Articles | Volume 24, issue 11
https://doi.org/10.5194/hess-24-5317-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-5317-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: Precipitation-phase partitioning at landscape scales to regional scales
Elissa Lynn
California Department of Water Resources, Sacramento, California,
95814, USA
Aaron Cuthbertson
California Department of Water Resources, Sacramento, California,
95814, USA
Minxue He
California Department of Water Resources, Sacramento, California,
95814, USA
Jordi P. Vasquez
California Department of Water Resources, Sacramento, California,
95814, USA
Michael L. Anderson
California Department of Water Resources, Sacramento, California,
95814, USA
Peter Coombe
California Department of Water Resources, Sacramento, California,
95814, USA
John T. Abatzoglou
Management of Complex Systems Department, University of California,
Merced, Merced, California, 95340, USA
Benjamin J. Hatchett
CORRESPONDING AUTHOR
Western Regional Climate Center, Desert Research Institute, Reno,
Nevada, 89512, USA
Related authors
No articles found.
Matthew B. Switanek, Jakob Abermann, Wolfgang Schöner, and Michael L. Anderson
EGUsphere, https://doi.org/10.5194/egusphere-2025-3881, https://doi.org/10.5194/egusphere-2025-3881, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Extreme precipitation is expected to increase in a warming climate. Measurements of precipitation and dew point temperature are often used to estimate observed precipitation-temperature scaling rates. In this study, we use three different approaches which rely on either raw or normalized data to estimate scaling rates and produce predictions of extreme precipitation. Our findings highlight the importance of using normalized data to obtain accurate observation-based scaling estimates.
Benjamin J. Hatchett
Geosci. Commun., 8, 167–173, https://doi.org/10.5194/gc-8-167-2025, https://doi.org/10.5194/gc-8-167-2025, 2025
Short summary
Short summary
Fire progression maps (FPMs) provide information regarding wildland fire spread (progress) through time to broad audiences. However, information regarding the best use of color to denote fire progression via maps is limited. This can potentially limit a map's ability to effectively communicate information by creating inconsistent messaging and accessibility challenges. Here, I provide color map recommendations to open a discussion towards consistent and accessible fire progression mapping.
Benjamin J. Hatchett, Alan M. Rhoades, and Daniel J. McEvoy
Nat. Hazards Earth Syst. Sci., 22, 869–890, https://doi.org/10.5194/nhess-22-869-2022, https://doi.org/10.5194/nhess-22-869-2022, 2022
Short summary
Short summary
Snow droughts, or below-average snowpack, can result from either dry conditions and/or rainfall instead of snowfall. Monitoring snow drought through time and across space is important to evaluate when snow drought onset occurred, its duration, spatial extent, and severity as well as what conditions created it or led to its termination. We present visualization techniques, including a web-based snow-drought-tracking tool, to evaluate snow droughts and assess their impacts in the western US.
Kathryn Lambrecht, Benjamin J. Hatchett, Kristin VanderMolen, and Bianca Feldkircher
Geosci. Commun., 4, 517–525, https://doi.org/10.5194/gc-4-517-2021, https://doi.org/10.5194/gc-4-517-2021, 2021
Short summary
Short summary
This paper presents an analysis of public responses to U.S. National Weather Service heat-related Facebook posts for the Phoenix (Arizona) County Warning Area to identify community norms that may present challenges to the effectiveness of heat risk communication. Findings suggest that local audiences tend to view heat as normal and the ability to withstand heat as a marker of community identity. Recommendations are provided for harnessing those norms to promote positive behavioral change.
Cited articles
Abatzoglou, J. T.: Influence of the PNA on declining mountain snowpack in
the Western United States, Int. J. Climatol., 31, 1135–1142, https://doi.org/10.1002/joc.2137, 2011.
Abatzoglou, J. T. and Ficklin, D. L.: Climatic and physiographic controls of spatial variability in surface water balance over the contiguous United States using the Budyko relationship, Water Resour. Res., 53, 7630– 7643,
https://doi.org/10.1002/2017WR020843, 2017.
