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Abstract. The applicability of six fine-resolution precipi-

tation products, including precipitation radar, infrared, mi-

crowave and gauge-based products, using different precipita-

tion computation recipes, is evaluated using statistical and

hydrological methods in northeastern China. In addition,

a framework quantifying uncertainty contributions of pre-

cipitation products, hydrological models, and their interac-

tions to uncertainties in ensemble discharges is proposed.

The investigated precipitation products are Tropical Rain-

fall Measuring Mission (TRMM) products (TRMM3B42

and TRMM3B42RT), Global Land Data Assimilation Sys-

tem (GLDAS)/Noah, Asian Precipitation – Highly-Resolved

Observational Data Integration Towards Evaluation of Wa-

ter Resources (APHRODITE), Precipitation Estimation from

Remotely Sensed Information using Artificial Neural Net-

works (PERSIANN), and a Global Satellite Mapping of

Precipitation (GSMAP-MVK+) product. Two hydrological

models of different complexities, i.e. a water and energy

budget-based distributed hydrological model and a physi-

cally based semi-distributed hydrological model, are em-

ployed to investigate the influence of hydrological models on

simulated discharges. Results show APHRODITE has high

accuracy at a monthly scale compared with other products,

and GSMAP-MVK+ shows huge advantage and is better

than TRMM3B42 in relative bias (RB), Nash–Sutcliffe coef-

ficient of efficiency (NSE), root mean square error (RMSE),

correlation coefficient (CC), false alarm ratio, and critical

success index. These findings could be very useful for vali-

dation, refinement, and future development of satellite-based

products (e.g. NASA Global Precipitation Measurement).

Although large uncertainty exists in heavy precipitation, hy-

drological models contribute most of the uncertainty in ex-

treme discharges. Interactions between precipitation prod-

ucts and hydrological models can have the similar magni-

tude of contribution to discharge uncertainty as the hydro-

logical models. A better precipitation product does not guar-

antee a better discharge simulation because of interactions.

It is also found that a good discharge simulation depends

on a good coalition of a hydrological model and a precipi-

tation product, suggesting that, although the satellite-based

precipitation products are not as accurate as the gauge-based

products, they could have better performance in discharge

simulations when appropriately combined with hydrological

models. This information is revealed for the first time and

very beneficial for precipitation product applications.

1 Introduction

Knowledge of precipitation plays an important role in the un-

derstanding of the water cycle, and thus in the management

of water resources (Sellers, 1997; Sorooshian et al., 2005;

Wang et al., 2005; Ebert et al., 2007; Buarque et al., 2011;

Tapiador et al., 2012; Yong et al., 2012; Gao and Liu, 2013;

Peng et al., 2014a, b). However, precipitation data are not

available in many regions, particularly mountainous districts

and rural areas in developing countries. For example, north-

east China, which plays an important role in food production

to support the country’s population and is also an industrial

region with many heavy industries, frequently suffers from

drought, posing a threat to regional sustainable development.

In such areas, due to insufficient gauge observations, alterna-
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tive precipitation data are required for efficient management

of water resources.

In recent years, implementation of gauge-based and re-

mote satellite-based precipitation products has become pop-

ular, particularly for ungauged catchments (Artan et al.,

2007; Jiang et al., 2012; Li et al., 2013; Müller and Thomp-

son, 2013; Maggioni et al., 2013; Xue et al., 2013; Kneis

et al., 2014; Meng et al., 2014; Ochoa et al., 2014). Nu-

merous precipitation products have been developed to esti-

mate rainfall, for example: Tropical Rainfall Measuring Mis-

sion (TRMM) products (Huffman et al., 2007), Global Land

Data Assimilation System (GLDAS) precipitation products

(Kato et al., 2007), Asian Precipitation – Highly-Resolved

Observational Data Integration Towards Evaluation of Wa-

ter Resources (APHRODITE) (Xie et al., 2007; Yatagai et

al., 2012), Precipitation Estimation from Remotely Sensed

Information using Artificial Neural Networks (PERSIANN)

(Sorooshian et al., 2000, 2002), and Global Satellite Map-

ping of Precipitation product (GSMAP) (Kubota et al., 2007;

Aonashi et al., 2009).

There are uncertainties in these products. Several studies

have been carried out to analyse the uncertainty of TRMM

in high-latitude regions (Yong et al., 2010, 2012, 2014; Chen

et al., 2013a; Zhao and Yatagai, 2014), but studies in north-

east China are few. Evaluation of GLDAS data has gener-

ally been limited to the United States and other observation-

rich regions of the world (Kato et al., 2007); assessments

and applications in other regions are rare (Wang et al., 2011;

Zhou et al., 2013). The APHRODITE, PERSIANN, and

GSMAP products are seldom evaluated in northeast China

using basin-scale gauge data (Zhou et al., 2008). Owing to

the high heterogeneity of rainfall across a variety of spa-

tiotemporal scales, the uncertainty characteristics of precipi-

tation products are variable (Asadullah et al., 2008; Dinku et

al., 2008; Nikolopoulos et al., 2010; Pan et al., 2010). Thus,

in northeast China, it is essential to completely evaluate the

applicability of these precipitation products. In addition, it is

also worth comparing the performance of different precipi-

tation computation recipes: for example, the artificial neural

network function used in PERSIANN, the histogram match-

ing approach used in TRMM3B42, and the cloud motion vec-

tors used in GSMAP-MVK+, because the inter-comparison

could reveal the strategies that could be used to obtain more

accurate precipitation data.

Researchers have implemented precipitation products in

discharge simulations and reported discharge uncertainties

(Hong et al., 2006; Pan et al., 2010; Serpetzoglou et al.,

2010). Also, many uncertainty analysis approaches have

been introduced to quantify the uncertainty (Beven and Bin-

ley, 1992; Freer et al., 1996; Kuczera and Parent, 1998;

Beven and Freer, 2001b; Peters et al., 2003; Heidari et al.,

2006; Kuczera et al., 2006; Tolson and Shoemaker, 2007;

Blasone et al., 2008; Vrugt et al., 2009). In these prior ap-

proaches, one of the popular methods is the generalized like-

lihood uncertainty estimation (GLUE) technique, introduced

by Beven and Binley (1992). This approach outputs proba-

bility distributions of model parameters conditioned on ob-

served data, and the uncertainties in model inputs are repre-

sented by uncertain parameters. Similar to GLUE, Hong et

al. (2006) proposed a Monte Carlo-based method to quantify

uncertainty in hydrological simulations using satellite pre-

cipitation data, in which flow simulation uncertainty is rep-

resented by ensemble simulation results.

