Articles | Volume 24, issue 11
https://doi.org/10.5194/hess-24-5317-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-5317-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: Precipitation-phase partitioning at landscape scales to regional scales
Elissa Lynn
California Department of Water Resources, Sacramento, California,
95814, USA
Aaron Cuthbertson
California Department of Water Resources, Sacramento, California,
95814, USA
Minxue He
California Department of Water Resources, Sacramento, California,
95814, USA
Jordi P. Vasquez
California Department of Water Resources, Sacramento, California,
95814, USA
Michael L. Anderson
California Department of Water Resources, Sacramento, California,
95814, USA
Peter Coombe
California Department of Water Resources, Sacramento, California,
95814, USA
John T. Abatzoglou
Management of Complex Systems Department, University of California,
Merced, Merced, California, 95340, USA
Benjamin J. Hatchett
CORRESPONDING AUTHOR
Western Regional Climate Center, Desert Research Institute, Reno,
Nevada, 89512, USA
Related authors
No articles found.
Benjamin J. Hatchett
Geosci. Commun., 8, 167–173, https://doi.org/10.5194/gc-8-167-2025, https://doi.org/10.5194/gc-8-167-2025, 2025
Short summary
Short summary
Fire progression maps (FPMs) provide information regarding wildland fire spread (progress) through time to broad audiences. However, information regarding the best use of color to denote fire progression via maps is limited. This can potentially limit a map's ability to effectively communicate information by creating inconsistent messaging and accessibility challenges. Here, I provide color map recommendations to open a discussion towards consistent and accessible fire progression mapping.
Benjamin J. Hatchett, Alan M. Rhoades, and Daniel J. McEvoy
Nat. Hazards Earth Syst. Sci., 22, 869–890, https://doi.org/10.5194/nhess-22-869-2022, https://doi.org/10.5194/nhess-22-869-2022, 2022
Short summary
Short summary
Snow droughts, or below-average snowpack, can result from either dry conditions and/or rainfall instead of snowfall. Monitoring snow drought through time and across space is important to evaluate when snow drought onset occurred, its duration, spatial extent, and severity as well as what conditions created it or led to its termination. We present visualization techniques, including a web-based snow-drought-tracking tool, to evaluate snow droughts and assess their impacts in the western US.
Kathryn Lambrecht, Benjamin J. Hatchett, Kristin VanderMolen, and Bianca Feldkircher
Geosci. Commun., 4, 517–525, https://doi.org/10.5194/gc-4-517-2021, https://doi.org/10.5194/gc-4-517-2021, 2021
Short summary
Short summary
This paper presents an analysis of public responses to U.S. National Weather Service heat-related Facebook posts for the Phoenix (Arizona) County Warning Area to identify community norms that may present challenges to the effectiveness of heat risk communication. Findings suggest that local audiences tend to view heat as normal and the ability to withstand heat as a marker of community identity. Recommendations are provided for harnessing those norms to promote positive behavioral change.
Benjamin J. Hatchett and Hilary G. Eisen
The Cryosphere, 13, 21–28, https://doi.org/10.5194/tc-13-21-2019, https://doi.org/10.5194/tc-13-21-2019, 2019
Short summary
Short summary
We examine the timing of early season snowpack relevant to oversnow vehicle (OSV) recreation over the past 3 decades in the Lake Tahoe region (USA). Data from two independent data sources suggest that the timing of achieving sufficient snowpack has shifted later by 2 weeks. Increasing rainfall and more dry days play a role in the later onset. Adaptation strategies are provided for winter travel management planning to address negative impacts of loss of early season snowpack for OSV usage.
Benjamin J. Hatchett, Craig M. Smith, Nicholas J. Nauslar, and Michael L. Kaplan
Nat. Hazards Earth Syst. Sci., 18, 419–427, https://doi.org/10.5194/nhess-18-419-2018, https://doi.org/10.5194/nhess-18-419-2018, 2018
Short summary
Short summary
Severe wind events in southern California create extreme fire hazards. Sundowner winds are local downslope winds in the Santa Ynez Mountains near Santa Barbara that often coincide with damaging fires. Here we produce a climatology of Sundowner winds and compare their seasonal occurrence and large-scale atmospheric patterns to the well-studied Santa Ana wind regime. We find that Sundowner winds are distinctly different from Santa Ana winds in terms of peak seasonality and synoptic structure.
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Skilful probabilistic predictions of UK flood risk months ahead using a large-sample machine learning model trained on multimodel ensemble climate forecasts
Towards a robust hydrologic data assimilation system for hurricane-induced river flow forecasting
Enhanced evaluation of hourly and daily extreme precipitation in Norway from convection-permitting models at regional and local scales
Deep-learning-based sub-seasonal precipitation and streamflow ensemble forecasting over the source region of the Yangtze River
High-resolution land surface modelling over Africa: the role of uncertain soil properties in combination with forcing temporal resolution
Investigating the global and regional response of drought to idealized deforestation using multiple global climate models
Distribution, trends, and drivers of flash droughts in the United Kingdom
Are dependencies of extreme rainfall on humidity more reliable in convection-permitting climate models?
Leveraging a radar-based disdrometer network to develop a probabilistic precipitation phase model in eastern Canada
Assessment of seasonal soil moisture forecasts over the Central Mediterranean
Do land models miss key soil hydrological processes controlling soil moisture memory?
Observation-driven model for calculating water-harvesting potential from advective fog in (semi-)arid coastal regions
Review of gridded climate products and their use in hydrological analyses reveals overlaps, gaps, and the need for a more objective approach to selecting model forcing datasets
Barriers of urban hydro-meteorological simulation: a review
Downscaling the probability of heavy rainfall over the Nordic countries
Modelling convective cell life cycles with a copula-based approach
Downscaling precipitation over High-mountain Asia using multi-fidelity Gaussian processes: improved estimates from ERA5
Mapping soil moisture across the UK: assimilating cosmic-ray neutron sensors, remotely sensed indices, rainfall radar and catchment water balance data in a Bayesian hierarchical model
Assessing rainfall radar errors with an inverse stochastic modelling framework
Enhanced hydrological modelling with the WRF-Hydro lake/reservoir module at Convection-Permitting scale: a case study of the Tana River basin in East Africa
Multi-objective calibration and evaluation of the ORCHIDEE land surface model over France at high resolution
Probabilistic precipitation downscaling for ungauged mountain sites: a pilot study for the Hindu Kush Karakoram Himalaya
Spatiotemporal responses of runoff to climate change in the southern Tibetan Plateau
FROSTBYTE: a reproducible data-driven workflow for probabilistic seasonal streamflow forecasting in snow-fed river basins across North America
The role of land-atmosphere coupling in subseasonal surface air temperature prediction
On the combined use of rain gauges and GPM IMERG satellite rainfall products for hydrological modelling: impact assessment of the cellular-automata-based methodology in the Tanaro River basin in Italy
An increase in the spatial extent of European floods over the last 70 years
140-year daily ensemble streamflow reconstructions over 661 catchments in France
The agricultural expansion in South America's Dry Chaco: regional hydroclimate effects
Machine-learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks over China
Improving runoff simulation in the Western United States with Noah-MP and VIC models
Spatial variability in the seasonal precipitation lapse rates in complex topographical regions – application in France
Global catalog of soil moisture droughts over the past four decades
Assessing downscaling methods to simulate hydrologically relevant weather scenarios from a global atmospheric reanalysis: case study of the upper Rhône River (1902–2009)
Global total precipitable water variations and trends over the period 1958–2021
Assessing decadal- to centennial-scale nonstationary variability in meteorological drought trends
Identification of compound drought and heatwave events on a daily scale and across four seasons
Implementation of global soil databases in NOAH-MP model and the effects on simulated mean and extreme soil hydrothermal changes
Potential for historically unprecedented Australian droughts from natural variability and climate change
Flood risk assessment for Indian sub-continental river basins
Key ingredients in regional climate modelling for improving the representation of typhoon tracks and intensities
Divergent future drought projections in UK river flows and groundwater levels
Predicting extreme sub-hourly precipitation intensification based on temperature shifts
Hydroclimatic processes as the primary drivers of the Early Khvalynian transgression of the Caspian Sea: new developments
Accounting for hydroclimatic properties in flood frequency analysis procedures
Understanding the influence of “hot” models in climate impact studies: a hydrological perspective
A semi-parametric hourly space–time weather generator
A principal-component-based strategy for regionalisation of precipitation intensity–duration–frequency (IDF) statistics
Accounting for precipitation asymmetry in a multiplicative random cascade disaggregation model
Seasonal soil moisture and crop yield prediction with fifth-generation seasonal forecasting system (SEAS5) long-range meteorological forecasts in a land surface modelling approach
Simon Moulds, Louise Slater, Louise Arnal, and Andrew W. Wood
Hydrol. Earth Syst. Sci., 29, 2393–2406, https://doi.org/10.5194/hess-29-2393-2025, https://doi.org/10.5194/hess-29-2393-2025, 2025
Short summary
Short summary
Seasonal streamflow forecasts are an important component of flood risk management. Here, we train and test a machine learning model to predict the monthly maximum daily streamflow up to 4 months ahead. We train the model on precipitation and temperature forecasts to produce probabilistic hindcasts for 579 stations across the UK for the period 2004–2016. We show skilful results up to 4 months ahead in many locations, although, in general, the skill declines with increasing lead time.