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., and Hegewisch, K. C.:
TerraClimate, a high-resolution global dataset of monthly climate and
climatic water balance from 1958–2015, Sci. Data, 5, 170191,
https://doi.org/10.1038/sdata.2017.191, 2018.
Bales, R. C., Molotch, N. P., Painter, T. H., Dettinger, M. D., Rice, R., and Dozier, J.: Mountain hydrology of the western United States, Water Resour. Res., 42, W08432, https://doi.org/10.1029/2005WR004387, 2006.
Berg, N. and Hall, A.: Anthropogenic warming impacts on California snowpack
during drought, Geophys. Res. Lett., 44, 2511–2518, https://doi.org/10.1002/2016GL072104, 2017.
Berghuijs, W. R., Woods, R. A., and Hrachowitz, M.: A precipitation shift
from snow towards rain leads to a decrease in streamflow, Nat. Clim. Change,
4, 583–586, https://doi.org/10.1038/nclimate2246, 2014.
California Department of Water Resources: Estimating Historical California
Precipitation Phase Trends Using Gridded Precipitation, Precipitation Phase,
and Elevation Data, Memorandum Report, available at:
https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/All-Programs/Climate-Change-Program/Climate-Program-Activities/Files/Reports/Estimating-Historical-California-Precipitation-DWR-2014.pdf
(last access: January 2020), 2014.
California Department of Water Resources: Hydroclimate Report Water, available at: https://cdec.water.ca.gov/snow/bulletin120/index2.html, (last access: December 2019), 2019a.
California Department of Water Resources: Bulletin 120 Water supply forecast
summary, available at: https://cdec.water.ca.gov/snow/bulletin120/index2.html (last access: December 2019), 2019b.
Cayan, D. R., Kammerdiener, S. A., Dettinger, M. D., Caprio, J. M., and
Peterson, D. H.: Changes in the onset of spring in the Western United States, B. Am. Meteorol. Soc., 82, 399–416, https://doi.org/10.1175/1520-0477(2001)082<0399:CITOOS>2.3.CO;2, 2001.
Contosta, A. R., Casson, N. J., Garlick, S., Nelson, S. J., Ayres, M. P.,
Burakowski, E. A., Campbell, J., Creed, I., Eimers, C., Evans, C., Fernandez, I., Fuss, C., Huntington, T., Patel, K., Sanders-DeMott, R., Son, K., Templer, P., and Thornbrugh, C.: Northern forest winters have lost cold, snowy conditions that are important for ecosystems and human communities, Ecol. Appl., 29, e01974, https://doi.org/10.1002/eap.1974, 2019.
Cooley, H., Phurisamban, R., and Gleick, P.: The cost of alternative urban water supply and efficiency options in California, Environ. Res. Commun., 1, 042001, https://doi.org/10.1088/2515-7620/ab22ca, 2019.
Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor,
G. H., Curtis, J., and Pasteris, P. P.: Physiographically sensitive mapping
of climatological temperature and precipitation across the conterminous United States, Int. J. Climatol., 28, 2031–2064, https://doi.org/10.1002/joc.1688, 2008.
Das, T., Hidalgo, H. G., Pierce, D. W., Barnett, T. P., Dettinger, M. D.,
Cayan, D. R., Bonfils, C., Bala, G., and Mirin, A.: Structure and detectability of trends in hydrological measures over the western United
States, J. Hydrometeorol., 10, 871–892, https://doi.org/10.1175/2009JHM1095.1, 2009.
Diaz, H. F., Eischeid, J. K., Duncan, C., and Bradley, R. S.: Variability of
freezing levels, melting season indicators, and snow cover for selected
high-elevation and continental regions in the last 50 years, Climatic Change, 59, 33–52, https://doi.org/10.1023/A:1024460010140, 2003.