In addition to individual contributions from hydrological

models and precipitation data, the interactions between pre-

cipitation products and hydrological models also contribute

to uncertainty in simulated discharges. However, to the best

of our knowledge, the previous studies have not quantified

the respective contributions of precipitation products, hydro-

logical models, and their interactions to the total discharge

simulation uncertainty.

The overall objectives of this paper are (1) to inves-

tigate the applicability of six fine-resolution precipitation

products using both statistical and hydrological evalua-

tion methods in a small river basin in northeast China;

(2) to propose a framework to quantify the contributions

of various uncertainties from precipitation products, hy-

drological models, and their interactions to uncertainty

in simulated discharges. The precipitation products inves-

tigated are TRMM3B42, TRMM3B42RT, GLDAS/Noah

(GLDAS_Noah025SUBP_3H), APHRODITE, PERSIANN,

and GSMAP-MVK+. Two hydrological models of different

complexities – a water- and energy-budget-based distributed

hydrological model (WEB-DHM) (Wang et al., 2009a, b, c)

and a physically based semi-distributed hydrological model

TOPMODEL (Beven and Kirkby, 1979) – were employed

to investigate the influence of hydrological models on dis-

charge simulations. The respective uncertainties from pre-

cipitation products, hydrological models, and the combined

uncertainties from the interactions between products and

models are quantified using a global sensitivity analysis ap-

proach, i.e. the analysis of variance approach (ANOVA). A

river basin with a series of 8-year data is used to demonstrate

the methodology.

The paper is organized as follows. Section 2 introduces the

study region, precipitation products, hydrological models,

and the proposed framework. Section 3 presents the statis-

tical evaluation results. Hydrological evaluations and the im-

plementation of the proposed framework are given in Sect. 4.

Discussion is given in Sect. 5. Summary and conclusions are

presented in Sect. 6.

2 Materials and methodology

2.1 Biliu basin

Biliu basin (2814 km2), located in the coastal region between

the China Bohai Sea and the China Huanghai Sea, covers lon-

gitudes 122.29 to 122.92◦ E and latitudes 39.54 to 40.35◦ N.
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Table 1. Precipitation products.

Product Spatial Temporal Areal coverage Start date Type

resolution resolution

TRMM3B42 0.25◦ 3h Global 50◦ N–S 1 Jan 1998 PR+ IR+MW+ gauge+HM

TRMM3B42RT 0.25◦ 3 h Global 50◦ N–S 1 Mar 2000 IR+MW

GLDAS/Noah 0.25◦ 3 h Global 90◦ N–60◦ S 24 Feb 2000 IR+MW+ gauge

GSMAP-MVK+ 0.1◦ 1 h Global 60◦ N–S 1 Mar 2000 IR+MW+CMV

PRRSIANN 0.25◦ 3 h Global 60◦ N–S 1 Mar 2000 PR+ IR+MW+ANN

APHRODITE 0.25◦ 1 day
60–150◦ E, 1 Jan 1961

gauge
15◦ S–55◦ N to 2007

PR: precipitation radar; IR: infrared estimation; MW: microwave estimation; HM: histogram matching; CMV: cloud motion vectors; ANN: artificial neural

network.

Figure 1. Biliu basin: (a) the location of Liaoning province within China; (b) the location of Biliu basin within Liaoning province; (c) the

distributions of rain gauges, discharge gauge, automatic weather stations, digital elevation model, and diagrammatic 0.25◦ precipitation cells;

and (d) diagrammatic description of downscaling the 0.25◦ precipitation cells to 300 m× 300 m cells, and retrieving the 300 m× 300 m cells

located within the basin boundary.

This basin is characterized by a snow, winter dry, and hot

summer climate (Koppen climate classification) and the aver-

age annual temperature is 10.6 ◦C. Summer (July to Septem-

ber) is the major rainy season. There are 11 rainfall stations

and one discharge gauge which have historical data from

January 2000 to December 2007. The average elevation is

240 m. The gauge distribution in Biliu is shown in Fig. 1.

The basin slopes vary from 0 to 38◦. Land-use data are ob-

tained from the USGS (http://edc2.usgs.gov/glcc/glcc.php).

The land-use types have been reclassified to SiB2 land-use

types for this study (Sellers et al., 1996). There are six land-

use types, with broadleaf and needle leaf trees and short veg-

etation being the main types. Soil data are obtained from the

Food and Agriculture Organization (FAO, 2003) Global data

product, and there are two types of soil in the basin: clay

loam Luvisols and loam Phaeozems.

2.2 Precipitation products

The selected precipitation products are shown in Table 1.

These data are all freely available. In these selected pre-

cipitation products, APHRODITE is wholly based on gauge

data; TRMM3B42 and GLDAS are remote satellite estima-

tions with gauge data corrections; while others are remote

satellite estimations without gauge data corrections. Remote-

based precipitation estimation has many weaknesses; e.g. mi-

crowave estimation could miss convective rainfall and ty-

phoon rain because of its sparse time interval resolution; in-

frared estimation has a higher time interval resolution, but it

cannot penetrate thick clouds. Ground rain-gauge-based in-

terpolation products are limited by interpolation algorithms,

gauge density, and gauge data quality (Xie et al., 2007). The

details of data sources used in each precipitation product can
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be found in Table 1. The detailed introductions of these prod-

ucts are as follows.