Peyman Abbaszadeh, Fatemeh Gholizadeh, Keyhan Gavahi, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 29, 2407–2427, https://doi.org/10.5194/hess-29-2407-2025, https://doi.org/10.5194/hess-29-2407-2025, 2025
Short summary
Short summary
The Hybrid Ensemble and Variational Data Assimilation framework for Environmental Systems (HEAVEN) enhances flood predictions by refining hydrologic models through improved data integration and uncertainty management. Tested in three southeastern US watersheds during hurricanes, HEAVEN assimilates real-time United States Geological Survey (USGS) streamflow data, boosting forecast accuracy.
Kun Xie, Lu Li, Hua Chen, Stephanie Mayer, Andreas Dobler, Chong-Yu Xu, and Ozan Mert Göktürk
Hydrol. Earth Syst. Sci., 29, 2133–2152, https://doi.org/10.5194/hess-29-2133-2025, https://doi.org/10.5194/hess-29-2133-2025, 2025
Short summary
Short summary
We compared hourly and daily extreme precipitation across Norway from HARMONIE Climate models at convection-permitting 3 km (HCLIM3) and 12 km (HCLIM12) resolutions. HCLIM3 more accurately captures the extremes in most regions and seasons (except in summer). Its advantages are more pronounced for hourly extremes than for daily extremes. The results highlight the value of convection-permitting models in improving extreme-precipitation predictions and in helping the local society brace for extreme weather.
Ningpeng Dong, Haoran Hao, Mingxiang Yang, Jianhui Wei, Shiqin Xu, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 29, 2023–2042, https://doi.org/10.5194/hess-29-2023-2025, https://doi.org/10.5194/hess-29-2023-2025, 2025
Short summary
Short summary
Hydrometeorological forecasting is crucial for managing water resources and mitigating extreme weather events, yet current long-term forecast products are often embedded with uncertainties. We develop a deep-learning-based modelling framework to improve 30 d rainfall and streamflow forecasts by combining advanced neural networks and physical models. With the flow forecast error reduced by up to 33 %, the framework has the potential to enhance water management and disaster prevention.
Bamidele Oloruntoba, Stefan Kollet, Carsten Montzka, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 29, 1659–1683, https://doi.org/10.5194/hess-29-1659-2025, https://doi.org/10.5194/hess-29-1659-2025, 2025
Short summary
Short summary
We studied how soil and weather data affect land model simulations over Africa. By combining soil data processed in different ways with weather data of varying time intervals, we found that weather inputs had a greater impact on water processes than soil data type. However, the way soil data were processed became crucial when paired with high-frequency weather inputs, showing that detailed weather data can improve local and regional predictions of how water moves and interacts with the land.
Yan Li, Bo Huang, Chunping Tan, Xia Zhang, Francesco Cherubini, and Henning W. Rust
Hydrol. Earth Syst. Sci., 29, 1637–1658, https://doi.org/10.5194/hess-29-1637-2025, https://doi.org/10.5194/hess-29-1637-2025, 2025
Short summary
Short summary
Deforestation has a significant impact on climate, yet its effects on drought remain less understood. This study investigates how deforestation affects drought across various climate zones and timescales. Findings indicate that deforestation leads to drier conditions in tropical regions and wetter conditions in arid areas, with minimal effects in temperate zones. Long-term drought is more affected than short-term drought, offering valuable insights into vegetation–climate interactions.
Iván Noguera, Jamie Hannaford, and Maliko Tanguy
Hydrol. Earth Syst. Sci., 29, 1295–1317, https://doi.org/10.5194/hess-29-1295-2025, https://doi.org/10.5194/hess-29-1295-2025, 2025
Short summary
Short summary
The study provides a detailed characterisation of flash drought in the UK for 1969–2021. The spatio-temporal distribution and trends of flash droughts are highly variable, with important regional and seasonal contrasts. In the UK, flash drought development responds primarily to precipitation variability, while the atmospheric evaporative demand plays a secondary role. We also found that the North Atlantic Oscillation is the main circulation pattern controlling flash drought development.
Geert Lenderink, Nikolina Ban, Erwan Brisson, Ségolène Berthou, Virginia Edith Cortés-Hernández, Elizabeth Kendon, Hayley J. Fowler, and Hylke de Vries
Hydrol. Earth Syst. Sci., 29, 1201–1220, https://doi.org/10.5194/hess-29-1201-2025, https://doi.org/10.5194/hess-29-1201-2025, 2025
Short summary
Short summary
Future extreme rainfall events are influenced by changes in both absolute and relative humidity. The impact of increasing absolute humidity is reasonably well understood, but the role of relative humidity decreases over land remains largely unknown. Using hourly observations from France and the Netherlands, we find that lower relative humidity generally leads to more intense rainfall extremes. This relation is only captured well in recently developed convection-permitting climate models.
Alexis Bédard-Therrien, François Anctil, Julie M. Thériault, Olivier Chalifour, Fanny Payette, Alexandre Vidal, and Daniel F. Nadeau
Hydrol. Earth Syst. Sci., 29, 1135–1158, https://doi.org/10.5194/hess-29-1135-2025, https://doi.org/10.5194/hess-29-1135-2025, 2025
Short summary
Short summary
Precipitation data from an automated observational network in eastern Canada showed a temperature interval where rain and snow could coexist. Random forest models were developed to classify the precipitation phase using meteorological data to evaluate operational applications. The models demonstrated significantly improved phase classification and reduced error compared to benchmark operational models. However, accurate prediction of mixed-phase precipitation remains challenging.
