R. G., Dallimore, S. R., Cote, M. M., Wright, J. F., and Lorenson, T. D.:
Geomorphology and Gas Release from Pockmark Features in the Mackenzie Delta,
Northwest Territories, Canada, in: Proceedings of the Ninth International
Conference on Permafrost, University of Alaska, Fairbanks, U.S., 29 June–3
July 2008, 171–176, 2008.
Collett, T. S., Lee, M. W., Agena, W. F., Miller, J. J., Lewis, K. A.,
Zyrianova, M. V., Boswell, R., and Inks, T. L.: Permafrost-associated natural
gas hydrate occurrences on the Alaska North Slope, Mar. Petrol. Geol., 28,
279–294, https://doi.org/10.1016/j.marpetgeo.2009.12.001,
2011.
Davis, M. P., Groh, T. A., Parkin, T. B., Williams, R. J., Isenhart, T. M., and
Hofmockel, K. S.: Portable Automation of Static Chamber Sample Collection
for Quantifying Soil Gas Flux, J. Environ. Qual., 47, 270–275, https://doi.org/10.2134/jeq2017.10.0387, 2018.
DelSontro, T., Kunz, M. J., Kempter, T., Wüest, A., Wehrli, B., and Senn, D.
B.: Spatial Heterogeneity of Methane Ebullition in a Large Tropical
Reservoir, Environ. Sci. Technol., 45, 9866–9873,
https://doi.org/10.1021/es2005545, 2011.
DelSontro, T., McGinnis, D. F., Wehrli, B., and Ostrovsky, I.: Size Does Matter:
Importance of Large Bubbles and Small-Scale Hot Spots for Methane Transport,
Environ. Sci. Technol., 49, 1268–1276,
https://doi.org/10.1021/es5054286, 2015.
Delwiche, K. B. and Hemond, H. F.: Methane Bubble Size Distributions, Flux,
and Dissolution in a Freshwater Lake, Environ. Sci. Technol., 51,
13733–13739, https://doi.org/10.1021/acs.est.7b04243, 2017.
Edwards, N. T. and Sollins, P.: Continuous Measurement of Carbon Dioxide
Evolution From Partitioned Forest Floor Components, Ecology, 54, 406–412,
https://doi.org/10.2307/1934349, 1973.
Engram, M., Walter Anthony, K. M., Sachs, T., Kohnert, K., Serafimovich, A.,
Grosse, G., and Meyer, F. J.: Remote sensing northern lake methane ebullition,
Nat. Clim. Change, 10, 511–517,
https://doi.org/10.1038/s41558-020-0762-8, 2020.
Etiope, G.: Natural Gas Seepage The Earth's Hydrocarbon Degassing, Springer
International Publishing, Switzerland, 199 pp., https://doi.org/10.1007/978-3-319-14601-0, 2015.
Etiope, G., Baciu, C., Caracausi, A., Italiano, F., and Cosma, C.: Gas flux to
the atmosphere from mud volcanoes in eastern Romania, Terra Nova, 16,
179–184, https://doi.org/10.1111/j.1365-3121.2004.00542.x,
2004.
Etiope, G., Ciotoli, G., Schwietzke, S., and Schoell, M.: Gridded maps of geological methane emissions and their isotopic signature, Earth Syst. Sci. Data, 11, 1–22, https://doi.org/10.5194/essd-11-1-2019, 2019.
Flores, R. M., Stricker, G. D., and Kinney, S. A.: Alaska coal geology,
resources, and coalbed methane potential, U.S. Department of the Interior,
U.S. Geological Survey, Denver, CO, U.S. Geological Survey Digital Data
Series DDS-77 v.1.02004, 2004.
Gautier, D. L., Bird, K. J., Charpentier, R. R., Grantz, A., Houseknecht, D.
W., Klett, R. R., Moore, T. E., Pitman, J. K., Schenk, C. J., Schuenemeyer,
J. H., Sørensen, K., Tennyson, M. E., Valin, Z. C., and Wandrey, C. J.:
Assessment of undiscovered oil and gas in the Arctic, Science, 324,
1175–1179, https://doi.org/10.1126/science.1169467, 2009.