TRMM is a joint mission between NASA and Japan

Aerospace Exploration Agency designed to monitor and

study tropical rainfall (Kummerow et al., 2000; Huffman et

al., 2007). Three instruments – a visible infrared radiome-

ter, a TRMM microwave imager, and a precipitation radar -

are employed to obtain accurate precipitation estimation. The

TRMM precipitation radar is the first space-based precipita-

tion radar and operates between 35◦ N and 35◦ S. Outside

this band, the microwave imager is used between 40◦ N and

40◦ S, and the visible infrared radiometer data are used be-

tween 50◦ N to 50◦ S. Usually the precipitation radar is con-

sidered to give the most accurate estimation from satellite,

and data from it are often used for calibration of passive mi-

crowave data from other instruments (Ebert et al., 2007). The

post-real-time product used in this study is the TRMM3B42,

which utilizes three data sources: the TRMM combined in-

strument estimation using data from both TRMM precipita-

tion radar and the microwave imager; the GPCP monthly rain

gauge analysis developed by the Global Precipitation Clima-

tology Center; and the Climate Assessment and Monitoring

System monthly rain gauge analysis. TRMM3B42 applies an

infrared to rain rate relationship using histogram matching,

while TRMM3B42RT merges microwave and infrared pre-

cipitation estimation.

PERSIANN is a product that, using an artificial neural

network function, estimates precipitation by combining in-

frared precipitation estimation and the TRMM combined in-

strument estimation (which assimilates with TRMM precipi-

tation radar and microwave data). GSMAP-MVK+ uses mi-

crowave and infrared precipitation data together and com-

bines cloud motion vectors to generate fine-resolution pre-

cipitation estimation.

The Global Land Data Assimilation System (GLDAS)

project is an extension of the existing and more mature

North American Land Data Assimilation System (Rodell et

al., 2004). It integrates satellite- and ground-based data sets

for parameterizing, forcing, and constraining a few offline

land surface models for generating optimal fields of land sur-

face states and fluxes. At present, GLDAS drives four land

surface models: Mosaic (Koster and Suarez, 1992), Noah

(Chen et al., 1996; Betts et al., 1997; Koren et al., 1999; Ek,

2003), the Community Land Model (Dai et al., 2003), and

the Variable Infiltration Capacity model (Liang et al., 1994).

Among them, the GLDAS/Noah Land Surface Model prod-

uct (GLDAS_NOAH025SUBP_3H) has a 3 h 0.25◦× 0.25◦

resolution, which is desirable for basin-scale research. The

GLDAS precipitation data combine microwave and infrared

data, and also assimilate gauge observations.

2.3 Criteria for accuracy assessment

Uncertainties of precipitation products are evaluated on the

basis of basin-averaged rainfall observations. Four evalua-

tion criteria are used in rainfall amount error assessment: cor-

relation coefficient (CC), root mean square error (RMSE),

Nash–Sutcliffe coefficient of efficiency (NSE), and relative

bias (RB). These are calculated as follows:

RMSE=


n∑
i=1

(
Xpi −Xoi

)2
n


1
2

(1)

NSE= 1−

n∑
i=1

(
Xpi −Xoi

)2
n∑
i=1

(
Xpi −Xo

)2 (2)

RB=

n∑
i=1

Xpi −
n∑
i=1

Xoi

n∑
i=1

Xoi

× 100%, (3)

where Xoi represents observed data; Xpi represents esti-

mated data; n is the total number of data points. A perfect fit

should have CC and NSE values of 1. The lower the RMSE

and RB, the better the estimation. These comparison criteria

have been used by many studies (Ebert et al., 2007; Wang et

al., 2011; Yong et al., 2012), so they are used in this study.

Probability distributions by occurrence and volume are

also analysed, which can provide us with the information on

the frequency and on the product error dependence on precip-

itation intensity (Chen et al., 2013a, b). The critical success

index (CSI), probability of detection (POD), and false alarm

ratio (FAR) are used to quantify the ability of precipitation

products to detect observed rainfall events. These are defined

as follows:

CSI=
H

H +M +F
(4)

POD=
H

H +M
(5)

FAR=
F

H +F
, (6)

where H is the total number of hits; M is the total number

of misses; F is the total number of false alarms (Ebert et al.,

2007; Su et al., 2008). A perfect detection should have CSI

and POD values equal to 1 and a FAR value of 0.

2.4 Hydrological models and data

2.4.1 WEB-DHM

The distributed biosphere hydrological model, WEB-DHM

(Wang et al., 2009a, b, c), was developed by coupling

a simple biosphere scheme (Sellers et al., 1986) with a

geomorphology-based hydrological model (Yang, 1998) to

describe water, energy, and CO2 fluxes at a basin scale.
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WEB-DHM has been used in several evaluations and appli-

cations (Wang et al., 2010a, b, 2012; Shrestha et al., 2014).

WEB-DHM input data include precipitation, temperature,

downward solar radiation, long-wave radiation, air pressure,

wind speed, and humidity. With the exception of precipita-

tion, all input data are obtained from automatic weather sta-

tions. There are three automatic weather stations near Biliu,

and observations from these are obtained from the China

Meteorological Data Sharing Service System (downloaded

from http://cdc.cma.gov.cn/home.do). Hourly precipitation

data are downscaled from daily rain gauge observations us-

ing a stochastic method (Wang et al., 2011). Hourly tem-

peratures are calculated from daily maximum and minimum

temperatures using a temperature model (Parton and Logan,

1981). The estimated temperatures are also further evalu-

ated using daily average temperature. Downward solar radi-

ation is estimated from sunshine duration, temperature, and

humidity using a hybrid model (Yang et al., 2006). Long-

wave radiation is obtained from the GLDAS/Noah (Rodell

et al., 2004). Air pressure is estimated according to altitude

(Yang et al., 2006). These meteorological data are then in-

terpolated to 300 m× 300 m model cells through an inverse-

distance weighting approach. Because of the elevation differ-

ences among model cells and meteorological gauges, the in-

terpolated surface air temperatures are further modified with

a lapse rate of 6.5 K km−1. Gauge rainfall data are also in-

terpolated to 300 m× 300 m model cells and basin-averaged

gauge rainfall data are calculated on the basis of interpola-

tion results. In addition to the above, the leaf area index and

fraction of photosynthetically active radiation data are ob-

tained from level-4 MODIS global product MOD11A2. The

digital elevation model (DEM) is from the NASA SRTM

(Shuttle Radar Topographic Mission) with a resolution of

30 m× 30 m. We resampled the resolution to 300 m in model

calculation to reduce computation cost, while the model pro-

cessed finer DEMs (30 m grid) to generate sub-grid parame-

ters (such as hillslope angle and length).