Lorenzo Silvestri, Miriam Saraceni, Bruno Brunone, Silvia Meniconi, Giulia Passadore, and Paolina Bongioannini Cerlini
Hydrol. Earth Syst. Sci., 29, 925–946, https://doi.org/10.5194/hess-29-925-2025, https://doi.org/10.5194/hess-29-925-2025, 2025
Short summary
Short summary
This work demonstrates that seasonal forecasts of soil moisture are a valuable resource for groundwater management in the areas of the Central Mediterranean where longer memory timescales are found. In particular, they show significant correlation coefficients and forecast skill for the deepest soil moisture at 289 cm depth. Wet and dry events can be predicted 6 months in advance, and, in general, dry events are better captured than wet events.
Mohammad A. Farmani, Ali Behrangi, Aniket Gupta, Ahmad Tavakoly, Matthew Geheran, and Guo-Yue Niu
Hydrol. Earth Syst. Sci., 29, 547–566, https://doi.org/10.5194/hess-29-547-2025, https://doi.org/10.5194/hess-29-547-2025, 2025
Short summary
Short summary
Soil moisture memory (SMM) shows how long soil stays moist after rain, impacting climate and ecosystems. Current models often overestimate SMM, causing inaccuracies in evaporation predictions. We enhanced a land model, Noah-MP, to include better water flow and ponding processes, and we tested it against satellite and field data. This improved model reduced overestimations and enhanced short-term predictions, helping create more accurate climate and weather forecasts.
Felipe Lobos-Roco, Jordi Vilà-Guerau de Arellano, and Camilo del Río
Hydrol. Earth Syst. Sci., 29, 109–125, https://doi.org/10.5194/hess-29-109-2025, https://doi.org/10.5194/hess-29-109-2025, 2025
Short summary
Short summary
Water resources are fundamental for the social, economic, and natural development of (semi-)arid regions. Precipitation decreases due to climate change obligate us to find new water resources. Fog harvesting (FH) emerges as a complementary resource in regions where it is abundant but untapped. This research proposes a model to estimate FH potential in coastal (semi-)arid regions. This model could have broader applicability worldwide in regions where FH could be a viable water source.
Kyle R. Mankin, Sushant Mehan, Timothy R. Green, and David M. Barnard
Hydrol. Earth Syst. Sci., 29, 85–108, https://doi.org/10.5194/hess-29-85-2025, https://doi.org/10.5194/hess-29-85-2025, 2025
Short summary
Short summary
We assess 63 gridded ground (G), satellite (S), and reanalysis (R) climate datasets. Higher-density station data and less-hilly terrain improved climate data. In mountainous and humid regions, dataset types performed similarly; however, R outperformed G when underlying data had low station density. G outperformed S or R datasets, although better streamflow modeling did not always follow. Hydrologic analyses need datasets that better represent climate variable dependencies and complex topography.
Xuan Chen, Job Augustijn van der Werf, Arjan Droste, Miriam Coenders-Gerrits, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2024-3988, https://doi.org/10.5194/egusphere-2024-3988, 2025
Short summary
Short summary
Our research highlights the need to integrate urban land surface and hydrological models to better predict and manage compound climate disasters in cities. We find that inadequate representation of water surfaces, hydraulic systems, and detailed building representations are key areas for improvement in future models. Coupled models show promise but face challenges at regional and neighbourhood scales. Interdisciplinary communication is crucial to enhance urban hydrometeorological simulations.
Rasmus E. Benestad, Kajsa M. Parding, and Andreas Dobler
Hydrol. Earth Syst. Sci., 29, 45–65, https://doi.org/10.5194/hess-29-45-2025, https://doi.org/10.5194/hess-29-45-2025, 2025
Short summary
Short summary
We present a new method to calculate the chance of heavy downpour and the maximum rainfall expected over a 25-year period. It is designed to analyse global climate models' reproduction of past and future climates. For the Nordic countries, it projects a wetter climate in the future with increased intensity but not necessarily more wet days. The analysis also shows that rainfall intensity is sensitive to future greenhouse gas emissions, while the number of wet days appears to be less affected.
Chien-Yu Tseng, Li-Pen Wang, and Christian Onof
Hydrol. Earth Syst. Sci., 29, 1–25, https://doi.org/10.5194/hess-29-1-2025, https://doi.org/10.5194/hess-29-1-2025, 2025
Short summary
Short summary
This study presents a new algorithm to model convective storms. We used advanced tracking methods to analyse 165 storm events in Birmingham (UK) and reconstruct storm cell life cycles. We found that cell properties like intensity and size are interrelated and vary over time. The new algorithm, based on vine copulas, accurately simulates these properties and their evolution. It also integrates an exponential shape function for realistic rainfall patterns, enhancing its hydrological applicability.
Kenza Tazi, Andrew Orr, Javier Hernandez-González, Scott Hosking, and Richard E. Turner
Hydrol. Earth Syst. Sci., 28, 4903–4925, https://doi.org/10.5194/hess-28-4903-2024, https://doi.org/10.5194/hess-28-4903-2024, 2024
Short summary
Short summary
This work aims to improve the understanding of precipitation patterns in High-mountain Asia, a crucial water source for around 1.9 billion people. Through a novel machine learning method, we generate high-resolution precipitation predictions, including the likelihoods of floods and droughts. Compared to state-of-the-art methods, our method is simpler to implement and more suitable for small datasets. The method also shows accuracy comparable to or better than existing benchmark datasets.
Peter E. Levy and the COSMOS-UK team
Hydrol. Earth Syst. Sci., 28, 4819–4836, https://doi.org/10.5194/hess-28-4819-2024, https://doi.org/10.5194/hess-28-4819-2024, 2024
Short summary
Short summary
Having accurate up-to-date maps of soil moisture is important for many purposes. However, current modelled and remotely sensed maps are rather coarse and not very accurate. Here, we demonstrate a simple but accurate approach that is closely linked to direct measurements of soil moisture at a network sites across the UK, to the water balance (precipitation minus drainage and evaporation) measured at a large number of catchments (1212) and to remotely sensed satellite estimates.
Amy C. Green, Chris Kilsby, and András Bárdossy
Hydrol. Earth Syst. Sci., 28, 4539–4558, https://doi.org/10.5194/hess-28-4539-2024, https://doi.org/10.5194/hess-28-4539-2024, 2024
Short summary
Short summary
Weather radar is a crucial tool in rainfall estimation, but radar rainfall estimates are subject to many error sources, with the true rainfall field unknown. A flexible model for simulating errors relating to the radar rainfall estimation process is implemented, inverting standard processing methods. This flexible and efficient model performs well in generating realistic weather radar images visually for a large range of event types.
Ling Zhang, Lu Li, Zhongshi Zhang, Joël Arnault, Stefan Sobolowski, Anthony Musili Mwanthi, Pratik Kad, Mohammed Abdullahi Hassan, Tanja Portele, and Harald Kunstmann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-278, https://doi.org/10.5194/hess-2024-278, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
To address challenges related to unreliable hydrological simulations, we present an enhanced hydrological simulation with a refined climate model and a more comprehensive hydrological model. The model with the two parts outperforms that without, especially in migrating bias in peak flow and dry-season flow. Our findings highlight the enhanced hydrological simulation capability with the refined climate and lake module contributing 24 % and 76 % improvement, respectively.