Gerardo-Nieto, O., Vega-Peñaranda, A., Gonzalez-Valencia, R.,
Alfano-Ojeda, Y., and Thalasso, F.: Continuous measurement of diffusive and
ebullitive fluxes of methane in aquatic ecosystems by an open dynamic
chamber method, Environ. Sci. Technol., 53, 5159–5167, https://doi.org/10.1021/acs.est.9b00425, 2019.
Greene, S., Walter Anthony, K. M., Archer, D., Sepulveda-Jauregui, A., and Martinez-Cruz, K.: Modeling the impediment of methane ebullition bubbles by seasonal lake ice, Biogeosciences, 11, 6791–6811, https://doi.org/10.5194/bg-11-6791-2014, 2014.
Hmiel, B., Petrenko, V. V., Dyonisius, M. N., Buizert, C., Smith, A. M.,
Place, P. F., Harth, C., Beaudette, R., Hua, Q., Yang, B., Vimont, I.,
Michel, S. E., Severinghaus, J. P., Etheridge, D., Bromley, T., Schmitt, J.,
Faïn, X., Weiss, R. F., Dlugokencky, E.: Preindustrial 14CH4
indicates greater anthropogenic fossil CH4 emissions, Nature, 578, 409–412,
https://doi.org/10.1038/s41586-020-1991-8, 2020.
Isaksen, I. S. A., Gauss, M., Myhre, G., Walter Anthony, K. M., and Ruppel, C.:
Strong atmospheric chemistry feedback to climate warming from Arctic methane
emissions, Global Biogeochem. Cy., 25, GB2002,
https://doi.org/10.1029/2010GB003845, 2001.
Ito, A., Reyer, C. P. O., Gädeke, A., Ciais, P., Chang, J., Chen, M.,
François, L., Forrest, M., Hickler, T., Ostberg, S., Shi, H., Thiery,
W., and Tian, H.: Pronounced and unavoidable impacts of low-end global warming
on northern high-latitude land ecosystems, Environ. Res. Lett., 15, 044006,
https://doi.org/10.1088/1748-9326/ab702b, 2020.
Jansson, P., Triest, J., Grilli, R., Ferré, B., Silyakova, A., Mienert, J., and Chappellaz, J.: High-resolution underwater laser spectrometer sensing provides new insights into methane distribution at an Arctic seepage site, Ocean Sci., 15, 1055–1069, https://doi.org/10.5194/os-15-1055-2019, 2019.
Kayranli, B., Scholz, M., Mustafa, A., and Hedmark, Å.: Carbon Storage and
Fluxes within Freshwater Wetlands: a Critical Review, Wetlands, 30,
111–124, https://doi.org/10.1007/s13157-009-0003-4, 2010.
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G.,
Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler,
L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A.,
Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J.,
Krummel, P. B., Lamarque, J. F., Langenfelds, R. L., Le Quéré, C.,
Naik, V., O'Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B.,
Prinn, R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell,
D. T., Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K.,
Szopa, S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss, R.
F., Williams, J. E., and Zeng, G.: Three decades of global methane sources and
sinks, Nat. Geosci., 6, 813–823,
https://doi.org/10.1038/ngeo1955, 2013.
Lamarche-Gagnon, G., Wadham, J. L., Sherwood Lollar, B., Arndt, S., Beaton,
A. D., Tedstone, A. J., Telling, J., Bagshaw, E. A., Hawkins, J. R., Kohler,
T. J., Zarsky, J. D., Mowlem, M. C., Anesio, A. M., and Stibal, M.: Greenland
melt drives continuous export of methane from the ice-sheet bed, Nature,
565, 73–77, https://doi.org/10.1038/s41586-018-0800-0, 2019.
