Articles | Volume 21, issue 4
https://doi.org/10.5194/hess-21-1991-2017
https://doi.org/10.5194/hess-21-1991-2017
Research article
 | 
13 Apr 2017
Research article |  | 13 Apr 2017

Statistical analysis of hydrological response in urbanising catchments based on adaptive sampling using inter-amount times

Marie-Claire ten Veldhuis and Marc Schleiss

Abstract. Urban catchments are typically characterised by a more flashy nature of the hydrological response compared to natural catchments. Predicting flow changes associated with urbanisation is not straightforward, as they are influenced by interactions between impervious cover, basin size, drainage connectivity and stormwater management infrastructure. In this study, we present an alternative approach to statistical analysis of hydrological response variability and basin flashiness, based on the distribution of inter-amount times. We analyse inter-amount time distributions of high-resolution streamflow time series for 17 (semi-)urbanised basins in North Carolina, USA, ranging from 13 to 238 km2 in size. We show that in the inter-amount-time framework, sampling frequency is tuned to the local variability of the flow pattern, resulting in a different representation and weighting of high and low flow periods in the statistical distribution. This leads to important differences in the way the distribution quantiles, mean, coefficient of variation and skewness vary across scales and results in lower mean intermittency and improved scaling. Moreover, we show that inter-amount-time distributions can be used to detect regulation effects on flow patterns, identify critical sampling scales and characterise flashiness of hydrological response. The possibility to use both the classical approach and the inter-amount-time framework to identify minimum observable scales and analyse flow data opens up interesting areas for future research.

Download
Short summary
In this paper we analysed flow measurements from 17 watersheds in a (semi-)urban region, to characterise flow patterns according to basin features. Instead of sampling flows at fixed time intervals, we looked at how fast given amounts of flow were accumulated. By doing so, we could identify patterns of flow regulation in urban streams and quantify flashiness of hydrological response. We were able to show that in this region, higher urbanisation was clearly associated with lower basin flashiness.