Peng Huang, Agnès Ducharne, Lucia Rinchiuso, Jan Polcher, Laure Baratgin, Vladislav Bastrikov, and Eric Sauquet
Hydrol. Earth Syst. Sci., 28, 4455–4476, https://doi.org/10.5194/hess-28-4455-2024, https://doi.org/10.5194/hess-28-4455-2024, 2024
Short summary
Short summary
We conducted a high-resolution hydrological simulation from 1959 to 2020 across France. We used a simple trial-and-error calibration to reduce the biases of the simulated water budget compared to observations. The selected simulation satisfactorily reproduces water fluxes, including their spatial contrasts and temporal trends. This work offers a reliable historical overview of water resources and a robust configuration for climate change impact analysis at the nationwide scale of France.
Marc Girona-Mata, Andrew Orr, Martin Widmann, Daniel Bannister, Ghulam Hussain Dars, Scott Hosking, Jesse Norris, David Ocio, Tony Phillips, Jakob Steiner, and Richard E. Turner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2805, https://doi.org/10.5194/egusphere-2024-2805, 2024
Short summary
Short summary
We introduce a novel method for improving daily precipitation maps in mountain regions and pilot it across three basins in the Hindu Kush Karakoram Himalaya (HKH). The approach leverages climate model and weather station data, along with statistical / machine learning techniques. Our results show this approach outperforms traditional methods, especially in remote, ungauged areas, suggesting it could be used to improve precipitation maps across much of the HKH, as well as other mountain regions.
He Sun, Tandong Yao, Fengge Su, Wei Yang, and Deliang Chen
Hydrol. Earth Syst. Sci., 28, 4361–4381, https://doi.org/10.5194/hess-28-4361-2024, https://doi.org/10.5194/hess-28-4361-2024, 2024
Short summary
Short summary
Our findings show that runoff in the Yarlung Zangbo (YZ) basin is primarily driven by rainfall, with the largest glacier runoff contribution in the downstream sub-basin. Annual runoff increased in the upper stream but decreased downstream due to varying precipitation patterns. It is expected to rise throughout the 21st century, mainly driven by increased rainfall.
Louise Arnal, Martyn P. Clark, Alain Pietroniro, Vincent Vionnet, David R. Casson, Paul H. Whitfield, Vincent Fortin, Andrew W. Wood, Wouter J. M. Knoben, Brandi W. Newton, and Colleen Walford
Hydrol. Earth Syst. Sci., 28, 4127–4155, https://doi.org/10.5194/hess-28-4127-2024, https://doi.org/10.5194/hess-28-4127-2024, 2024
Short summary
Short summary
Forecasting river flow months in advance is crucial for water sectors and society. In North America, snowmelt is a key driver of flow. This study presents a statistical workflow using snow data to forecast flow months ahead in North American snow-fed rivers. Variations in the river flow predictability across the continent are evident, raising concerns about future predictability in a changing (snow) climate. The reproducible workflow hosted on GitHub supports collaborative and open science.
Yuna Lim, Andrea M. Molod, Randal D. Koster, and Joseph A. Santanello
EGUsphere, https://doi.org/10.5194/egusphere-2024-2312, https://doi.org/10.5194/egusphere-2024-2312, 2024
Short summary
Short summary
To better utilize a given set of predictions, identifying “forecasts of opportunity” has great value. It can help anticipate when prediction skill will be higher. This study reveals that when strong L-A coupling is detected 3–4 weeks into a forecast, the prediction skill for surface air temperature at this lead increases across the Midwest and northern Great Plains. Regions experiencing strong L-A coupling exhibit warm and dry anomalies, leading to improved predictions of abnormally warm events.
Annalina Lombardi, Barbara Tomassetti, Valentina Colaiuda, Ludovico Di Antonio, Paolo Tuccella, Mario Montopoli, Giovanni Ravazzani, Frank Silvio Marzano, Raffaele Lidori, and Giulia Panegrossi
Hydrol. Earth Syst. Sci., 28, 3777–3797, https://doi.org/10.5194/hess-28-3777-2024, https://doi.org/10.5194/hess-28-3777-2024, 2024
Short summary
Short summary
The accurate estimation of precipitation and its spatial variability within a watershed is crucial for reliable discharge simulations. The study is the first detailed analysis of the potential usage of the cellular automata technique to merge different rainfall data inputs to hydrological models. This work shows an improvement in the performance of hydrological simulations when satellite and rain gauge data are merged.
Beijing Fang, Emanuele Bevacqua, Oldrich Rakovec, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3755–3775, https://doi.org/10.5194/hess-28-3755-2024, https://doi.org/10.5194/hess-28-3755-2024, 2024
Short summary
Short summary
We use grid-based runoff from a hydrological model to identify large spatiotemporally connected flood events in Europe, assess extent trends over the last 70 years, and attribute the trends to different drivers. Our findings reveal a general increase in flood extent, with regional variations driven by diverse factors. The study not only enables a thorough examination of flood events across multiple basins but also highlights the potential challenges arising from changing flood extents.
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, Olivier Vannier, and Laurie Caillouet
Hydrol. Earth Syst. Sci., 28, 3457–3474, https://doi.org/10.5194/hess-28-3457-2024, https://doi.org/10.5194/hess-28-3457-2024, 2024
Short summary
Short summary
Daily streamflow series for 661 near-natural French catchments are reconstructed over 1871–2012 using two ensemble datasets: HydRE and HydREM. They include uncertainties coming from climate forcings, streamflow measurement, and hydrological model error (for HydrREM). Comparisons with other hydrological reconstructions and independent/dependent observations show the added value of the two reconstructions in terms of quality, uncertainty estimation, and representation of extremes.
María Agostina Bracalenti, Omar V. Müller, Miguel A. Lovino, and Ernesto Hugo Berbery
Hydrol. Earth Syst. Sci., 28, 3281–3303, https://doi.org/10.5194/hess-28-3281-2024, https://doi.org/10.5194/hess-28-3281-2024, 2024
Short summary
Short summary
The Gran Chaco is a large, dry forest in South America that has been heavily deforested, particularly in the dry Chaco subregion. This deforestation, mainly driven by the expansion of the agricultural frontier, has changed the land's characteristics, affecting the local and regional climate. The study reveals that deforestation has resulted in reduced precipitation, soil moisture, and runoff, and if intensive agriculture continues, it could make summers in this arid region even drier and hotter.
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, Xiang Zhang, and Aliaksandr Volchak
Hydrol. Earth Syst. Sci., 28, 3305–3326, https://doi.org/10.5194/hess-28-3305-2024, https://doi.org/10.5194/hess-28-3305-2024, 2024
Short summary
Short summary
Climate change accelerates the water cycle and alters the spatiotemporal distribution of hydrological variables, thus complicating the projection of future streamflow and hydrological droughts. We develop a cascade modeling chain to project future bivariate hydrological drought characteristics over China, using five bias-corrected global climate model outputs under three shared socioeconomic pathways, five hydrological models, and a deep-learning model.
