Articles | Volume 24, issue 11
Hydrol. Earth Syst. Sci., 24, 5125–5147, 2020
https://doi.org/10.5194/hess-24-5125-2020
Hydrol. Earth Syst. Sci., 24, 5125–5147, 2020
https://doi.org/10.5194/hess-24-5125-2020

Research article 05 Nov 2020

Research article | 05 Nov 2020

Rivers in the sky, flooding on the ground: the role of atmospheric rivers in inland flooding in central Europe

Monica Ionita et al.

Related authors

Changes in drought features at the European level over the last 120 years
Monica Ionita and Viorica Nagavciuc
Nat. Hazards Earth Syst. Sci., 21, 1685–1701, https://doi.org/10.5194/nhess-21-1685-2021,https://doi.org/10.5194/nhess-21-1685-2021, 2021
Short summary
Record summer rains in 2019 led to massive loss of surface and cave ice in SE Europe
Aurel Perşoiu, Nenad Buzjak, Alexandru Onaca, Christos Pennos, Yorgos Sotiriadis, Monica Ionita, Stavros Zachariadis, Michael Styllas, Jure Kosutnik, Alexandru Hegyi, and Valerija Butorac
The Cryosphere, 15, 2383–2399, https://doi.org/10.5194/tc-15-2383-2021,https://doi.org/10.5194/tc-15-2383-2021, 2021
Short summary
Large-scale climate signals of a European oxygen isotope network from tree rings
Daniel F. Balting, Monica Ionita, Martin Wegmann, Gerhard Helle, Gerhard H. Schleser, Norel Rimbu, Mandy B. Freund, Ingo Heinrich, Diana Caldarescu, and Gerrit Lohmann
Clim. Past, 17, 1005–1023, https://doi.org/10.5194/cp-17-1005-2021,https://doi.org/10.5194/cp-17-1005-2021, 2021
Short summary
Stable isotopes in cave ice suggest summer temperatures in east-central Europe are linked to Atlantic Multidecadal Oscillation variability
Carmen-Andreea Bădăluţă, Aurel Perșoiu, Monica Ionita, and Natalia Piotrowska
Clim. Past, 16, 2445–2458, https://doi.org/10.5194/cp-16-2445-2020,https://doi.org/10.5194/cp-16-2445-2020, 2020
Short summary
The 2018 northern European hydrological drought and its drivers in a historical perspective
Sigrid J. Bakke, Monica Ionita, and Lena M. Tallaksen
Hydrol. Earth Syst. Sci., 24, 5621–5653, https://doi.org/10.5194/hess-24-5621-2020,https://doi.org/10.5194/hess-24-5621-2020, 2020
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Instruments and observation techniques
Microphysical features of typhoon and non-typhoon rainfall observed in Taiwan, an island in the northwestern Pacific
Jayalakshmi Janapati, Balaji Kumar Seela, Pay-Liam Lin, Meng-Tze Lee, and Everette Joseph
Hydrol. Earth Syst. Sci., 25, 4025–4040, https://doi.org/10.5194/hess-25-4025-2021,https://doi.org/10.5194/hess-25-4025-2021, 2021
Short summary
Partial energy balance closure of eddy covariance evaporation measurements using concurrent lysimeter observations over grassland
Peter Widmoser and Dominik Michel
Hydrol. Earth Syst. Sci., 25, 1151–1163, https://doi.org/10.5194/hess-25-1151-2021,https://doi.org/10.5194/hess-25-1151-2021, 2021
Short summary
Evaluation of INCA precipitation analysis using a very dense rain gauge network in southeast Austria
Esmail Ghaemi, Ulrich Foelsche, Alexander Kann, and Jürgen Fuchsberger
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-34,https://doi.org/10.5194/hess-2021-34, 2021
Revised manuscript accepted for HESS
Short summary
Evaluation of the WMO Solid Precipitation Intercomparison Experiment (SPICE) transfer functions for adjusting the wind bias in solid precipitation measurements
Craig D. Smith, Amber Ross, John Kochendorfer, Michael E. Earle, Mareile Wolff, Samuel Buisán, Yves-Alain Roulet, and Timo Laine
Hydrol. Earth Syst. Sci., 24, 4025–4043, https://doi.org/10.5194/hess-24-4025-2020,https://doi.org/10.5194/hess-24-4025-2020, 2020
Short summary
Rainfall estimation from a German-wide commercial microwave link network: optimized processing and validation for 1 year of data
Maximilian Graf, Christian Chwala, Julius Polz, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 24, 2931–2950, https://doi.org/10.5194/hess-24-2931-2020,https://doi.org/10.5194/hess-24-2931-2020, 2020
Short summary

Cited articles

Allan, R. P., Liu, C., Zahn, M., Lavers, D. A., Koukouvagias, E., and Bodas-Salcedo, A.: Physically Consistent Responses of the Global Atmospheric Hydrological Cycle in Models and Observations, Surv. Geophys., 35, 533–552, https://doi.org/10.1007/s10712-012-9213-z, 2014. 
Barredo, J. I.: Major flood disasters in Europe: 1950–2005, Nat. Hazards, 42, 125–148, https://doi.org/10.1007/s11069-006-9065-2, 2007. 
Barredo, J. I.: Normalised flood losses in Europe: 1970–2006, Nat. Hazards Earth Syst. Sci., 9, 97–104, https://doi.org/10.5194/nhess-9-97-2009, 2009. 
Belz, J. U.: Das abflussregime des rheins und seiner nebenflüsse im 20. Jahrhundert – Analyse, veränderungen, trends, Hydrol. Wasserbewirt., 54, 4–17, 2010. 
Belz, J. U., Brahmer, G., Buiteveld, H., Engel, H., Grabher, R., Hodel, H., Krahe, P., Lammersen, R., Larina, M., Mendel, H., Meuser, A., Plonka, B., Pfister, L., and Van Vuuren, W.: Das Abflussregime des Rheins und seiner Nebenflüsse Analyse, Veränderungen, Trends, CHR report No. I-22, International Commission for the Hydrology of the Rhine basin, available at: https://www.chr-khr.org/sites/default/files/extended_abstract_i_22_d.pdf (last access: 10 February 2020), 2007. 
Download
Short summary
Analysis of the largest 10 floods in the lower Rhine, between 1817 and 2015, shows that all these extreme flood peaks have been preceded, up to 7 d in advance, by intense moisture transport from the tropical North Atlantic basin in the form of narrow bands also known as atmospheric rivers. The results presented in this study offer new insights regarding the importance of moisture transport as the driver of extreme flooding in the lower part of the Rhine catchment area.