2.4.2 TOPMODEL

TOPMODEL is a physically based, variable-contributing

area model of basin hydrology which attempts to combine

the advantages of a simple lumped parameter model with

distributed effects (Beven and Kirkby, 1979). Fundamental

to TOPMODEL’s parameterization are three assumptions:

(1) saturated-zone dynamics can be approximated by suc-

cessive steady-state representations; (2) hydrological gradi-

ents of the saturated zone can be approximated by the local

topographic surface slope; and (3) the transmissivity profile

whose form declines exponentially with increasing vertical

depth of the water table or storage is spatially constant. On

the basis of the above-mentioned assumptions, the index of

hydrological similarity is represented as the topographic in-

dex, ln(a/ tanβ), for which a is the area per unit contour

length and β is the local slope angle. More detailed descrip-

Figure 2. Diagrammatic flowchart of the proposed framework for

quantification of uncertainty contributions to ensemble discharges

simulated using precipitation products on the basis of the analysis

of variance (ANOVA) approach.

tions of TOPMODEL and its mathematical formulation can

be found in Beven and Kirkby (1979). TOPMODEL has been

popularly utilized in research across the world (Blazkova and

Beven, 1997; Cameron et al., 1999; Hossain and Anagnos-

tou, 2005; Bastola et al., 2008; Gallart et al., 2008; Bouilloud

et al., 2010; Qi et al., 2013), because of its relatively sim-

ple model structure. The input data of TOPMODEL mainly

include basin-averaged precipitation and topographic data

which can be estimated from DEM.

2.5 The proposed framework

Figure 2 shows the diagrammatic flowchart of the proposed

framework for quantification of uncertainty contributions to

ensemble discharges simulated using precipitation products.

This framework includes four parts: (a) selection of pre-

cipitation products; (b) selection of hydrological models;

(c) ensemble of discharge simulations using the hydrologi-

cal models and precipitation products; and (d) quantification

of individual and interactive contributions using the analy-

sis of variance (ANOVA) approach including contributions

from precipitation products, hydrological models, and inter-

actions between models and products. Because the spatial

resolution of selected precipitation products does not cor-

respond with WEB-DHM model cells, the following pro-

cedures were carried out for basin-averaged rainfall calcu-

lations: (1) resampling 0.25 or 0.1◦ precipitation product

grids into 300 m× 300 m cells (the grid size used in WEB-

DHM simulations); (2) calculating basin-averaged precipita-

tion using 300 m precipitation product grids located within

the basin boundary. Diagrammatic descriptions of these pro-

cedures are shown in Fig. 1d. Because WEB-DHM needs

hourly input data, for the 3 h resolution precipitation prod-

ucts, we assumed rainfall is uniformly distributed within each

3 h period. For daily resolution products, we used the same

approach as downscaling observed precipitation data. This

downscaling approach may affect uncertainty in simulated
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discharge. However, Wang et al. (2011) have already suc-

cessfully applied the downscaling approach, and shown that

the influence is negligible.

The total ensemble uncertainty Y is the variance of dis-

charges. To relate Y to the uncertainty sources, the super-

scripts j and k in Y j,k represent a combination of precipita-

tion product j and hydrological model k:

Y j,k = P j +Mk
+PMj,k, (7)

where P represents the effect of j th precipitation prod-

uct, M represents the effect of kth hydrological model, and

PM represents the interaction effect. In this study, j varies

from one to six, and k varies from one to two. Details of the

quantification are explained in the follow sections.

2.5.1 Subsampling approach

ANOVA could underestimate variance when the sample size

is small (Bosshard et al., 2013). To reduce the effect of the

sample size, Bosshard et al. (2013) proposed a subsampling

method, which was used in this paper. In the subsampling

method, the superscript j in Eq. (7) is replaced with g(h, i).

According to Bosshard et al. (2013), in each subsampling it-

eration i, data from two products should be selected out of all

the six products, and thus 15 combinations can be obtained.

Therefore, the superscript g becomes a 2× 15 matrix:

g=

(
1 1 . . . 1 2 2 . . . 4 4 5

2 3 . . . 6 3 4 . . . 5 6 6

)
. (8)

2.5.2 Uncertainty contribution decomposition

Based on the ANOVA theory (Bosshard et al., 2013), total

error variance (SST) can be divided into sums of squares due

to the individual effects as

SST= SSA+SSB+SSI, (9)

where SSA is the error contribution of precipitation prod-

ucts, SSB is the error contribution of hydrological models,

and SSI is the error contribution of their interactions.

The terms can be estimated using the subsampling proce-

dure as follows:

SSTi =

H∑
h=1

K∑
k=1

(
Y g(h,i),k −Y g(o,i),o

)2

(10)

SSAi =K ·

H∑
h=1

(
Y g(h,i),o−Y g(o,i),o

)2

(11)

SSBi =H ·

K∑
k=1

(
Y g(o,i),k −Y g(o,i),o

)2

(12)

SSIi =

H∑
h=1

K∑
k=1

(
Y g(h,i),k −Y g(h,i),o−Y g(o,i),k +Y g(o,i),o

)2

, (13)

where symbol o indicates averaging over a particular index;

H is the number of precipitation products (six in this study)

and K is the number of hydrological models (two in this

study). Then the variation fraction η2 is calculated as fol-

lows:

η2
precipitation =

1

I

I∑
i=1

SSAi

SSTi
(14)

η2
model =

1

I

I∑
i=1

SSBi

SSTi
(15)

η2
interaction =

1

I

I∑
i=1

SSIi

SSTi
. (16)

η2 has a value between 0 and 1, which represent 0 and

100 % contributions to the overall uncertainty of simulated

discharges respectively. I equals 15 in this study. As shown

in Eqs. (14)–(16), the subsampling approach is necessary be-

cause it guarantees that every contributor has the same de-

nominator I . This same denominator makes sure that the

inter-comparison among precipitation contribution, model

contribution, and interaction contribution is free of influence

from the sampling number of precipitation products and hy-

drological models.

3 Statistical evaluations

3.1 Daily and monthly scales

Comparison of precipitation product data and gauge obser-

vations at a daily scale is shown in Fig. 3. Observations

are shown on the x axis and precipitation product data are

shown on the y axis. Four criteria, RMSE, CC, NSE, and

RB, are also shown. GSMAP-MVK+ is the best product

and PERSIANN has the poorest performance with respect

to RMSE and NSE. GSMAP-MVK+ is also the best with

respect to CC, while GLDAS has the poorest performance

with a CC value of 0.55. With respect to RB, APHRODITE

performs best and GSMAP-MVK+ the second best, while

TRMM3B42RT the least best with an RB value of −38 %.