Lu Su, Dennis P. Lettenmaier, Ming Pan, and Benjamin Bass
Hydrol. Earth Syst. Sci., 28, 3079–3097, https://doi.org/10.5194/hess-28-3079-2024, https://doi.org/10.5194/hess-28-3079-2024, 2024
Short summary
Short summary
We fine-tuned the variable infiltration capacity (VIC) and Noah-MP models across 263 river basins in the Western US. We developed transfer relationships to similar basins and extended the fine-tuned parameters to ungauged basins. Both models performed best in humid areas, and the skills improved post-calibration. VIC outperforms Noah-MP in all but interior dry basins following regionalization. VIC simulates annual mean streamflow and high flow well, while Noah-MP performs better for low flows.
Valentin Dura, Guillaume Evin, Anne-Catherine Favre, and David Penot
Hydrol. Earth Syst. Sci., 28, 2579–2601, https://doi.org/10.5194/hess-28-2579-2024, https://doi.org/10.5194/hess-28-2579-2024, 2024
Short summary
Short summary
The increase in precipitation as a function of elevation is poorly understood in areas with complex topography. In this article, the reproduction of these orographic gradients is assessed with several precipitation products. The best product is a simulation from a convection-permitting regional climate model. The corresponding seasonal gradients vary significantly in space, with higher values for the first topographical barriers exposed to the dominant air mass circulations.
Jan Řehoř, Rudolf Brázdil, Oldřich Rakovec, Martin Hanel, Milan Fischer, Rohini Kumar, Jan Balek, Markéta Poděbradská, Vojtěch Moravec, Luis Samaniego, and Miroslav Trnka
EGUsphere, https://doi.org/10.5194/egusphere-2024-1434, https://doi.org/10.5194/egusphere-2024-1434, 2024
Short summary
Short summary
We present a robust method for identification and classification of global land drought events (GLDEs) based on soil moisture. Two models were used to calculate soil moisture and delimit soil drought over global land from 1980–2022, which was clustered into 775/630 GLDEs. Using four spatiotemporal and three motion-related characteristics, we categorized GLDEs into seven severity and seven dynamic categories. The frequency of GLDEs has generally increased in recent decades.
Caroline Legrand, Benoît Hingray, Bruno Wilhelm, and Martin Ménégoz
Hydrol. Earth Syst. Sci., 28, 2139–2166, https://doi.org/10.5194/hess-28-2139-2024, https://doi.org/10.5194/hess-28-2139-2024, 2024
Short summary
Short summary
Climate change is expected to increase flood hazard worldwide. The evolution is typically estimated from multi-model chains, where regional hydrological scenarios are simulated from weather scenarios derived from coarse-resolution atmospheric outputs of climate models. We show that two such chains are able to reproduce, from an atmospheric reanalysis, the 1902–2009 discharge variations and floods of the upper Rhône alpine river, provided that the weather scenarios are bias-corrected.
Nenghan Wan, Xiaomao Lin, Roger A. Pielke Sr., Xubin Zeng, and Amanda M. Nelson
Hydrol. Earth Syst. Sci., 28, 2123–2137, https://doi.org/10.5194/hess-28-2123-2024, https://doi.org/10.5194/hess-28-2123-2024, 2024
Short summary
Short summary
Global warming occurs at a rate of 0.21 K per decade, resulting in about 9.5 % K−1 of water vapor response to temperature from 1993 to 2021. Terrestrial areas experienced greater warming than the ocean, with a ratio of 2 : 1. The total precipitable water change in response to surface temperature changes showed a variation around 6 % K−1–8 % K−1 in the 15–55° N latitude band. Further studies are needed to identify the mechanisms leading to different water vapor responses.
Kyungmin Sung, Max C. A. Torbenson, and James H. Stagge
Hydrol. Earth Syst. Sci., 28, 2047–2063, https://doi.org/10.5194/hess-28-2047-2024, https://doi.org/10.5194/hess-28-2047-2024, 2024
Short summary
Short summary
This study examines centuries of nonstationary trends in meteorological drought and pluvial climatology. A novel approach merges tree-ring proxy data (North American Seasonal Precipitation Atlas – NASPA) with instrumental precipitation datasets by temporally downscaling proxy data, correcting biases, and analyzing shared trends in normal and extreme precipitation anomalies. We identify regions experiencing recent unprecedented shifts towards drier or wetter conditions and shifts in seasonality.
Baoying Shan, Niko E. C. Verhoest, and Bernard De Baets
Hydrol. Earth Syst. Sci., 28, 2065–2080, https://doi.org/10.5194/hess-28-2065-2024, https://doi.org/10.5194/hess-28-2065-2024, 2024
Short summary
Short summary
This study developed a convenient and new method to identify the occurrence of droughts, heatwaves, and co-occurring droughts and heatwaves (CDHW) across four seasons. Using this method, we could establish the start and/or end dates of drought (or heatwave) events. We found an increase in the frequency of heatwaves and CDHW events in Belgium caused by climate change. We also found that different months have different chances of CDHW events.
Kazeem Ishola, Gerald Mills, Ankur Sati, Benjamin Obe, Matthias Demuzere, Deepak Upreti, Gourav Misra, Paul Lewis, Daire Walsh, Tim McCarthy, and Rowan Fealy
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-304, https://doi.org/10.5194/hess-2023-304, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
The global soil information contributes to uncertainty in many models that monitor soil hydrothermal changes. Using the NOAH-MP model with two different global soil information, we show under-represented soil properties in wet loam soil, leading to dry bias in soil moisture. The dry bias is higher and drought categories are more severe in SOILGRIDS. We conclude that models should consider using detailed regionally-derived soil information, to reduce model uncertainties.
Georgina M. Falster, Nicky M. Wright, Nerilie J. Abram, Anna M. Ukkola, and Benjamin J. Henley
Hydrol. Earth Syst. Sci., 28, 1383–1401, https://doi.org/10.5194/hess-28-1383-2024, https://doi.org/10.5194/hess-28-1383-2024, 2024
Short summary
Short summary
Multi-year droughts have severe environmental and economic impacts, but the instrumental record is too short to characterise multi-year drought variability. We assessed the nature of Australian multi-year droughts using simulations of the past millennium from 11 climate models. We show that multi-decadal
megadroughtsare a natural feature of the Australian hydroclimate. Human-caused climate change is also driving a tendency towards longer droughts in eastern and southwestern Australia.
Urmin Vegad, Yadu Pokhrel, and Vimal Mishra
Hydrol. Earth Syst. Sci., 28, 1107–1126, https://doi.org/10.5194/hess-28-1107-2024, https://doi.org/10.5194/hess-28-1107-2024, 2024
Short summary
Short summary
A large population is affected by floods, which leave their footprints through human mortality, migration, and damage to agriculture and infrastructure, during almost every summer monsoon season in India. Despite the massive damage of floods, sub-basin level flood risk assessment is still in its infancy and needs to be improved. Using hydrological and hydrodynamic models, we reconstructed sub-basin level observed floods for the 1901–2020 period.
Qi Sun, Patrick Olschewski, Jianhui Wei, Zhan Tian, Laixiang Sun, Harald Kunstmann, and Patrick Laux
Hydrol. Earth Syst. Sci., 28, 761–780, https://doi.org/10.5194/hess-28-761-2024, https://doi.org/10.5194/hess-28-761-2024, 2024
Short summary
Short summary
Tropical cyclones (TCs) often cause high economic loss due to heavy winds and rainfall, particularly in densely populated regions such as the Pearl River Delta (China). This study provides a reference to set up regional climate models for TC simulations. They contribute to a better TC process understanding and assess the potential changes and risks of TCs in the future. This lays the foundation for hydrodynamical modelling, from which the cities' disaster management and defence could benefit.
