Articles | Volume 21, issue 9
https://doi.org/10.5194/hess-21-4879-2017
https://doi.org/10.5194/hess-21-4879-2017
Cutting-edge case studies
 | 
28 Sep 2017
Cutting-edge case studies |  | 28 Sep 2017

Providing a non-deterministic representation of spatial variability of precipitation in the Everest region

Judith Eeckman, Pierre Chevallier, Aaron Boone, Luc Neppel, Anneke De Rouw, Francois Delclaux, and Devesh Koirala

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (further review by Editor) (25 Jul 2017) by Uwe Ehret
AR by Judith Eeckman on behalf of the Authors (03 Aug 2017)  Author's response   Manuscript 
ED: Publish as is (04 Aug 2017) by Uwe Ehret
AR by Judith Eeckman on behalf of the Authors (10 Aug 2017)
Download
Short summary
The central part of the Himalayan Range presents tremendous heterogeneity in terms of topography and climatology, but the representation of hydro-climatic processes for Himalayan catchments is limited due to a lack of knowledge in such poorly instrumented environments. The proposed approach is to characterize the effect of altitude on precipitation by considering ensembles of acceptable altitudinal factors. Ensembles of acceptable values for the components of the water cycle are then provided.