Articles | Volume 24, issue 9
https://doi.org/10.5194/hess-24-4291-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-4291-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Data assimilation for continuous global assessment of severe conditions over terrestrial surfaces
Clément Albergel
CORRESPONDING AUTHOR
CNRM, Université de Toulouse, Météo-France, CNRS,
Toulouse, France
now at: European Space Agency Climate Office, ECSAT, Harwell Campus, Oxfordshire, Didcot OX11 0FD, UK
Yongjun Zheng
CNRM, Université de Toulouse, Météo-France, CNRS,
Toulouse, France
Bertrand Bonan
CNRM, Université de Toulouse, Météo-France, CNRS,
Toulouse, France
Emanuel Dutra
Instituto Dom Luiz, IDL, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
Nemesio Rodríguez-Fernández
CESBIO, Université de Toulouse, CNRS, CNES, IRD, Toulouse,
France
Simon Munier
CNRM, Université de Toulouse, Météo-France, CNRS,
Toulouse, France
Clara Draper
CIRES/NOAA Earth System Research Laboratories, Boulder, CO, USA
Patricia de Rosnay
European Centre for Medium-Range Weather Forecasts, Shinfield Road,
Reading RG2 9AX, UK
Joaquin Muñoz-Sabater
European Centre for Medium-Range Weather Forecasts, Shinfield Road,
Reading RG2 9AX, UK
Gianpaolo Balsamo
European Centre for Medium-Range Weather Forecasts, Shinfield Road,
Reading RG2 9AX, UK
David Fairbairn
European Centre for Medium-Range Weather Forecasts, Shinfield Road,
Reading RG2 9AX, UK
Catherine Meurey
CNRM, Université de Toulouse, Météo-France, CNRS,
Toulouse, France
Jean-Christophe Calvet
CNRM, Université de Toulouse, Météo-France, CNRS,
Toulouse, France
Data sets
LDAS-Monde technical documentation and contact points CNRM https://opensource.umr-cnrm.fr/projects/openldasmonde/files
Short summary
LDAS-Monde is a global offline land data assimilation system (LDAS) that jointly assimilates satellite-derived observations of surface soil moisture (SSM) and leaf area index (LAI) into the ISBA (Interaction between Soil Biosphere and Atmosphere) land surface model (LSM). This study demonstrates that LDAS-Monde is able to detect, monitor and forecast the impact of extreme weather on land surface states.
LDAS-Monde is a global offline land data assimilation system (LDAS) that jointly assimilates...