None of the products can outperform others in terms of all

the statistical criteria. This may be due to the different limi-

tations of satellite sensors and inverse algorithms of precipi-

tation products. This situation shows that the selection of the

best precipitation products is difficult.

TRMM3B42RT and TRMM3B42 underestimate precipi-

tation amounts. This underestimation may be because con-

vective rainfall always happens in summer in northeast China

(Shou and Xu, 2007a, b; Yuan et al., 2010), and indicates

the limitation of TRMM algorithms in high-latitude regions

with convective rainfall. This type of rainfall has a large rain-

fall amount within a short time period and, therefore, can-

not be captured by microwave imager. This type of rain-

fall may also have a thick cloud that is impenetrable by

infrared (Ebert et al., 2007). Thus microwave and infrared

estimation could underestimate rainfall. Compared with
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Figure 3. Scatter plots of basin-averaged precipitation products versus gauge observations at a daily scale.

Figure 4. Scatter plots of basin-averaged precipitation products versus gauge observations at a monthly scale.

TRMM3B42RT, TRMM3B42 provides an improvement in

RB. This improvement may be attributed to the assimila-

tion with gauge data and histogram matching. Compared

with APHRODITE and GSMAP-MVK+, TRMM3B42 has

low accuracy as represented by RB. This implies that the re-

trieval algorithm used by TRMM3B42 still needs to be im-

proved with respect to RB. The reason why APHRODITE

outperforms TRMM3B42 is that APHRODITE is a gauge-

based product. The fact that GSMAP-MVK+ outperforms

TRMM3B42 in terms of RB may be due to the cloud

motion vectors it uses. Compared with GSMAP-MVK+,

GLDAS/Noah precipitation shows low accuracy in all the

criteria even though they use similar data sources: IR and

MW.

Comparison of precipitation product data and gauge ob-

servations at a monthly scale is shown in Fig. 4. Here,

the APHRODITE product (Fig. 4d) performs best based on

RMSE, CC, NSE, and RB. GLDAS/Noah is the poorest in

terms of RMSE and NSE. With respect to CC, GLDAS and

TRMM3B42 are equally poor, with CC values of 0.81. The

results also show that PERSIANN overestimates precipita-

tion amount, while Li et al. (2013) found PERSIANN under-

estimates rainfall in south China. This may be attributed to

the different latitudes of the study regions.

Figure 5 shows time series of average monthly precipita-

tion data against gauge observations during the period 2000–

2007. Each curve represents a different precipitation prod-

uct. GLDAS data (Fig. 5a) seriously underestimate high rain-

fall. Similarly, TRMM3B42RT underestimates peak precip-

itation intensity also. Comparatively, APHRODITE, PER-

SIANN, TRMM3B42, and GSMAP-MVK+ have better per-

formances.
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Figure 5. Time series plots of basin-averaged precipitation product values versus gauge observations at a monthly scale.

Figure 6. Inter-annual basin-averaged monthly precipitation.

3.2 Inter-annual evaluations

Figure 6 shows the inter-annual average monthly precipita-

tion. Each curve represents a different data product. PER-

SIANN overestimates in all the 12 months, while others

underestimate, especially during the summer. This may re-

sult from the artificial neural network function and limita-

tions of infrared and microwave estimation. APHRODITE

data are relatively close to observations. Compared with

TRMM3B42RT, TRMM3B42 is better, which indicates that

the gauge corrections and histogram-matching used by

TRMM3B42 impact positively on accuracy. During the sum-

mer, discrepancies between products become larger. With a

decrease of rainfall magnitude, the discrepancies between

products reduce. This information implies that the differ-

ences in precipitation estimation are related to precipitation

magnitudes: the larger the rainfall magnitudes, the greater the

differences.

Figure 7. Probability distributions of the six precipitation products

by occurrence (CDFc) and volume (CDFv).

3.3 Probability distribution evaluations

Figure 7 shows the cumulative probability distribution func-

tion (CDF) by occurrence (CDFc) and by volume (CDFv) for

precipitation products. Probabilities are shown on the y axis,

and the x axis shows rainfall intensity with a 1 mm day−1

interval log space.

PERSIANN is the best by both occurrence and volume.

However, for CDFc, TRMM3B42RT is the least best, and,

for CDFv, TRMM3B42RT, and GLDAS/Noah are compara-

ble and worse than others. All precipitation products over-

estimate occurrence and volume probabilities except rainfall

intensities of larger than 63 and 53 mm day−1 for occurrence

and volume probabilities, respectively. This may be because

the precipitation products overestimate the intensity of some

heavy rainfall (recall the results in Sect. 3.1). The results dif-

fer from those of Li et al. (2013), in which PERSIANN has

the poorest performance. This may result from differences in

study region (in the study of Li et al. (2013), south China was

studied).
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Figure 8. False alarm ratio, probability of detection, and critical success index for the six precipitation products.

3.4 Contingency statistics

Figure 8 shows the false alarm ratio, probability of detection,

and critical success index for each precipitation product.

PERSIANN has the highest false alarm ratio among the

products, while TRMM3B42RT has the lowest. The false

alarm ratio of TRMM3B42 is larger than TRMM3B42RT,

which indicates that the gauge corrections and histogram-

matching used by TRMM3B42 do not provide positive ef-

fects on false alarm ratio and may give rise to uncertainty in

false alarm ratio. GSMAP-MVK+ has a lower false alarm

ratio than TRMM3B42.

No obvious trends are observed for the false alarm ratio

overall (compared with the probability of detection and crit-

ical success index), which means the false alarm ratio de-

pendence on rainfall magnitude is weak. However, Chen et

al. (2013a) found the false alarm ratios of TRMM3B42 and

TRMM3B42RT to increase with an increase in rainfall inten-

sity. The differences are attributed mainly to observed data.

In the study of Chen et al. (2013a), national rain gauge data

were employed, whereas in this study more detailed basin

data are used.