Lorke, A., Bodmer, P., Noss, C., Alshboul, Z., Koschorreck, M., Somlai-Haase, C., Bastviken, D., Flury, S., McGinnis, D. F., Maeck, A., Müller, D., and Premke, K.: Technical note: drifting versus anchored flux chambers for measuring greenhouse gas emissions from running waters, Biogeosciences, 12, 7013–7024, https://doi.org/10.5194/bg-12-7013-2015, 2015.
Maher, D. T., Drexl, M., Tait, D. R., Johnston, S. G., and Jeffrey, L. C.:
iAMES: An inexpensive, Automated Methane Ebullition Sensor, Environ. Sci.
Technol., 53, 6420–6426,
https://doi.org/10.1021/acs.est.9b01881, 2019.
Martinsen, K. T., Kragh, T., and Sand-Jensen, K.: Technical note: A simple and cost-efficient automated floating chamber for continuous measurements of carbon dioxide gas flux on lakes, Biogeosciences, 15, 5565–5573, https://doi.org/10.5194/bg-15-5565-2018, 2018
McGinnis, D. F., Schmidt, M., DelSontro, T., Themann, S., Rovelli, L.,
Reitz, A., and Linke, P.: Discovery of a natural CO2 seep in the German North
Sea: Implications for shallow dissolved gas and seep detection, J. Geophys.
Res.-Oceans, 116, C03013,
https://doi.org/10.1029/2010JC006557, 2011.
McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L.,
Hayes, D. J., Heimann, M., Lorenson, T. D., Macdonald, R. W., and Roulet, N.:
Sensitivity of the carbon cycle in the Arctic to climate change, Ecol.
Monogr., 79, 523–555, https://doi.org/10.1890/08-2025.1, 2009.
Ostrovsky, I., McGinnis, D. F., Lapidus, L., and Eckert, W.: Quantifying gas
ebullition with echosounder: the role of methane transport by bubbles in a
medium-sized lake: Limnol. Oceanogr.-Meth., 6, 105–108,
https://doi.org/10.4319/lom.2008.6.105, 2008.
Post, E., Alley, R. B., Christensen, T. R., Macias-Fauria, M., Forbes, B.
C., Gooseff, M. N., Iler, A., Kerby, J. T., Laidre, K. L., Mann, M. E.,
Olofsson, J., Stroeve, J. C., Ulmer, F., Virginia, R. A., and Wang, M.: The
Polar Regions in a 2 ∘C Warmer World, Science Advances, 5,
eaaw9883, https://doi.org/10.1126/sciadv.aaw9883, 2019.
Rolston, D. E.: Gas Flux, in: Methods of Soil Analysis, Part 1, Physical and
Mineralogical Methods, second edition, edited by: Klute, A., American
Society of Agronomy, Soil Science Society of America, Madison, WI,
1103–1119, https://doi.org/10.2136/sssabookser5.1.2ed.c47,
1986.
Schubert, C. J., Diem, T., and Eugster, W.: Methane Emissions from a Small Wind
Shielded Lake Determined by Eddy Covariance, Flux Chambers, Anchored
Funnels, and Boundary Model Calculations: A Comparison, Environ. Sci.
Technol., 46, 4515–4522, https://doi.org/10.1021/es203465x,
2012.
Schwietzke, S., Sherwood, O. A., Bruhwiler, L. M. P., Miller, J. B., Etiope,
G., Dlugokencky, E. J., Michel, S. E., Arling, V. A., Vaughn, B. H., White,
J. W. C., and Tans, P. P.: Upward revision of global fossil fuel methane
emissions based on isotope database, Nature, 538, 88–91,
https://doi.org/10.1038/nature19797, 2016.
Spulber, L., Etiope, G., Baciu, C., Maloş, C., and Vlad, S. N.: Methane
Emission from Natural Gas Seeps and Mud Volcanoes in Transylvania (Romania),
Geofluids, 10, 463–475,
https://doi.org/10.1111/j.1468-8123.2010.00301.x, 2010.
