Articles | Volume 24, issue 12
https://doi.org/10.5194/hess-24-6047-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-6047-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: Mobile open dynamic chamber measurement of methane macroseeps in lakes
Biotechnology and Bioengineering Department, Cinvestav, Avenida IPN
2508, Mexico City, 07360, Mexico
Katey Walter Anthony
CORRESPONDING AUTHOR
Water and Environmental Research Center, University of Alaska
Fairbanks, Fairbanks, Alaska 99775, USA
International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA
Olya Irzak
Frost Methane, Oakland, California 94612, USA
Ethan Chaleff
Frost Methane, Oakland, California 94612, USA
Laughlin Barker
Frost Methane, Oakland, California 94612, USA
Peter Anthony
Water and Environmental Research Center, University of Alaska
Fairbanks, Fairbanks, Alaska 99775, USA
Philip Hanke
Water and Environmental Research Center, University of Alaska
Fairbanks, Fairbanks, Alaska 99775, USA
Rodrigo Gonzalez-Valencia
Biotechnology and Bioengineering Department, Cinvestav, Avenida IPN
2508, Mexico City, 07360, Mexico
Related authors
Frederic Thalasso, Julio A. Salas-Rabaza, Brenda Riquelme del Río, Jorge F. Perez-Quezada, Cristian Gajardo, and Matías Troncoso-Villar
EGUsphere, https://doi.org/10.5194/egusphere-2025-1357, https://doi.org/10.5194/egusphere-2025-1357, 2025
Short summary
Short summary
Peatlands are complex and widespread ecosystems that store large amounts of carbon through photosynthesis. Carbon fixation depends on solar irradiance, and the relationship between them is called the photosynthesis-irradiance or “PI” curve. We developed a simple, portable chamber to measure PI curves in peatlands, taking into account complex plant assemblages and microhabitat variability. This tool may help scientists better understand carbon dynamics in these ecosystems.
Frederic Thalasso, Brenda Riquelme, Andrés Gómez, Roy Mackenzie, Francisco Javier Aguirre, Jorge Hoyos-Santillan, Ricardo Rozzi, and Armando Sepulveda-Jauregui
Biogeosciences, 20, 3737–3749, https://doi.org/10.5194/bg-20-3737-2023, https://doi.org/10.5194/bg-20-3737-2023, 2023
Short summary
Short summary
A robust skirt-chamber design to capture and quantify greenhouse gas emissions from peatlands is presented. Compared to standard methods, this design improves the spatial resolution of field studies in remote locations while minimizing intrusion.
Yarden Gerera, André Pellerin, Efrat Eliani Russak, Katey Walter Anthony, Nicholas Hasson, Yoav Oved Rosenberg, and Orit Sivan
EGUsphere, https://doi.org/10.5194/egusphere-2025-1504, https://doi.org/10.5194/egusphere-2025-1504, 2025
Short summary
Short summary
Thermokarst lakes have formed over thousands of years from permafrost thaw in the Arctic. Here we quantify the change in methane production rates as thermokarst lakes evolve by incubation-based approach of measuring and comparing methane production rates and organic carbon lability between a more mature thermokarst lake and a young dynamic thermokarst lake. We also show the use of Rock-Eval analysis of organic carbon along the sediments as a proxy for organics susceptibility for methanogenesis.
Frederic Thalasso, Julio A. Salas-Rabaza, Brenda Riquelme del Río, Jorge F. Perez-Quezada, Cristian Gajardo, and Matías Troncoso-Villar
EGUsphere, https://doi.org/10.5194/egusphere-2025-1357, https://doi.org/10.5194/egusphere-2025-1357, 2025
Short summary
Short summary
Peatlands are complex and widespread ecosystems that store large amounts of carbon through photosynthesis. Carbon fixation depends on solar irradiance, and the relationship between them is called the photosynthesis-irradiance or “PI” curve. We developed a simple, portable chamber to measure PI curves in peatlands, taking into account complex plant assemblages and microhabitat variability. This tool may help scientists better understand carbon dynamics in these ecosystems.
Frederic Thalasso, Brenda Riquelme, Andrés Gómez, Roy Mackenzie, Francisco Javier Aguirre, Jorge Hoyos-Santillan, Ricardo Rozzi, and Armando Sepulveda-Jauregui
Biogeosciences, 20, 3737–3749, https://doi.org/10.5194/bg-20-3737-2023, https://doi.org/10.5194/bg-20-3737-2023, 2023
Short summary
Short summary
A robust skirt-chamber design to capture and quantify greenhouse gas emissions from peatlands is presented. Compared to standard methods, this design improves the spatial resolution of field studies in remote locations while minimizing intrusion.