Among all selected products, GLDAS/Noah has the low-

est probability of detection and critical success index dur-

ing periods of high rainfall intensity, while APHRODITE

retains a high probability of detection and critical success

index. This is because APHRODITE uses gauge observa-

tions, and implies that the APHRODITE algorithm is ef-

fective. PERSIANN has comparable probability of detection

with APHRODITE. The critical success index of GSMAP-

MVK+ is also comparable with APHRODITE. Compared

with TRMM3B42RT, TRMM3B42 has greater probability of

detection and comparable critical success index. This infor-

mation implies that the retrieval algorithm of TRMM3B42

provides positive effects on probability of detection, but no

obvious positive impacts on critical success index.

Decreasing trends are observed for all products in terms

of probability of detection and critical success index, match-

ing the results of Chen et al. (2013a) for TRMM3B42 and

TRMM3B42RT. This indicates that probability of detection

and critical success index have relatively strong dependence

on rainfall magnitude, and implies that microwave and in-

frared precipitation estimation may have relatively strong de-

pendence on rainfall magnitude in terms of probability of de-

tection and critical success index.

4 Hydrological evaluations

4.1 Assessment of hydrological models

WEB-DHM was calibrated against observed discharges of

Biliu. Six main parameters were selected to calibrate using

a trial and error approach due to the model’s computational

burden. Model parameter multipliers were calibrated, simi-

lar to the study by Wang et al. (2011). The trial and error

approach has two steps. First, all the multiplier values are

set to 1 which represents the default parameter values from

the Food and Agriculture Organization (FAO, 2003) and the

SiB2 model. Second, the multiplier values are varied until

acceptable discharge simulation accuracy is obtained. The

calibrated parameter values are listed in Table 2. The sim-

ulated daily, monthly, and inter-annual results are shown in

Fig. 9a, c, and e.

TOPMODEL uses basin-averaged parameter values, and

these parameter values are estimated by experience or obser-

vation. However, these methods do not give precise param-

eter values. Therefore, the parameter values are considered

as uncertain and provided with ranges based on experience

(Beven and Kirkby, 1979; Beven and Freer, 2001a, b; Peters

et al., 2003). Six parameters of TOPMODEL were calibrated

using the dynamically dimensioned search algorithm (Tol-

son and Shoemaker, 2007), and the results are given in Ta-

ble 3. The simulated daily, monthly, and inter-annual results

are shown in Fig. 9b, d, and f.

Note that the parameters of TOPMODEL and WEB-DHM

were calibrated using observed precipitation data, and the

accuracy of simulated discharges was validated using gauge

observations. Comparison with the rainfall–runoff model pa-

rameter values reported for the case study catchment in previ-

ous research shows that the parameter values are appropriate

(Qi et al., 2013, 2015, 2016).
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Table 2. WEB-DHM parameters.

Symbol (unit) Brief description Basin-averaged

value

Ks (mm h−1) Saturated hydraulic conductivity for soil surface 26.43

Anik Hydraulic conductivity anisotropy ratio 11.49

Sstmax (mm) Maximum surface water storage 42.75

Kg (mm h−1) Hydraulic conductivity for groundwater 0.36

α van Genuchten parameter 0.01

n van Genuchten parameter 1.88

Figure 9. Observed and simulated flows using WEB-DHM and TOPMODEL from 2000 to 2007: (a), (c), and (e) are daily, monthly, and

inter-annual simulations using WEB-DHM respectively; (b), (d), and (f) are daily, monthly, and inter-annual simulations using TOPMODEL

respectively.

4.2 Daily-scale discharges

Figures 10 and 11 display scatter plots of discharges dur-

ing the period 2000–2007 simulated using WEB-DHM and

TOPMODEL against gauge observations at a daily scale.

Two criteria, NSE and RB, are shown. It should been noted

that the start dates are different for precipitation products,

and observed data were used when product data are not

available: from 1 January 2000 to 29 February 2000 for

TRMM3B42RT, GSMAP-MVK+, and PERSIANN; from

1 January 2000 to 23 February 2000 for GLDAS/Noah.

These time periods were not considered for accuracy com-

parison.

In the case of WEB-DHM simulations, the best

NSE (0.41) corresponds with APHRODITE (Fig. 10d), while

the best value for RB (1 %) corresponds with GLDAS/Noah.

In the case of TOPMODEL simulations, the best NSE (0.41)

corresponds with APHRODITE, and the best value for

RB (−24 %) corresponds with APHRODITE also. Although

the best NSE is the same for both WEB-DHM and TOP-

MODEL simulations and the corresponding product is also

the same, there is a large difference in the best RB values. At

the daily-scale precipitation amount evaluation, the least best
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Table 3. TOPMODEL parameters.

Name (unit) Description Lower Upper Calibration

bound bound

SZM (m)
form of the exponential

0.01 0.04 0.019
decline in conductivity

LNT0 (m2 h−1)

log value of effective

−25 1 −11.911lateral saturated

transmissivity

RV (m h−1)
hill slope routing

2000 5000 2608.4
velocity

SRmax (m)
maximum root zone

0.001 0.01 0.006
storage

SR0 (m) initial root zone deficit 0 0.01 0.005

TD (m h−1)
unsaturated zone time

2 4 2.885
delay per unit deficit

Figure 10. Scatter plots of simulated discharges with WEB-DHM

against gauge observations at a daily scale.

RB is −38 %, corresponding with TRMM3B42RT (Fig. 3c).

However, in WEB-DHM discharge simulation, the least best

RB (218 %) corresponds with PERSIANN, and, in the TOP-

MODEL simulation, the least best RB (−62 %) corresponds

with TRMM3B42RT. These differences stem from differ-

ences in hydrological models and interactions between hy-

drological models and precipitation product data.

All RB criteria at the daily-scale precipitation evaluations

(recall the results in Fig. 3) are amplified by TOPMODEL,

while in the case of WBE-DHM, some are amplified and

the others are decreased. For example, for GLDAS and PER-

SIANN, the RB criteria at the daily-scale precipitation evalu-

ations are−27 and 28 %, but they are−50 and 31 % in TOP-

MODEL simulations; they are 1 and 218 % in WEB-DHM

Figure 11. Scatter plots of simulated discharges with TOPMODEL

against gauge observations at a daily scale.

simulations. These differences result from the influence of

hydrological models and interactions between precipitation

products and hydrological models. These results reveal that

a hydrological model can amplify uncertainties in input data

but also reduce uncertainties, which may be due to the non-

linear runoff generation process in hydrological models. This

finding is consistent with the research by Yong et al. (2010).