Simon Parry, Jonathan D. Mackay, Thomas Chitson, Jamie Hannaford, Eugene Magee, Maliko Tanguy, Victoria A. Bell, Katie Facer-Childs, Alison Kay, Rosanna Lane, Robert J. Moore, Stephen Turner, and John Wallbank
Hydrol. Earth Syst. Sci., 28, 417–440, https://doi.org/10.5194/hess-28-417-2024, https://doi.org/10.5194/hess-28-417-2024, 2024
Short summary
Short summary
We studied drought in a dataset of possible future river flows and groundwater levels in the UK and found different outcomes for these two sources of water. Throughout the UK, river flows are likely to be lower in future, with droughts more prolonged and severe. However, whilst these changes are also found in some boreholes, in others, higher levels and less severe drought are indicated for the future. This has implications for the future balance between surface water and groundwater below.
Francesco Marra, Marika Koukoula, Antonio Canale, and Nadav Peleg
Hydrol. Earth Syst. Sci., 28, 375–389, https://doi.org/10.5194/hess-28-375-2024, https://doi.org/10.5194/hess-28-375-2024, 2024
Short summary
Short summary
We present a new physical-based method for estimating extreme sub-hourly precipitation return levels (i.e., intensity–duration–frequency, IDF, curves), which are critical for the estimation of future floods. The proposed model, named TENAX, incorporates temperature as a covariate in a physically consistent manner. It has only a few parameters and can be easily set for any climate station given sub-hourly precipitation and temperature data are available.
Alexander Gelfan, Andrey Panin, Andrey Kalugin, Polina Morozova, Vladimir Semenov, Alexey Sidorchuk, Vadim Ukraintsev, and Konstantin Ushakov
Hydrol. Earth Syst. Sci., 28, 241–259, https://doi.org/10.5194/hess-28-241-2024, https://doi.org/10.5194/hess-28-241-2024, 2024
Short summary
Short summary
Paleogeographical data show that 17–13 ka BP, the Caspian Sea level was 80 m above the current level. There are large disagreements on the genesis of this “Great” Khvalynian transgression of the sea, and we tried to shed light on this issue. Using climate and hydrological models as well as the paleo-reconstructions, we proved that the transgression could be initiated solely by hydroclimatic factors within the deglaciation period in the absence of the glacial meltwater effect.
Joeri B. Reinders and Samuel E. Munoz
Hydrol. Earth Syst. Sci., 28, 217–227, https://doi.org/10.5194/hess-28-217-2024, https://doi.org/10.5194/hess-28-217-2024, 2024
Short summary
Short summary
Flooding presents a major hazard for people and infrastructure along waterways; however, it is challenging to study the likelihood of a flood magnitude occurring regionally due to a lack of long discharge records. We show that hydroclimatic variables like Köppen climate regions and precipitation intensity explain part of the variance in flood frequency distributions and thus reduce the uncertainty of flood probability estimates. This gives water managers a tool to locally improve flood analysis.
Mehrad Rahimpour Asenjan, Francois Brissette, Jean-Luc Martel, and Richard Arsenault
Hydrol. Earth Syst. Sci., 27, 4355–4367, https://doi.org/10.5194/hess-27-4355-2023, https://doi.org/10.5194/hess-27-4355-2023, 2023
Short summary
Short summary
Climate models are central to climate change impact studies. Some models project a future deemed too hot by many. We looked at how including hot models may skew the result of impact studies. Applied to hydrology, this study shows that hot models do not systematically produce hydrological outliers.
Ross Pidoto and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 3957–3975, https://doi.org/10.5194/hess-27-3957-2023, https://doi.org/10.5194/hess-27-3957-2023, 2023
Short summary
Short summary
Long continuous time series of meteorological variables (i.e. rainfall, temperature) are required for the modelling of floods. Observed time series are generally too short or not available. Weather generators are models that reproduce observed weather time series. This study extends an existing station-based rainfall model into space by enforcing observed spatial rainfall characteristics. To model other variables (i.e. temperature) the model is then coupled to a simple resampling approach.
Kajsa Maria Parding, Rasmus Emil Benestad, Anita Verpe Dyrrdal, and Julia Lutz
Hydrol. Earth Syst. Sci., 27, 3719–3732, https://doi.org/10.5194/hess-27-3719-2023, https://doi.org/10.5194/hess-27-3719-2023, 2023
Short summary
Short summary
Intensity–duration–frequency (IDF) curves describe the likelihood of extreme rainfall and are used in hydrology and engineering, for example, for flood forecasting and water management. We develop a model to estimate IDF curves from daily meteorological observations, which are more widely available than the observations on finer timescales (minutes to hours) that are needed for IDF calculations. The method is applied to all data at once, making it efficient and robust to individual errors.
Kaltrina Maloku, Benoit Hingray, and Guillaume Evin
Hydrol. Earth Syst. Sci., 27, 3643–3661, https://doi.org/10.5194/hess-27-3643-2023, https://doi.org/10.5194/hess-27-3643-2023, 2023
Short summary
Short summary
High-resolution precipitation data, needed for many applications in hydrology, are typically rare. Such data can be simulated from daily precipitation with stochastic disaggregation. In this work, multiplicative random cascades are used to disaggregate time series of 40 min precipitation from daily precipitation for 81 Swiss stations. We show that very relevant statistics of precipitation are obtained when precipitation asymmetry is accounted for in a continuous way in the cascade generator.
Theresa Boas, Heye Reemt Bogena, Dongryeol Ryu, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 27, 3143–3167, https://doi.org/10.5194/hess-27-3143-2023, https://doi.org/10.5194/hess-27-3143-2023, 2023
Short summary
Short summary
In our study, we tested the utility and skill of a state-of-the-art forecasting product for the prediction of regional crop productivity using a land surface model. Our results illustrate the potential value and skill of combining seasonal forecasts with modelling applications to generate variables of interest for stakeholders, such as annual crop yield for specific cash crops and regions. In addition, this study provides useful insights for future technical model evaluations and improvements.
Cited articles
Abatzoglou, J. T.: Influence of the PNA on declining mountain snowpack in
the Western United States, Int. J. Climatol., 31, 1135–1142, https://doi.org/10.1002/joc.2137, 2011.
Abatzoglou, J. T. and Ficklin, D. L.: Climatic and physiographic controls of spatial variability in surface water balance over the contiguous United States using the Budyko relationship, Water Resour. Res., 53, 7630– 7643,
https://doi.org/10.1002/2017WR020843, 2017.
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., and Hegewisch, K. C.:
TerraClimate, a high-resolution global dataset of monthly climate and
climatic water balance from 1958–2015, Sci. Data, 5, 170191,
https://doi.org/10.1038/sdata.2017.191, 2018.
Bales, R. C., Molotch, N. P., Painter, T. H., Dettinger, M. D., Rice, R., and Dozier, J.: Mountain hydrology of the western United States, Water Resour. Res., 42, W08432, https://doi.org/10.1029/2005WR004387, 2006.
Berg, N. and Hall, A.: Anthropogenic warming impacts on California snowpack
during drought, Geophys. Res. Lett., 44, 2511–2518, https://doi.org/10.1002/2016GL072104, 2017.
Berghuijs, W. R., Woods, R. A., and Hrachowitz, M.: A precipitation shift
from snow towards rain leads to a decrease in streamflow, Nat. Clim. Change,
4, 583–586, https://doi.org/10.1038/nclimate2246, 2014.