McKenzie A. Kuhn, Ruth K. Varner, David Bastviken, Patrick Crill, Sally MacIntyre, Merritt Turetsky, Katey Walter Anthony, Anthony D. McGuire, and David Olefeldt
Earth Syst. Sci. Data, 13, 5151–5189, https://doi.org/10.5194/essd-13-5151-2021, https://doi.org/10.5194/essd-13-5151-2021, 2021
Short summary
Short summary
Methane (CH4) emissions from the boreal–Arctic region are globally significant, but the current magnitude of annual emissions is not well defined. Here we present a dataset of surface CH4 fluxes from northern wetlands, lakes, and uplands that was built alongside a compatible land cover dataset, sharing the same classifications. We show CH4 fluxes can be split by broad land cover characteristics. The dataset is useful for comparison against new field data and model parameterization or validation.
Lydia Stolpmann, Caroline Coch, Anne Morgenstern, Julia Boike, Michael Fritz, Ulrike Herzschuh, Kathleen Stoof-Leichsenring, Yury Dvornikov, Birgit Heim, Josefine Lenz, Amy Larsen, Katey Walter Anthony, Benjamin Jones, Karen Frey, and Guido Grosse
Biogeosciences, 18, 3917–3936, https://doi.org/10.5194/bg-18-3917-2021, https://doi.org/10.5194/bg-18-3917-2021, 2021
Short summary
Short summary
Our new database summarizes DOC concentrations of 2167 water samples from 1833 lakes in permafrost regions across the Arctic to provide insights into linkages between DOC and environment. We found increasing lake DOC concentration with decreasing permafrost extent and higher DOC concentrations in boreal permafrost sites compared to tundra sites. Our study shows that DOC concentration depends on the environmental properties of a lake, especially permafrost extent, ecoregion, and vegetation.
Cited articles
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., and Enrich-Prast,
A.: Freshwater Methane Emissions Offset the Continental Carbon Sink,
Science, 331, p. 50, https://doi.org/10.1126/science.1196808,
2011.
Bowen, R. G., Dallimore, S. R., Cote, M. M., Wright, J. F., and Lorenson, T. D.:
Geomorphology and Gas Release from Pockmark Features in the Mackenzie Delta,
Northwest Territories, Canada, in: Proceedings of the Ninth International
Conference on Permafrost, University of Alaska, Fairbanks, U.S., 29 June–3
July 2008, 171–176, 2008.
Collett, T. S., Lee, M. W., Agena, W. F., Miller, J. J., Lewis, K. A.,
Zyrianova, M. V., Boswell, R., and Inks, T. L.: Permafrost-associated natural
gas hydrate occurrences on the Alaska North Slope, Mar. Petrol. Geol., 28,
279–294, https://doi.org/10.1016/j.marpetgeo.2009.12.001,
2011.
Davis, M. P., Groh, T. A., Parkin, T. B., Williams, R. J., Isenhart, T. M., and
Hofmockel, K. S.: Portable Automation of Static Chamber Sample Collection
for Quantifying Soil Gas Flux, J. Environ. Qual., 47, 270–275, https://doi.org/10.2134/jeq2017.10.0387, 2018.
DelSontro, T., Kunz, M. J., Kempter, T., Wüest, A., Wehrli, B., and Senn, D.
B.: Spatial Heterogeneity of Methane Ebullition in a Large Tropical
Reservoir, Environ. Sci. Technol., 45, 9866–9873,
https://doi.org/10.1021/es2005545, 2011.
DelSontro, T., McGinnis, D. F., Wehrli, B., and Ostrovsky, I.: Size Does Matter:
Importance of Large Bubbles and Small-Scale Hot Spots for Methane Transport,
Environ. Sci. Technol., 49, 1268–1276,
https://doi.org/10.1021/es5054286, 2015.
Delwiche, K. B. and Hemond, H. F.: Methane Bubble Size Distributions, Flux,
and Dissolution in a Freshwater Lake, Environ. Sci. Technol., 51,
13733–13739, https://doi.org/10.1021/acs.est.7b04243, 2017.
Edwards, N. T. and Sollins, P.: Continuous Measurement of Carbon Dioxide
Evolution From Partitioned Forest Floor Components, Ecology, 54, 406–412,
https://doi.org/10.2307/1934349, 1973.
