Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 21, issue 1
Hydrol. Earth Syst. Sci., 21, 281–294, 2017
https://doi.org/10.5194/hess-21-281-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Vegetation changes under a changing environment and the impacts...

Hydrol. Earth Syst. Sci., 21, 281–294, 2017
https://doi.org/10.5194/hess-21-281-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 Jan 2017

Research article | 12 Jan 2017

On the non-stationarity of hydrological response in anthropogenically unaffected catchments: an Australian perspective

Hoori Ajami et al.

Viewed

Total article views: 1,900 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,156 694 50 1,900 166 39 80
  • HTML: 1,156
  • PDF: 694
  • XML: 50
  • Total: 1,900
  • Supplement: 166
  • BibTeX: 39
  • EndNote: 80
Views and downloads (calculated since 29 Jul 2016)
Cumulative views and downloads (calculated since 29 Jul 2016)

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 21 Oct 2020
Publications Copernicus
Download
Short summary
We present the first data-based framework for explaining why catchments behave in a non-stationary manner, even when they are unaffected by deforestation or urbanization. The role of vegetation dynamics in streamflow is indicated by similar or greater sensitivity of annual runoff ratio to annual fractional vegetation cover. We formulated a novel ecohydrologic catchment classification framework that incorporates the role of vegetation dynamics in catchment-scale water partitioning.
We present the first data-based framework for explaining why catchments behave in a...
Citation