California Department of Water Resources: Estimating Historical California
Precipitation Phase Trends Using Gridded Precipitation, Precipitation Phase,
and Elevation Data, Memorandum Report, available at:
https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/All-Programs/Climate-Change-Program/Climate-Program-Activities/Files/Reports/Estimating-Historical-California-Precipitation-DWR-2014.pdf
(last access: January 2020), 2014.
California Department of Water Resources: Hydroclimate Report Water, available at: https://cdec.water.ca.gov/snow/bulletin120/index2.html, (last access: December 2019), 2019a.
California Department of Water Resources: Bulletin 120 Water supply forecast
summary, available at: https://cdec.water.ca.gov/snow/bulletin120/index2.html (last access: December 2019), 2019b.
Cayan, D. R., Kammerdiener, S. A., Dettinger, M. D., Caprio, J. M., and
Peterson, D. H.: Changes in the onset of spring in the Western United States, B. Am. Meteorol. Soc., 82, 399–416, https://doi.org/10.1175/1520-0477(2001)082<0399:CITOOS>2.3.CO;2, 2001.
Contosta, A. R., Casson, N. J., Garlick, S., Nelson, S. J., Ayres, M. P.,
Burakowski, E. A., Campbell, J., Creed, I., Eimers, C., Evans, C., Fernandez, I., Fuss, C., Huntington, T., Patel, K., Sanders-DeMott, R., Son, K., Templer, P., and Thornbrugh, C.: Northern forest winters have lost cold, snowy conditions that are important for ecosystems and human communities, Ecol. Appl., 29, e01974, https://doi.org/10.1002/eap.1974, 2019.
Cooley, H., Phurisamban, R., and Gleick, P.: The cost of alternative urban water supply and efficiency options in California, Environ. Res. Commun., 1, 042001, https://doi.org/10.1088/2515-7620/ab22ca, 2019.
Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor,
G. H., Curtis, J., and Pasteris, P. P.: Physiographically sensitive mapping
of climatological temperature and precipitation across the conterminous United States, Int. J. Climatol., 28, 2031–2064, https://doi.org/10.1002/joc.1688, 2008.
Das, T., Hidalgo, H. G., Pierce, D. W., Barnett, T. P., Dettinger, M. D.,
Cayan, D. R., Bonfils, C., Bala, G., and Mirin, A.: Structure and detectability of trends in hydrological measures over the western United
States, J. Hydrometeorol., 10, 871–892, https://doi.org/10.1175/2009JHM1095.1, 2009.
Diaz, H. F., Eischeid, J. K., Duncan, C., and Bradley, R. S.: Variability of
freezing levels, melting season indicators, and snow cover for selected
high-elevation and continental regions in the last 50 years, Climatic Change, 59, 33–52, https://doi.org/10.1023/A:1024460010140, 2003.
Dillon, P., Toze, S., Page, D., Vanderzalm, J., Bekele, E., Sidhu, J., and
Rinck-Pfeiffer, S.: Managed aquifer recharge: rediscovering nature as a
leading edge technology, Water Sci. Technol., 62, 2338–2345, https://doi.org/10.2166/wst.2010.444, 2010.
Hamed, K. H. and Rao, A. R.: A modified Mann-Kendall trend test for autocorrelated data, J. Hydrol., 204, 182–196, https://doi.org/10.1016/S0022-1694(97)00125-X, 1998.
Harpold, A. A., Rajagopal, S., Crews, J. B., Winchell, T., and Schumer, R.:
Relative humidity has uneven effects on shifts from snow to rain over the
western US, Geophys. Res. Lett., 44, 9742–9750,
https://doi.org/10.1002/2017GL075046, 2017.
Hatchett, B.: Snow Level Characteristics and Impacts of a Spring Typhoon-Originating Atmospheric River in the Sierra Nevada, USA, Atmosphere,
9, 233, https://doi.org/10.3390/atmos9060233, 2018.
Hatchett, B., Daudert, B., Garner, C., Oakley, N., Putnam, A., and White, A.:
Winter snow level rise in the northern Sierra Nevada from 2008 to 2017, Water, 9, 899, https://doi.org/10.3390/w9110899, 2017.
Hatchett, B. J. and Eisen, H. G.: Brief Communication: Early season snowpack
loss and implications for oversnow vehicle recreation travel planning, The
Cryosphere, 13, 21–28, https://doi.org/10.5194/tc-13-21-2019, 2019.
Hatchett, B. J. and McEvoy, D. J.: Exploring the origins of snow drought in
the northern Sierra Nevada, California, Earth Interact., 22, 1–13,
https://doi.org/10.1175/EI-D-17-0027.1, 2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 Global Reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Howat, I. M. and Tulaczyk, S.: Climate sensitivity of spring snowpack in the Sierra Nevada, J. Geophys. Res., 110, F04021, https://doi.org/10.1029/2005JF000356, 2005.
Huang, X., Hall, A. D., and Berg, N.: Anthropogenic warming impacts on today's Sierra Nevada snowpack and flood risk, Geophys. Res. Lett., 45, 6215–6222, https://doi.org/10.1029/2018GL077432, 2018.
Huning, L. S. and AghaKouchak, A.: Mountain snowpack response to different levels of warming, P. Natl. Acad. Sci. USA, 115, 10932–10937,
https://doi.org/10.1073/pnas.1805953115, 2018.
Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R., Clague, J., Vuille, M., Buytaert, W., Cayan, D., Greenwood, G., Mark, B., Milner, A., Weingartner, R., and Winder, M.: Toward mountains without permanent snow and ice, Earth's Future, 5, 418–435, https://doi.org/10.1002/2016EF000514, 2017.
Jagannathan, K., Jones, A. D., and Ray, I.: The making of a metric:
Co-producing decision-relevant climate science, B. Am. Meteorol. Soc.,
https://doi.org/10.1175/BAMS-D-19-0296.1, in press, 2020.
Jennings, K. S., Winchell, T. S., Livneh, B., and Molotch, N.: Spatial variation of the rain–snow temperature threshold across the Northern Hemisphere, Nat. Commun., 9, 1148, https://doi.org/10.1038/s41467-018-03629-7, 2018.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., and Zhu, Y.: The NCEP/NCAR
40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–472,
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Kapnick, S. and Hall, A.: Observed climate-snowpack relationships in California and their implications for the future, J. Climate, 23, 3446–3456, https://doi.org/10.1175/2010JCLI2903.1, 2010.
Karhl, W. (Ed.): The California Water Atlas, Publication Section, State of California – General Services, 118 pp., 1979.
Klos, P. Z., Link, T. E., and Abatzoglou, J. T.: Extent of the rain-snow
transition zone in the western US under historic and projected climate,
Geophys. Res. Lett., 41, 4560–4568, https://doi.org/10.1002/2014GL060500, 2014.
Knowles, N., Dettinger, M. D., and Cayan, D. R.: Trends in snowfall versus
rainfall in the western United States, J. Climate, 19, 4545–4559,
https://doi.org/10.1175/JCLI3850.1, 2006.
Lundquist J. D., Roche, J. W., Forrester, H., Moore, C., Keenan, E., Perry, G., Cristea, N., Henn, B., Lapo, K., McGurk, B., Cayan, D. R., and Dettinger, M. D.: Yosemite Hydroclimate Network: Distributed stream and atmospheric data for the Tuolumne River watershed and surroundings, Water Resour. Res., 52,
7478–7489, https://doi.org/10.1002/2016WR019261, 2016.
