Articles | Volume 19, issue 10
https://doi.org/10.5194/hess-19-4397-2015
https://doi.org/10.5194/hess-19-4397-2015
Research article
 | 
30 Oct 2015
Research article |  | 30 Oct 2015

Identification of spatial and temporal contributions of rainfalls to flash floods using neural network modelling: case study on the Lez basin (southern France)

T. Darras, V. Borrell Estupina, L. Kong-A-Siou, B. Vayssade, A. Johannet, and S. Pistre

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (16 Jun 2015) by Thomas Kjeldsen
AR by Anne Johannet on behalf of the Authors (27 Jul 2015)  Manuscript 
ED: Reconsider after major revisions (08 Sep 2015) by Thomas Kjeldsen
ED: Referee Nomination & Report Request started (08 Sep 2015) by Thomas Kjeldsen
RR by Anonymous Referee #2 (23 Sep 2015)
ED: Publish as is (29 Sep 2015) by Thomas Kjeldsen
AR by Anne Johannet on behalf of the Authors (29 Sep 2015)
Download
Short summary
Flash floods are important hazards in urbanised zone and constitute important human and financial stakes. This paper applies a novel methodology, KnoX, dedicated to extract knowledge from a neural network model. It was shown that KnoX method could help to better characterize processes of both surface and underground floods. A case study is chosen in France: the Lez karst hydrosystem whose river crosses the city of Montpellier (400 000 inhabitants). Results will help flood warning services.