Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
HESS | Articles | Volume 23, issue 3
Hydrol. Earth Syst. Sci., 23, 1725–1739, 2019
https://doi.org/10.5194/hess-23-1725-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 23, 1725–1739, 2019
https://doi.org/10.5194/hess-23-1725-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 26 Mar 2019

Research article | 26 Mar 2019

Using paired catchments to quantify the human influence on hydrological droughts

Anne F. Van Loon et al.

Data sets

Water Data Online BOM - Bureau of Meteorology http://www.bom.gov.au/waterdata/

National River Flow Archive NRFA http://nrfa.ceh.ac.uk

37017 - Blackwater at Stisted NRFA https://nrfa.ceh.ac.uk/data/station/info/37017

37011 - Chelmer at Churchend NRFA https://nrfa.ceh.ac.uk/data/station/info/37011

Publications Copernicus
Download
Short summary
We explore the use of the classic paired-catchment approach to quantify human influence on hydrological droughts. In this approach two similar catchments are compared and differences are attributed to the human activity present in one. In two case studies in UK and Australia, we found that groundwater abstraction aggravated streamflow drought by > 200 % and water transfer alleviated droughts with 25–80 %. Understanding the human influence on droughts can support water management decisions.
We explore the use of the classic paired-catchment approach to quantify human influence on...
Citation