Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 21, issue 9
Hydrol. Earth Syst. Sci., 21, 4663–4680, 2017
https://doi.org/10.5194/hess-21-4663-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Observations and modeling of land surface water and energy...

Hydrol. Earth Syst. Sci., 21, 4663–4680, 2017
https://doi.org/10.5194/hess-21-4663-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 14 Sep 2017

Research article | 14 Sep 2017

Towards improved parameterization of a macroscale hydrologic model in a discontinuous permafrost boreal forest ecosystem

Abraham Endalamaw et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (further review by Editor) (27 Jul 2017) by Albert van Dijk
AR by Anna Wenzel on behalf of the Authors (04 Aug 2017)  Author's response
ED: Publish subject to technical corrections (06 Aug 2017) by Albert van Dijk
Publications Copernicus
Download
Short summary
This study applies plot-scale and hill-slope knowledge to a process-based mesoscale model to improve the skill of distributed hydrological models to simulate the spatially and basin-integrated hydrological processes of complex ecosystems in the sub-arctic boreal forest. We developed a sub-grid parameterization method to parameterize the surface heterogeneity of interior Alaskan discontinuous permafrost watersheds.
This study applies plot-scale and hill-slope knowledge to a process-based mesoscale model to...
Citation