4.3 Monthly scale discharges

Figures 12 and 13 display scatter plots of discharges dur-

ing the period 2000–2007 simulated using WEB-DHM and

TOPMODEL against gauge observations at a monthly scale.
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Figure 12. Scatter plots of simulated flows with WEB-DHM against

gauge observations at a monthly scale.

In the case of WEB-DHM, the best NSE and RB val-

ues are 0.73 and 1 %, which correspond with TRMM3B42

and GLDAS respectively. In the case of TOPMODEL, they

are 0.58 and −24 %, corresponding with PERSIANN and

APHRODITE respectively. The combination of WEB-DHM

and TRMM3B42 shows a satisfactory performance, with

NSE and RB values of up to 0.73 and −7 %, even though

TRMM3B42 is not the best in monthly scale precipitation

data evaluation. This reveals the influence of different com-

binations of hydrological models and precipitation data on

discharge simulation, implying that accurate discharge simu-

lation does not solely depend on the accuracy of a precipita-

tion product.

At the monthly scale, although APHRODITE is the best

precipitation product and WEB-DHM model has better per-

formance than TOPMODEL in calibration (Fig. 9c and d),

the combination of APHRODITE and WEB-DHM is not bet-

ter in the discharge simulation, which can be shown by com-

paring Fig. 12d with Fig. 13d (the RB and NSE of WEB-

DHM and APHRODITE combination are −37 % and 0.5,

but they are −24 % and 0.51 for the combination of TOP-

MODEL and APHRODITE). This could be due to the inter-

active influence between hydrological models and precipita-

tion products, and implies that the interactions between mod-

els and products could be large and have a big influence on

discharge simulations. In addition, comparison of Fig. 12d

and b shows that discharge simulation of APHRODITE is

worse than TRMM3B42, even though APHRODITE is the

best precipitation product in terms of all the selected crite-

ria at a monthly scale precipitation amount evaluation. This

information shows that better precipitation products do not

guarantee better discharge simulations. These results imply

that, although the satellite-based precipitation products are

not as accurate as gauge-based products in rainfall amount

estimation, they could have a better performance in discharge

Figure 13. Scatter plots of simulated discharges with TOPMODEL

against gauge observations at a monthly scale.

Figure 14. Inter-annual average monthly discharges.

simulations if the combination of precipitation product and

hydrological model is good.

4.4 Inter-annual average monthly discharges

Figure 14 shows the inter-annual average monthly discharges

of all selected precipitation products during the period 2000–

2007. In the case of TOPMODEL, PERSIANN agrees well

with gauge observations, and all products underestimate dis-

charges in August. In the case of WEB-DHM, GLDAS data

and TRMM3B42 data have a better performance than other

data but, with the exception of PERSIANN, all products un-

derestimate peak discharge in August. The simulation results

show huge differences even though Fig. 9e and f show that

TOPMODEL and WEB-DHM have almost the same perfor-

mance using observed data; this is because of the impacts of

interactive influence between hydrological models and pre-

cipitation products.

4.5 Uncertainty source quantification

All above results suggest that discharge simulations are in-

fluenced by precipitation products, hydrological models, and

interactions between hydrological models and precipitation

products. Thus it is essential to quantify the respective influ-
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ence. Figure 15a and b show contributions of precipitation

products, hydrological models, and their interactions to un-

certainties in monthly average discharges and different flow

quantiles respectively. Figure 15b shows quantiles computed

at a daily time step. The contributions of uncertainty sources

are represented by stripes.

Figure 15a shows that precipitation data contribute most of

the uncertainty in discharges, and contribute more than hy-

drological models. Interactions between hydrological mod-

els and precipitation products have large contributions, at a

similar level to those from hydrological models. In summer

(July to September), the contribution of precipitation data is

less than most other months except March. However, the un-

certainty in precipitation intensity increases in summer (re-

call the results in Sect. 3.2). In non-summer months except

March, the uncertainty contribution from precipitation prod-

ucts is larger than in summer. These differences maybe result

from the non-linear propagation of uncertainty through hy-

drological models. In March, the contribution of hydrologi-

cal models is larger than in other months, which may result

from the decrease in influences of interactions and precipi-

tation products, and from the non-linear influence of the hy-

drological models.

Figure 15b shows that, for small discharges (smaller than

25 % quantile which corresponds to an observed discharge

value of 1.79 m3 s−1) and large discharges (larger than 99 %

quantile which corresponds to an observed discharge value

of 157 m3 s−1), hydrological models contribute most of the

uncertainties. For middle-magnitude flows (between 25 and

99 % quantiles), precipitation products contribute the ma-

jority, and the contribution of interactions is not negligible

and of similar magnitude to the contribution from hydro-

logical models. The contribution of interactions is larger for

middle-magnitude flows than for small and large discharges.

The different contributions of interactions for various magni-

tude flows may be because different magnitude rainfall data

could trigger different hydrological processes (Herman et al.,

2013). Small discharges mainly come from base flows which

are relatively stable and do not need much rainfall to be trig-

gered, and large discharges are mainly controlled by overland

flows when heavy precipitation occurs. Middle-magnitude

discharges consist of contributions from base flows, lateral

subsurface flows, and overland flows, and can be triggered by

rainfalls of various magnitudes – thus interactions are more

variable.

Although heavy rainfall data have high uncertainty (recall

the results in Sect. 3.1), precipitation products have a small

contribution to uncertainty in large discharges (Fig. 15b).

This implies that the uncertainty in high precipitation is com-

pensated by the high non-linearity in hydrological models.

In this study, because hydrological model parameters were

calibrated using gauge observations, the hydrological model

parameter uncertainty was not considered. Although the un-

certainty contribution results in this study may not be trans-

ferable to other basins, the proposed framework provides a

Figure 15. Contributions of uncertainty sources to (a) average

monthly discharges and (b) discharge quantiles based on daily-scale

simulated results.

useful tool for quantifying uncertainty contributions in dis-

charge simulations using precipitation products.

