Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.153 IF 5.153
  • IF 5-year value: 5.460 IF 5-year
    5.460
  • CiteScore value: 7.8 CiteScore
    7.8
  • SNIP value: 1.623 SNIP 1.623
  • IPP value: 4.91 IPP 4.91
  • SJR value: 2.092 SJR 2.092
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 123 Scimago H
    index 123
  • h5-index value: 65 h5-index 65
Volume 22, issue 10
Hydrol. Earth Syst. Sci., 22, 5463–5484, 2018
https://doi.org/10.5194/hess-22-5463-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 22, 5463–5484, 2018
https://doi.org/10.5194/hess-22-5463-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 24 Oct 2018

Research article | 24 Oct 2018

Evaluation of ORCHIDEE-MICT-simulated soil moisture over China and impacts of different atmospheric forcing data

Zun Yin et al.

Viewed

Total article views: 1,838 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,153 636 49 1,838 109 59 60
  • HTML: 1,153
  • PDF: 636
  • XML: 49
  • Total: 1,838
  • Supplement: 109
  • BibTeX: 59
  • EndNote: 60
Views and downloads (calculated since 03 Jan 2018)
Cumulative views and downloads (calculated since 03 Jan 2018)

Viewed (geographical distribution)

Total article views: 1,732 (including HTML, PDF, and XML) Thereof 1,715 with geography defined and 17 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

Discussed (preprint)

No discussed metrics found.
Latest update: 14 Aug 2020
Publications Copernicus
Download
Short summary
Simulations in China were performed in ORCHIDEE driven by different forcing datasets: GSWP3, PGF, CRU-NCEP, and WFDEI. Simulated soil moisture was compared to several datasets to evaluate the ability of ORCHIDEE in reproducing soil moisture dynamics. Results showed that ORCHIDEE soil moisture coincided well with other datasets in wet areas and in non-irrigated areas. It suggested that the ORCHIDEE-MICT was suitable for further hydrological studies in China.
Simulations in China were performed in ORCHIDEE driven by different forcing datasets: GSWP3,...
Citation