Dillon, P., Toze, S., Page, D., Vanderzalm, J., Bekele, E., Sidhu, J., and
Rinck-Pfeiffer, S.: Managed aquifer recharge: rediscovering nature as a
leading edge technology, Water Sci. Technol., 62, 2338–2345, https://doi.org/10.2166/wst.2010.444, 2010.
Hamed, K. H. and Rao, A. R.: A modified Mann-Kendall trend test for autocorrelated data, J. Hydrol., 204, 182–196, https://doi.org/10.1016/S0022-1694(97)00125-X, 1998.
Harpold, A. A., Rajagopal, S., Crews, J. B., Winchell, T., and Schumer, R.:
Relative humidity has uneven effects on shifts from snow to rain over the
western US, Geophys. Res. Lett., 44, 9742–9750,
https://doi.org/10.1002/2017GL075046, 2017.
Hatchett, B.: Snow Level Characteristics and Impacts of a Spring Typhoon-Originating Atmospheric River in the Sierra Nevada, USA, Atmosphere,
9, 233, https://doi.org/10.3390/atmos9060233, 2018.
Hatchett, B., Daudert, B., Garner, C., Oakley, N., Putnam, A., and White, A.:
Winter snow level rise in the northern Sierra Nevada from 2008 to 2017, Water, 9, 899, https://doi.org/10.3390/w9110899, 2017.
Hatchett, B. J. and Eisen, H. G.: Brief Communication: Early season snowpack
loss and implications for oversnow vehicle recreation travel planning, The
Cryosphere, 13, 21–28, https://doi.org/10.5194/tc-13-21-2019, 2019.
Hatchett, B. J. and McEvoy, D. J.: Exploring the origins of snow drought in
the northern Sierra Nevada, California, Earth Interact., 22, 1–13,
https://doi.org/10.1175/EI-D-17-0027.1, 2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 Global Reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Howat, I. M. and Tulaczyk, S.: Climate sensitivity of spring snowpack in the Sierra Nevada, J. Geophys. Res., 110, F04021, https://doi.org/10.1029/2005JF000356, 2005.
Huang, X., Hall, A. D., and Berg, N.: Anthropogenic warming impacts on today's Sierra Nevada snowpack and flood risk, Geophys. Res. Lett., 45, 6215–6222, https://doi.org/10.1029/2018GL077432, 2018.
Huning, L. S. and AghaKouchak, A.: Mountain snowpack response to different levels of warming, P. Natl. Acad. Sci. USA, 115, 10932–10937,
https://doi.org/10.1073/pnas.1805953115, 2018.
Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R., Clague, J., Vuille, M., Buytaert, W., Cayan, D., Greenwood, G., Mark, B., Milner, A., Weingartner, R., and Winder, M.: Toward mountains without permanent snow and ice, Earth's Future, 5, 418–435, https://doi.org/10.1002/2016EF000514, 2017.
Jagannathan, K., Jones, A. D., and Ray, I.: The making of a metric:
Co-producing decision-relevant climate science, B. Am. Meteorol. Soc.,
https://doi.org/10.1175/BAMS-D-19-0296.1, in press, 2020.
Jennings, K. S., Winchell, T. S., Livneh, B., and Molotch, N.: Spatial variation of the rain–snow temperature threshold across the Northern Hemisphere, Nat. Commun., 9, 1148, https://doi.org/10.1038/s41467-018-03629-7, 2018.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., and Zhu, Y.: The NCEP/NCAR
40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–472,
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Kapnick, S. and Hall, A.: Observed climate-snowpack relationships in California and their implications for the future, J. Climate, 23, 3446–3456, https://doi.org/10.1175/2010JCLI2903.1, 2010.
Karhl, W. (Ed.): The California Water Atlas, Publication Section, State of California – General Services, 118 pp., 1979.
Klos, P. Z., Link, T. E., and Abatzoglou, J. T.: Extent of the rain-snow
transition zone in the western US under historic and projected climate,
Geophys. Res. Lett., 41, 4560–4568, https://doi.org/10.1002/2014GL060500, 2014.