Lundquist, J., Hughes, M., Gutmann, E., and Kapnick, S.: Our skill in modeling mountain rain and snow is bypassing the skill of our observational
networks, B. Am. Meteorol. Soc., 100, 2473–2490, https://doi.org/10.1175/BAMS-D-19-0001.1, 2020.
Lute, A. C. and Abatzoglou, J. T.: Best practices for estimating near‐surface air temperature lapse rates, Int. J. Climatol., https://doi.org/10.1002/joc.6668, in press, 2020.
Margulis, S. A., Cortés, G., Girotto, M., and Durand, M.: A Landsat-era
Sierra Nevada snow reanalysis (1985–2015), J. Hydrometeorol., 17, 1203–1221, 2016.
Milly, P. C. D., Betancourt, J. Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J.: Stationarity is dead: Whither
water management?, Science, 319, 573–574, https://doi.org/10.1126/science.1151915, 2008.
Minder, J. R., Durran, D. R., and Roe, G. H.: Mesoscale controls on the
mountainside snow line, J. Atmos. Sci., 68, 2107–2127, 2011.
Mote, P. W., Hamlet, A. F., Clark, M. P., and Lettenmaier, D. P.: Declining
mountain snowpack in western North America, B. Am. Meteorol. Soc., 86, 39–50, https://doi.org/10.1175/BAMS-86-1-39, 2005.
Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M., and Engel, R.: Dramatic
declines in snowpack in the western US, npj Clim. Atmos. Sci., 1, 2, https://doi.org/10.1038/s41612-018-0012-1, 2018.
Musselman, K. N., Clark, M. P., Liu, C., Ikeda, K., and Rasmussen, R.: Slower
snowmelt in a warmer world, Nat. Clim. Change, 7, 214–219, https://doi.org/10.1038/nclimate3225, 2017.
Patricola, C. M., O'Brien, J. P., Risser, M. D., Rhoades, A. M., O'Brien, T.
A., Ullrich, P. A., Stone, D. A., and Collins, W. D.: Maximizing ENSO asa
source of western US hydroclimate predictability, Clim. Dynam., 54, 351–372,
https://doi.org/10.1007/s00382-019-05004-8, 2020.
Rhoades, A. M., Jones, A. D., and Ullrich, P. A.: The Changing Character of the California Sierra Nevada as a Natural Reservoir, Geophys. Res. Lett., 45, 13008, https://doi.org/10.1029/2018GL080308, 2018a.
Rhoades, A. M., Ullrich, P. A., and Zarzycki, C. M.: Projecting 21st century
snowpack trends in Western USA mountains using variable-resolution CESM,
Clim. Dynam., 50, 261–288, https://doi.org/10.1007/s00382-017-3606-0, 2018b.
Sospedra-Alfonso, R., Melton, J. R., and Merryfield, W. J.: Effects of
temperature and precipitation on snowpack variability in the Central Rocky
Mountains as a function of elevation, Geophys. Res. Lett., 42, 4429–4438,
https://doi.org/10.1002/2015GL063898, 2015.
Steinschneider, S. and Brown, C.: Dynamic reservoir management with real-option risk hedging as a robust adaptation to nonstationary climate,
Water Resour. Res., 48, W05524, https://doi.org/10.1029/2011WR011540, 2012.
Sterle, K., Hatchett, B. J., Singletary, L., and Pohll, G.: Hydroclimate
Variability in Snow-fed River Systems: Local Water Managers' Perspectives on
Adapting to the New Normal, B. Am. Meteorol. Soc., 100, 1031–1048,
https://doi.org/10.1175/BAMS-D-18-0031.1, 2019.
Sturm, M., Goldstein, M. A., and Parr, C.: Water and life from snow: A trillion dollar science question, Water Resour. Res., 53, 3534–3544,
https://doi.org/10.1002/2017WR020840, 2017.
Sun, F., Berg, N., Hall, A., Schwartz, M., and Walton, D.: Understanding
end-of-century snowpack changes over California's Sierra Nevada, Geophys.
Res. Lett., 46, 933–943, https://doi.org/10.1029/2018GL080362, 2019.
Talbot, C., Ralph, F. M., and Jasperse, J.: Forecast-informed reservoir
operations: Lessons learned from a multi-agency joint research and
operations effort, in: Paper 320, Proc. of the Federal Interagency Sedimentation and Hydrologic Modeling Conference, Reno, Nevada, available at:
https://www.sedhyd.org/2019/openconf/modules/request.php?module=oc_program&action=view.php&id=320&file=1/320.pdf
(last access: March 2020), 2019.
Walton, D. B., Hall, A., Berg, N., Schwartz, M., and Sun, F.: Incorporating
snow albedo feedback into downscaled temperature and snow cover projections
for California's Sierra Nevada, J. Climate, 30, 1417–1438, https://doi.org/10.1175/JCLI-D-16-0168.1, 2017.
Wang, Y.-H., Broxton, P., Fang, Y., Behrangi, A., Barlage, M., Zeng, X., and Niu, G.-Y.: A wet-bulb temperature-based rain-snow partitioning scheme improves snowpack prediction over the drier Western United States, Geophys.
Res. Lett., 46, 13825–13835, https://doi.org/10.1029/2019GL085722, 2019.
White, A. B., Gottas, D. J., Henkel, A. F., Neiman, P. J., Ralph, F. M., and
Gutman, S. I.: Developing a performance measure for snow-level forecasts, J.
Hydrometeorol., 11, 739–753, https://doi.org/10.1175/2009JHM1181.1, 2010.
White, A. B., Anderson, M. L., Dettinger, M. D., Ralph, F. M., Hinojosa, A.,
Cayan, D. R., Hartman, R. K., Reynolds, D. W., Johnson, L. E., Schneider, T.
L., and Cifelli, R.: A twenty-first-century California observing network for
monitoring extreme weather events, J. Atmos. Ocean. Tech., 30, 1585–1603,
https://doi.org/10.1175/JTECH-D-12-00217.1, 2013.
Wrzesien, M. L., Durand, M. T., and Pavelsky, T. M.: A reassessment of North
American river basin cool-season precipitation: Developments from a new
mountain climatology data set, Water Resour. Res., 55, 3502–3519,
https://doi.org/10.1029/2018WR024106, 2019.
Zeng, X., Broxton, P., and Dawson, N.: Snowpack change from 1982 to 2016
over conterminous United States, Geophys. Res. Lett., 45, 12940–12947,
https://doi.org/10.1029/2018GL079621, 2018.
Zhang, D., Cong, Z., Ni, G., Yang, D., and Hu, S.: Effects of snow ratio on
annual runoff within the Budyko framework, Hydrol. Earth Syst. Sci., 19,
1977–1992, https://doi.org/10.5194/hess-19-1977-2015, 2015.
Short summary
Precipitation partitioning across western US landscapes (1948–present) is estimated by combining gridded precipitation data with freezing level and precipitation data from an atmospheric reanalysis. Spatial patterns and trends in the precipitation phase over elevational and latitudinal gradients are examined. The largest increases in precipitation falling as rain occur during spring. This technique can be used as a diagnostic indicator to inform adaptive water management strategy development.
Precipitation partitioning across western US landscapes (1948–present) is estimated by combining...