Engram, M., Walter Anthony, K. M., Sachs, T., Kohnert, K., Serafimovich, A.,
Grosse, G., and Meyer, F. J.: Remote sensing northern lake methane ebullition,
Nat. Clim. Change, 10, 511–517,
https://doi.org/10.1038/s41558-020-0762-8, 2020.
Etiope, G.: Natural Gas Seepage The Earth's Hydrocarbon Degassing, Springer
International Publishing, Switzerland, 199 pp., https://doi.org/10.1007/978-3-319-14601-0, 2015.
Etiope, G., Baciu, C., Caracausi, A., Italiano, F., and Cosma, C.: Gas flux to
the atmosphere from mud volcanoes in eastern Romania, Terra Nova, 16,
179–184, https://doi.org/10.1111/j.1365-3121.2004.00542.x,
2004.
Etiope, G., Ciotoli, G., Schwietzke, S., and Schoell, M.: Gridded maps of geological methane emissions and their isotopic signature, Earth Syst. Sci. Data, 11, 1–22, https://doi.org/10.5194/essd-11-1-2019, 2019.
Flores, R. M., Stricker, G. D., and Kinney, S. A.: Alaska coal geology,
resources, and coalbed methane potential, U.S. Department of the Interior,
U.S. Geological Survey, Denver, CO, U.S. Geological Survey Digital Data
Series DDS-77 v.1.02004, 2004.
Gautier, D. L., Bird, K. J., Charpentier, R. R., Grantz, A., Houseknecht, D.
W., Klett, R. R., Moore, T. E., Pitman, J. K., Schenk, C. J., Schuenemeyer,
J. H., Sørensen, K., Tennyson, M. E., Valin, Z. C., and Wandrey, C. J.:
Assessment of undiscovered oil and gas in the Arctic, Science, 324,
1175–1179, https://doi.org/10.1126/science.1169467, 2009.
Gerardo-Nieto, O., Vega-Peñaranda, A., Gonzalez-Valencia, R.,
Alfano-Ojeda, Y., and Thalasso, F.: Continuous measurement of diffusive and
ebullitive fluxes of methane in aquatic ecosystems by an open dynamic
chamber method, Environ. Sci. Technol., 53, 5159–5167, https://doi.org/10.1021/acs.est.9b00425, 2019.
Greene, S., Walter Anthony, K. M., Archer, D., Sepulveda-Jauregui, A., and Martinez-Cruz, K.: Modeling the impediment of methane ebullition bubbles by seasonal lake ice, Biogeosciences, 11, 6791–6811, https://doi.org/10.5194/bg-11-6791-2014, 2014.
Hmiel, B., Petrenko, V. V., Dyonisius, M. N., Buizert, C., Smith, A. M.,
Place, P. F., Harth, C., Beaudette, R., Hua, Q., Yang, B., Vimont, I.,
Michel, S. E., Severinghaus, J. P., Etheridge, D., Bromley, T., Schmitt, J.,
Faïn, X., Weiss, R. F., Dlugokencky, E.: Preindustrial 14CH4
indicates greater anthropogenic fossil CH4 emissions, Nature, 578, 409–412,
https://doi.org/10.1038/s41586-020-1991-8, 2020.
Isaksen, I. S. A., Gauss, M., Myhre, G., Walter Anthony, K. M., and Ruppel, C.:
Strong atmospheric chemistry feedback to climate warming from Arctic methane
emissions, Global Biogeochem. Cy., 25, GB2002,
https://doi.org/10.1029/2010GB003845, 2001.
Ito, A., Reyer, C. P. O., Gädeke, A., Ciais, P., Chang, J., Chen, M.,
François, L., Forrest, M., Hickler, T., Ostberg, S., Shi, H., Thiery,
W., and Tian, H.: Pronounced and unavoidable impacts of low-end global warming
on northern high-latitude land ecosystems, Environ. Res. Lett., 15, 044006,
https://doi.org/10.1088/1748-9326/ab702b, 2020.
Jansson, P., Triest, J., Grilli, R., Ferré, B., Silyakova, A., Mienert, J., and Chappellaz, J.: High-resolution underwater laser spectrometer sensing provides new insights into methane distribution at an Arctic seepage site, Ocean Sci., 15, 1055–1069, https://doi.org/10.5194/os-15-1055-2019, 2019.
Kayranli, B., Scholz, M., Mustafa, A., and Hedmark, Å.: Carbon Storage and
Fluxes within Freshwater Wetlands: a Critical Review, Wetlands, 30,
111–124, https://doi.org/10.1007/s13157-009-0003-4, 2010.