Knowles, N., Dettinger, M. D., and Cayan, D. R.: Trends in snowfall versus
rainfall in the western United States, J. Climate, 19, 4545–4559,
https://doi.org/10.1175/JCLI3850.1, 2006.
Lundquist J. D., Roche, J. W., Forrester, H., Moore, C., Keenan, E., Perry, G., Cristea, N., Henn, B., Lapo, K., McGurk, B., Cayan, D. R., and Dettinger, M. D.: Yosemite Hydroclimate Network: Distributed stream and atmospheric data for the Tuolumne River watershed and surroundings, Water Resour. Res., 52,
7478–7489, https://doi.org/10.1002/2016WR019261, 2016.
Lundquist, J., Hughes, M., Gutmann, E., and Kapnick, S.: Our skill in modeling mountain rain and snow is bypassing the skill of our observational
networks, B. Am. Meteorol. Soc., 100, 2473–2490, https://doi.org/10.1175/BAMS-D-19-0001.1, 2020.
Lute, A. C. and Abatzoglou, J. T.: Best practices for estimating near‐surface air temperature lapse rates, Int. J. Climatol., https://doi.org/10.1002/joc.6668, in press, 2020.
Margulis, S. A., Cortés, G., Girotto, M., and Durand, M.: A Landsat-era
Sierra Nevada snow reanalysis (1985–2015), J. Hydrometeorol., 17, 1203–1221, 2016.
Milly, P. C. D., Betancourt, J. Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J.: Stationarity is dead: Whither
water management?, Science, 319, 573–574, https://doi.org/10.1126/science.1151915, 2008.
Minder, J. R., Durran, D. R., and Roe, G. H.: Mesoscale controls on the
mountainside snow line, J. Atmos. Sci., 68, 2107–2127, 2011.
Mote, P. W., Hamlet, A. F., Clark, M. P., and Lettenmaier, D. P.: Declining
mountain snowpack in western North America, B. Am. Meteorol. Soc., 86, 39–50, https://doi.org/10.1175/BAMS-86-1-39, 2005.
Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M., and Engel, R.: Dramatic
declines in snowpack in the western US, npj Clim. Atmos. Sci., 1, 2, https://doi.org/10.1038/s41612-018-0012-1, 2018.
Musselman, K. N., Clark, M. P., Liu, C., Ikeda, K., and Rasmussen, R.: Slower
snowmelt in a warmer world, Nat. Clim. Change, 7, 214–219, https://doi.org/10.1038/nclimate3225, 2017.
Patricola, C. M., O'Brien, J. P., Risser, M. D., Rhoades, A. M., O'Brien, T.
A., Ullrich, P. A., Stone, D. A., and Collins, W. D.: Maximizing ENSO asa
source of western US hydroclimate predictability, Clim. Dynam., 54, 351–372,
https://doi.org/10.1007/s00382-019-05004-8, 2020.
Rhoades, A. M., Jones, A. D., and Ullrich, P. A.: The Changing Character of the California Sierra Nevada as a Natural Reservoir, Geophys. Res. Lett., 45, 13008, https://doi.org/10.1029/2018GL080308, 2018a.
Rhoades, A. M., Ullrich, P. A., and Zarzycki, C. M.: Projecting 21st century
snowpack trends in Western USA mountains using variable-resolution CESM,
Clim. Dynam., 50, 261–288, https://doi.org/10.1007/s00382-017-3606-0, 2018b.
Sospedra-Alfonso, R., Melton, J. R., and Merryfield, W. J.: Effects of
temperature and precipitation on snowpack variability in the Central Rocky
Mountains as a function of elevation, Geophys. Res. Lett., 42, 4429–4438,
https://doi.org/10.1002/2015GL063898, 2015.
Steinschneider, S. and Brown, C.: Dynamic reservoir management with real-option risk hedging as a robust adaptation to nonstationary climate,
Water Resour. Res., 48, W05524, https://doi.org/10.1029/2011WR011540, 2012.