5 Discussion

The spatial variations in precipitation are not considered in

this study. The study region is a small river basin, as shown

in Fig. 1; there are only 11 grids inside the basin bound-

ary for the precipitation products with a spatial resolution

of 0.25◦. Within a grid of 0.25◦, there are no differences in

precipitation amount between the 300 m× 300 m grids used

in hydrological models, and differences exist at the level of

0.25◦ grids only. Sapriza-Azuri et al. (2015) suggested that

the spatial variability of precipitation has little influence on

rapidly responding river discharges; this is the case in this

study basin because the flow transport time from the most

upper part of the basin to the downstream discharge gauge is

6 h, which is shorter than the daily and monthly time steps of

discharges investigated. Therefore, the spatial distributions

of precipitation products with a resolution of 0.25◦ in the rel-

atively small river basin have little influence on the simulated

discharges. However, the assumption of uniform distribution

can be regarded as another uncertainty source against spatial

variability, and its influence can be assessed using the pro-

posed uncertainty quantification framework. This will allow

us to compare the relative contributions of the assumption to

those from other sources such as hydrological models, which

will be investigated using a much larger river basin in future

work.

In addition to improving the accuracy of precipitation

products, a good coalition could help to achieve the per-

formance in discharge simulations. Our approach provides

a way to assess the different coalitions, i.e. the overall uncer-

tainties in simulated discharges from different combinations

www.hydrol-earth-syst-sci.net/20/903/2016/ Hydrol. Earth Syst. Sci., 20, 903–920, 2016



916 W. Qi et al.: Evaluation of global fine-resolution precipitation products and their uncertainty quantification

of hydrological models and precipitation products. More pre-

cipitation products and hydrological models should be in-

cluded and tested in future work.

It should be noted that other input data including tempera-

ture, downward solar radiation, long-wave radiation, air pres-

sure, wind speed, and humidity may also have uncertainties.

However, Fig. 9 shows that the simulated discharge data are

acceptable, particularly at monthly and inter-annual scales

using these data. Research has shown that the land surface

temperatures are highly accurate compared with MODIS

satellite land surface temperature observations (Wang et al.,

2011; Qi et al., 2015). Thus, the uncertainties from the other

inputs are not considered in our case study river basin.

In this study, the parameter values calibrated using gauge

observations are not tuned to a specific product. That is, there

is little compensation by model parameters for the errors in

input precipitation data. The differences in modelling accu-

racy mainly result from the different representations of hy-

drological processes. That is, the errors in precipitation prod-

ucts are primarily compensated by the different representa-

tions of model processes.

6 Summary and conclusions

This research assesses the applicability of six precipita-

tion products with fine spatial and temporal resolutions

at a high-latitude region in northeast China, using both

statistical and hydrological evaluation methods at multi-

temporal scales. A framework is proposed to quantify un-

certainty contributions of precipitation products, hydrolog-

ical models, and their interactions to simulated discharges.

These products are TRMM version 7 products (TRMM3B42

and TRMM3B42RT), GLDAS, APHRODITE, PERSIANN,

and GSMAP-MVK+. The fully distributed WEB-DHM and

semi-distributed TOPMODEL were employed to investi-

gate the influence of hydrological models on simulated dis-

charges. The results show the uncertainty characteristics of

the six products, and reveal strategies that could improve

precipitation products. This information could provide refer-

ences for future precipitation product development. The pro-

posed framework can reveal hydrological simulation uncer-

tainties using precipitation products; thus it provides useful

information on precipitation product applications. The fol-

lowing conclusions are presented on the basis of this study.

First, at a daily scale, selecting the best precipitation prod-

ucts is very difficult, while, at a monthly scale, APHRODITE

has the best performance in terms of NSE, RB, RMSE,

and CC, and also retains a high probability of detection

and critical success index. This information implies that

the APHRODITE algorithm is effective, and APHRODITE

could be a very good data set to refine and validate satellite-

based precipitation products.

Second, GSMAP-MVK+ shows a huge advantage, and

is better than TRMM3B42 in RB, NSE, RMSE, CC, false

alarm ratio, and critical success index, while PERSIANN

is better than TRMM3B42 in probability of detection and

precipitation probability distribution estimation. At present,

the NASA Global Precipitation Measurement (GPM) mis-

sion combines the artificial neural network function of PER-

SIANN and precipitation radar-matching of TRMM Multi-

satellite Precipitation Analysis. However, the above finding

implies that incorporating the GSMAP-MVK+ estimation

approach into GPM could be useful as well.

Third, it is found that, although high uncertainty exists in

heavy rainfall, hydrological models contribute mostly to the

uncertainty in extreme discharges. This may result from the

non-linear propagation of uncertainty through hydrological

models, and implies that high uncertainties in extreme rain-

fall do not mean high uncertainties in extreme discharges.

Fourth, interactions between hydrological models and pre-

cipitation products contribute a lot to uncertainty in discharge

simulations, and interactive impacts are influenced by dis-

charge magnitude. Because of interactive effects, for hydro-

logical models with similar performances in calibration, us-

ing the same precipitation products for discharge simulations

does not provide a similar level of accuracy in discharge sim-

ulations, and in fact very different predictions could be ob-

tained. In addition, this finding implies that only considering

precipitation products or hydrological model uncertainties

could result in overestimation of precipitation product con-

tribution and hydrological model contribution to discharge

uncertainty.

Fifth, a good discharge simulation depends on a good

coalition of a hydrological model and a precipitation prod-

uct, and a better precipitation product does not necessarily

guarantee a better discharge simulation. This suggests that,

although the satellite-based precipitation products are not as

accurate as the gauge-based product, they could have bet-

ter performance in discharge simulations when appropriately

combined with hydrological models. It should be noted that

this finding should be further tested with more river basins, in

particular large river basins accounting for spatial variability

in precipitation products.

In the future, calculating deterministic discharge simula-

tions considering precipitation product uncertainties and hy-

drological model uncertainties should be studied because the

above results show that product uncertainties and model un-

certainties all are important. In addition, recalibrating hydro-

logical models using precipitation products may reduce the

interactive influence between hydrological models and pre-

cipitation products on simulated discharges, and this may ex-

plain why recalibration can improve discharge simulation ac-

curacy. This should be verified in future work. Further, future

research is encouraged to incorporate the GSMAP-MVK+

estimation approach into GPM because of the good perfor-

mance of GSMAP-MVK+.
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