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G.,
Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler,
L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A.,
Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J.,
Krummel, P. B., Lamarque, J. F., Langenfelds, R. L., Le Quéré, C.,
Naik, V., O'Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B.,
Prinn, R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell,
D. T., Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K.,
Szopa, S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss, R.
F., Williams, J. E., and Zeng, G.: Three decades of global methane sources and
sinks, Nat. Geosci., 6, 813–823,
https://doi.org/10.1038/ngeo1955, 2013.
Lamarche-Gagnon, G., Wadham, J. L., Sherwood Lollar, B., Arndt, S., Beaton,
A. D., Tedstone, A. J., Telling, J., Bagshaw, E. A., Hawkins, J. R., Kohler,
T. J., Zarsky, J. D., Mowlem, M. C., Anesio, A. M., and Stibal, M.: Greenland
melt drives continuous export of methane from the ice-sheet bed, Nature,
565, 73–77, https://doi.org/10.1038/s41586-018-0800-0, 2019.
Lorke, A., Bodmer, P., Noss, C., Alshboul, Z., Koschorreck, M., Somlai-Haase, C., Bastviken, D., Flury, S., McGinnis, D. F., Maeck, A., Müller, D., and Premke, K.: Technical note: drifting versus anchored flux chambers for measuring greenhouse gas emissions from running waters, Biogeosciences, 12, 7013–7024, https://doi.org/10.5194/bg-12-7013-2015, 2015.
Maher, D. T., Drexl, M., Tait, D. R., Johnston, S. G., and Jeffrey, L. C.:
iAMES: An inexpensive, Automated Methane Ebullition Sensor, Environ. Sci.
Technol., 53, 6420–6426,
https://doi.org/10.1021/acs.est.9b01881, 2019.
Martinsen, K. T., Kragh, T., and Sand-Jensen, K.: Technical note: A simple and cost-efficient automated floating chamber for continuous measurements of carbon dioxide gas flux on lakes, Biogeosciences, 15, 5565–5573, https://doi.org/10.5194/bg-15-5565-2018, 2018
McGinnis, D. F., Schmidt, M., DelSontro, T., Themann, S., Rovelli, L.,
Reitz, A., and Linke, P.: Discovery of a natural CO2 seep in the German North
Sea: Implications for shallow dissolved gas and seep detection, J. Geophys.
Res.-Oceans, 116, C03013,
https://doi.org/10.1029/2010JC006557, 2011.
McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L.,
Hayes, D. J., Heimann, M., Lorenson, T. D., Macdonald, R. W., and Roulet, N.:
Sensitivity of the carbon cycle in the Arctic to climate change, Ecol.
Monogr., 79, 523–555, https://doi.org/10.1890/08-2025.1, 2009.
Ostrovsky, I., McGinnis, D. F., Lapidus, L., and Eckert, W.: Quantifying gas
ebullition with echosounder: the role of methane transport by bubbles in a
medium-sized lake: Limnol. Oceanogr.-Meth., 6, 105–108,
https://doi.org/10.4319/lom.2008.6.105, 2008.
Post, E., Alley, R. B., Christensen, T. R., Macias-Fauria, M., Forbes, B.
C., Gooseff, M. N., Iler, A., Kerby, J. T., Laidre, K. L., Mann, M. E.,
Olofsson, J., Stroeve, J. C., Ulmer, F., Virginia, R. A., and Wang, M.: The
Polar Regions in a 2 ∘C Warmer World, Science Advances, 5,
eaaw9883, https://doi.org/10.1126/sciadv.aaw9883, 2019.
Rolston, D. E.: Gas Flux, in: Methods of Soil Analysis, Part 1, Physical and
Mineralogical Methods, second edition, edited by: Klute, A., American
Society of Agronomy, Soil Science Society of America, Madison, WI,
1103–1119, https://doi.org/10.2136/sssabookser5.1.2ed.c47,
1986.
Schubert, C. J., Diem, T., and Eugster, W.: Methane Emissions from a Small Wind
Shielded Lake Determined by Eddy Covariance, Flux Chambers, Anchored
Funnels, and Boundary Model Calculations: A Comparison, Environ. Sci.
Technol., 46, 4515–4522, https://doi.org/10.1021/es203465x,
2012.
Schwietzke, S., Sherwood, O. A., Bruhwiler, L. M. P., Miller, J. B., Etiope,
G., Dlugokencky, E. J., Michel, S. E., Arling, V. A., Vaughn, B. H., White,
J. W. C., and Tans, P. P.: Upward revision of global fossil fuel methane
emissions based on isotope database, Nature, 538, 88–91,
https://doi.org/10.1038/nature19797, 2016.