Sterle, K., Hatchett, B. J., Singletary, L., and Pohll, G.: Hydroclimate
Variability in Snow-fed River Systems: Local Water Managers' Perspectives on
Adapting to the New Normal, B. Am. Meteorol. Soc., 100, 1031–1048,
https://doi.org/10.1175/BAMS-D-18-0031.1, 2019.
Sturm, M., Goldstein, M. A., and Parr, C.: Water and life from snow: A trillion dollar science question, Water Resour. Res., 53, 3534–3544,
https://doi.org/10.1002/2017WR020840, 2017.
Sun, F., Berg, N., Hall, A., Schwartz, M., and Walton, D.: Understanding
end-of-century snowpack changes over California's Sierra Nevada, Geophys.
Res. Lett., 46, 933–943, https://doi.org/10.1029/2018GL080362, 2019.
Talbot, C., Ralph, F. M., and Jasperse, J.: Forecast-informed reservoir
operations: Lessons learned from a multi-agency joint research and
operations effort, in: Paper 320, Proc. of the Federal Interagency Sedimentation and Hydrologic Modeling Conference, Reno, Nevada, available at:
https://www.sedhyd.org/2019/openconf/modules/request.php?module=oc_program&action=view.php&id=320&file=1/320.pdf
(last access: March 2020), 2019.
Walton, D. B., Hall, A., Berg, N., Schwartz, M., and Sun, F.: Incorporating
snow albedo feedback into downscaled temperature and snow cover projections
for California's Sierra Nevada, J. Climate, 30, 1417–1438, https://doi.org/10.1175/JCLI-D-16-0168.1, 2017.
Wang, Y.-H., Broxton, P., Fang, Y., Behrangi, A., Barlage, M., Zeng, X., and Niu, G.-Y.: A wet-bulb temperature-based rain-snow partitioning scheme improves snowpack prediction over the drier Western United States, Geophys.
Res. Lett., 46, 13825–13835, https://doi.org/10.1029/2019GL085722, 2019.
White, A. B., Gottas, D. J., Henkel, A. F., Neiman, P. J., Ralph, F. M., and
Gutman, S. I.: Developing a performance measure for snow-level forecasts, J.
Hydrometeorol., 11, 739–753, https://doi.org/10.1175/2009JHM1181.1, 2010.
White, A. B., Anderson, M. L., Dettinger, M. D., Ralph, F. M., Hinojosa, A.,
Cayan, D. R., Hartman, R. K., Reynolds, D. W., Johnson, L. E., Schneider, T.
L., and Cifelli, R.: A twenty-first-century California observing network for
monitoring extreme weather events, J. Atmos. Ocean. Tech., 30, 1585–1603,
https://doi.org/10.1175/JTECH-D-12-00217.1, 2013.
Wrzesien, M. L., Durand, M. T., and Pavelsky, T. M.: A reassessment of North
American river basin cool-season precipitation: Developments from a new
mountain climatology data set, Water Resour. Res., 55, 3502–3519,
https://doi.org/10.1029/2018WR024106, 2019.
Zeng, X., Broxton, P., and Dawson, N.: Snowpack change from 1982 to 2016
over conterminous United States, Geophys. Res. Lett., 45, 12940–12947,
https://doi.org/10.1029/2018GL079621, 2018.
Zhang, D., Cong, Z., Ni, G., Yang, D., and Hu, S.: Effects of snow ratio on
annual runoff within the Budyko framework, Hydrol. Earth Syst. Sci., 19,
1977–1992, https://doi.org/10.5194/hess-19-1977-2015, 2015.
Short summary
Precipitation partitioning across western US landscapes (1948–present) is estimated by combining gridded precipitation data with freezing level and precipitation data from an atmospheric reanalysis. Spatial patterns and trends in the precipitation phase over elevational and latitudinal gradients are examined. The largest increases in precipitation falling as rain occur during spring. This technique can be used as a diagnostic indicator to inform adaptive water management strategy development.
Precipitation partitioning across western US landscapes (1948–present) is estimated by combining...