Impact of two different types of El Niño events on runoff over the conterminous United States
Abstract. The responses of river runoff to shifts of large-scale climatic patterns are of increasing concerns to water resource planners and managers for long-term climate change adaptation. El Niño, as one of the most dominant modes of climate variability, is closely linked to hydrologic extremes such as floods and droughts that cause great loss of lives and properties. However, the different impacts of the two types of El Niño, i.e., central Pacific (CP-) and eastern Pacific (EP-)El Niño, on runoff across the conterminous US (CONUS) are not well understood. This study characterizes the impacts of the CP- and EP-El Niño on seasonal and annual runoff using observed streamflow data from 658 reference gaging stations and the NCAR-CCSM4 model. We found that surface runoff responds similarly to the two types of El Niño events in southeastern, central, southern, and western coastal regions, but differently in northeast (NE), Pacific northwest (PNW) and west north central (WNC) climatic zones. Specifically, EP-El Niño events tend to bring above-average runoff in NE, WNC, and PNW throughout the year while CP-El Niño events cause below-than normal runoff in the three regions. Similar findings were also found by analyzing NCAR-CCSM4 model outputs that captured both the CP- and EP-El Niño events, representing the best data set among CMIP5 models. The CCSM4 model simulates lower runoff values during CP-El Niño years than those in EP-El Niño over all of the three climatic regions (NE, PNW, and WNC) during 1950–1999. In the future (2050–2099), for both types of El Niño years, runoff is projected to increase over the NE and PNW regions, mainly due to increased precipitation (