Spulber, L., Etiope, G., Baciu, C., Maloş, C., and Vlad, S. N.: Methane
Emission from Natural Gas Seeps and Mud Volcanoes in Transylvania (Romania),
Geofluids, 10, 463–475,
https://doi.org/10.1111/j.1468-8123.2010.00301.x, 2010.
Tang, J., Xu, Y., Wang, G., Etiope, G., Han, W., Yao, Z., and Huang, J.:
Microseepage of methane to the atmosphere from the Dawanqi oil-gas field,
Tarim Basin, China, J. Geophys. Res.-Atmos., 122, 4353–4363,
https://doi.org/10.1002/2016JD026385, 2017.
Thalasso, F.: Data of Figures presented in “Mobile open dynamic chamber measurement of methane macroseeps in lakes”, Mendeley Data, V1, https://doi.org/10.17632/kpbc6mhwjt.1, 2020a.
Thalasso, F.: Movie showing intense ebullition on Esieh lake, in support to “Mobile open dynamic chamber measurement of methane macroseeps in lakes”, https://doi.org/10.17632/fnr3mkxmk9.1, 2020b.
Thanh Duc, N., Silverstein, S., Wik, M., Crill, P., Bastviken, D., and Varner, R. K.: Technical note: Greenhouse gas flux studies: an automated online system for gas emission measurements in aquatic environments, Hydrol. Earth Syst. Sci., 24, 3417–3430, https://doi.org/10.5194/hess-24-3417-2020, 2020.
Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D.,
Tank Klein, A., Parker, D., Rahimzadeh, F., Renwick, J. A., Rusticucci, M.,
Soden, B., and Zhai, P.: Observations: Surface and Atmospheric Climate
Change, in: Climate Change 2007: The Physical Science Basis, Contribution of
Working Group I to the Fourth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen,
Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H., Cambridge
University Press, Cambridge, UK and New York, NY, USA, chap. 3, 236–336,
2007.
Varadharajan, C., Hermosillo, R., and Hemond, H. F.: A low-cost automated trap
to measure bubbling gas fluxes, Limnol. Oceanogr.-Meth., 8, 363–375,
https://doi.org/10.4319/lom.2010.8.363, 2010.
Walter Anthony, K. M., Vas, D., Brosius, L., Chapin III, F. S., Zimov, S.
A., and Zhuang, Q.: Estimating methane emissions from northern lakes using ice
bubble surveys, Limnol. Oceanogr.-Meth., 8, 592–609,
https://doi.org/10.4319/lom.2010.8.0592, 2010.
Walter Anthony, K. M., Anthony, P., Grosse, G., and Chanton, J.: Geologic
methane seeps along boundaries of Arctic permafrost thaw and melting
glaciers, Nat. Geosci., 5, 419–426,
https://doi.org/10.1038/ngeo1480, 2012.
Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D., and Chapin III, F. S.:
Methane bubbling from Siberian thaw lakes as a positive feedback to climate
warming, Nature, 443, 71–75,
https://doi.org/10.1038/nature05040, 2006.
Walter, K. M., Chanton, J. P., Chapin III, F. S., Schuur, E. A. G., and Zimov,
S. A. Methane production and bubble emissions from arctic lakes: Isotopic
implications for source pathways and ages, J. Geophys. Res.-Biogeo., 113,
G00A08, https://doi.org/10.1029/2007JG000569, 2008.
Wik, M., Crill, P. M., Varner, R. K., and Bastviken, D.: Multiyear measurements
of ebullitive methane flux from three subarctic lakes, J. Geophys.
Res.-Biogeo., 118, 1307–1321,
https://doi.org/10.1002/jgrg.20103, 2013.
Willmott, C. J. and Matsuura, K.: On the use of dimensioned measures of
error to evaluate the performance of spatial interpolators, Int. J. Geogr.
Inf. Sci., 20, 89–102,
https://doi.org/10.1080/13658810500286976, 2006.
Short summary
Methane (CH4) seepage is the steady or episodic flow of gaseous hydrocarbons from subsurface reservoirs that has been identified as a significant source of atmospheric CH4. The monitoring of these emissions is important and despite several available methods, large macroseeps are still difficult to measure due to a lack of a lightweight and inexpensive method deployable in remote environments. Here, we report the development of a mobile chamber for measuring intense CH4 macroseepage in lakes.
Methane (CH4) seepage is the steady or episodic flow of gaseous hydrocarbons from subsurface...