Tang, J., Xu, Y., Wang, G., Etiope, G., Han, W., Yao, Z., and Huang, J.:
Microseepage of methane to the atmosphere from the Dawanqi oil-gas field,
Tarim Basin, China, J. Geophys. Res.-Atmos., 122, 4353–4363,
https://doi.org/10.1002/2016JD026385, 2017.
Thalasso, F.: Data of Figures presented in “Mobile open dynamic chamber measurement of methane macroseeps in lakes”, Mendeley Data, V1, https://doi.org/10.17632/kpbc6mhwjt.1, 2020a.
Thalasso, F.: Movie showing intense ebullition on Esieh lake, in support to “Mobile open dynamic chamber measurement of methane macroseeps in lakes”, https://doi.org/10.17632/fnr3mkxmk9.1, 2020b.
Thanh Duc, N., Silverstein, S., Wik, M., Crill, P., Bastviken, D., and Varner, R. K.: Technical note: Greenhouse gas flux studies: an automated online system for gas emission measurements in aquatic environments, Hydrol. Earth Syst. Sci., 24, 3417–3430, https://doi.org/10.5194/hess-24-3417-2020, 2020.
Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D.,
Tank Klein, A., Parker, D., Rahimzadeh, F., Renwick, J. A., Rusticucci, M.,
Soden, B., and Zhai, P.: Observations: Surface and Atmospheric Climate
Change, in: Climate Change 2007: The Physical Science Basis, Contribution of
Working Group I to the Fourth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen,
Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H., Cambridge
University Press, Cambridge, UK and New York, NY, USA, chap. 3, 236–336,
2007.
Varadharajan, C., Hermosillo, R., and Hemond, H. F.: A low-cost automated trap
to measure bubbling gas fluxes, Limnol. Oceanogr.-Meth., 8, 363–375,
https://doi.org/10.4319/lom.2010.8.363, 2010.
Walter Anthony, K. M., Vas, D., Brosius, L., Chapin III, F. S., Zimov, S.
A., and Zhuang, Q.: Estimating methane emissions from northern lakes using ice
bubble surveys, Limnol. Oceanogr.-Meth., 8, 592–609,
https://doi.org/10.4319/lom.2010.8.0592, 2010.
Walter Anthony, K. M., Anthony, P., Grosse, G., and Chanton, J.: Geologic
methane seeps along boundaries of Arctic permafrost thaw and melting
glaciers, Nat. Geosci., 5, 419–426,
https://doi.org/10.1038/ngeo1480, 2012.
Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D., and Chapin III, F. S.:
Methane bubbling from Siberian thaw lakes as a positive feedback to climate
warming, Nature, 443, 71–75,
https://doi.org/10.1038/nature05040, 2006.
Walter, K. M., Chanton, J. P., Chapin III, F. S., Schuur, E. A. G., and Zimov,
S. A. Methane production and bubble emissions from arctic lakes: Isotopic
implications for source pathways and ages, J. Geophys. Res.-Biogeo., 113,
G00A08, https://doi.org/10.1029/2007JG000569, 2008.
Wik, M., Crill, P. M., Varner, R. K., and Bastviken, D.: Multiyear measurements
of ebullitive methane flux from three subarctic lakes, J. Geophys.
Res.-Biogeo., 118, 1307–1321,
https://doi.org/10.1002/jgrg.20103, 2013.
Willmott, C. J. and Matsuura, K.: On the use of dimensioned measures of
error to evaluate the performance of spatial interpolators, Int. J. Geogr.
Inf. Sci., 20, 89–102,
https://doi.org/10.1080/13658810500286976, 2006.
Short summary
Methane (CH4) seepage is the steady or episodic flow of gaseous hydrocarbons from subsurface reservoirs that has been identified as a significant source of atmospheric CH4. The monitoring of these emissions is important and despite several available methods, large macroseeps are still difficult to measure due to a lack of a lightweight and inexpensive method deployable in remote environments. Here, we report the development of a mobile chamber for measuring intense CH4 macroseepage in lakes.
Methane (CH4) seepage is the steady or episodic flow of gaseous hydrocarbons from subsurface...