Articles | Volume 19, issue 6
https://doi.org/10.5194/hess-19-2859-2015
https://doi.org/10.5194/hess-19-2859-2015
Research article
 | Highlight paper
 | 
22 Jun 2015
Research article | Highlight paper |  | 22 Jun 2015

Towards observation-based gridded runoff estimates for Europe

L. Gudmundsson and S. I. Seneviratne

Related authors

Introducing the MESMER-M-TPv0.1.0 module: spatially explicit Earth system model emulation for monthly precipitation and temperature
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleussner
Geosci. Model Dev., 17, 8283–8320, https://doi.org/10.5194/gmd-17-8283-2024,https://doi.org/10.5194/gmd-17-8283-2024, 2024
Short summary
Compound droughts under climate change in Switzerland
Christoph Nathanael von Matt, Regula Muelchi, Lukas Gudmundsson, and Olivia Martius
Nat. Hazards Earth Syst. Sci., 24, 1975–2001, https://doi.org/10.5194/nhess-24-1975-2024,https://doi.org/10.5194/nhess-24-1975-2024, 2024
Short summary
CH-RUN: A data-driven spatially contiguous runoff monitoring product for Switzerland
Basil Kraft, Michael Schirmer, William H. Aeberhard, Massimiliano Zappa, Sonia I. Seneviratne, and Lukas Gudmundsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-993,https://doi.org/10.5194/egusphere-2024-993, 2024
Short summary
Detecting the human fingerprint in the summer 2022 western–central European soil drought
Dominik L. Schumacher, Mariam Zachariah, Friederike Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Maja Vahlberg, Roop Singh, Dorothy Heinrich, Julie Arrighi, Maarten van Aalst, Mathias Hauser, Martin Hirschi, Verena Bessenbacher, Lukas Gudmundsson, Hiroko K. Beaudoing, Matthew Rodell, Sihan Li, Wenchang Yang, Gabriel A. Vecchi, Luke J. Harrington, Flavio Lehner, Gianpaolo Balsamo, and Sonia I. Seneviratne
Earth Syst. Dynam., 15, 131–154, https://doi.org/10.5194/esd-15-131-2024,https://doi.org/10.5194/esd-15-131-2024, 2024
Short summary
Extending MESMER-X: a spatially resolved Earth system model emulator for fire weather and soil moisture
Yann Quilcaille, Lukas Gudmundsson, and Sonia I. Seneviratne
Earth Syst. Dynam., 14, 1333–1362, https://doi.org/10.5194/esd-14-1333-2023,https://doi.org/10.5194/esd-14-1333-2023, 2023
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Stochastic approaches
Deducing Land-Atmosphere Coupling Regimes from SMAP Soil Moisture
Payal Makhasana, Joseph Santanello, Patricia Lawston-Parker, and Joshua Roundy
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-125,https://doi.org/10.5194/hess-2024-125, 2024
Revised manuscript accepted for HESS
Short summary
Assimilating ESA-CCI Land Surface Temperature into the ORCHIDEE Land Surface Model: Insights from a multi-site study across Europe
Luis-Enrique Olivera-Guerra, Catherine Ottlé, Nina Raoult, and Philippe Peylin
EGUsphere, https://doi.org/10.5194/egusphere-2024-546,https://doi.org/10.5194/egusphere-2024-546, 2024
Short summary
Novel extensions to the Fisher copula to model flood spatial dependence over North America
Duy Anh Alexandre, Chiranjib Chaudhuri, and Jasmin Gill-Fortin
EGUsphere, https://doi.org/10.5194/egusphere-2024-442,https://doi.org/10.5194/egusphere-2024-442, 2024
Short summary
Non-asymptotic distributions of water extremes: Superlative or superfluous?
Francesco Serinaldi, Federico Lombardo, and Chris G. Kilsby
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-234,https://doi.org/10.5194/hess-2023-234, 2023
Revised manuscript accepted for HESS
Short summary
Revisiting the global hydrological cycle: is it intensifying?
Demetris Koutsoyiannis
Hydrol. Earth Syst. Sci., 24, 3899–3932, https://doi.org/10.5194/hess-24-3899-2020,https://doi.org/10.5194/hess-24-3899-2020, 2020
Short summary

Cited articles

Arnell, N. W.: Grid mapping of river discharge, J. Hydrol., 167, 39–56, https://doi.org/10.1016/0022-1694(94)02626-M, 1995.
Baldocchi, D.: TURNER REVIEW No. 15. "Breathing" of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems, Aust. J. Bot., 56, 1–26, https://doi.org/10.1071/BT07151, 2008.
Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., Dee, D., Dutra, E., Muñoz-Sabater, J., Pappenberger, F., de Rosnay, P., Stockdale, T., and Vitart, F.: ERA-Interim/Land: a global land surface reanalysis data set, Hydrol. Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-389-2015, 2015.
Beck, H. E., van Dijk, A. I. J. M., Miralles, D. G., de Jeu, R. A. M., Bruijnzeel, L. A., McVicar, T. R., and Schellekens, J.: Global patterns in base flow index and recession based on streamflow observations from 3394 catchments, Water Resour. Res., 49, 7843–7863, https://doi.org/10.1002/2013WR013918, 2013.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology, Hydrolog. Sci. J., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979.
Download
Short summary
Water storages and fluxes on land are key variables in the Earth system. To provide context for local investigations and to understand phenomena that emerge at large spatial scales, information on continental freshwater dynamics is needed. This paper presents a methodology to estimate continental-scale runoff on a 0.5° spatial grid, which combines the advantages of in situ observations with the power of machine learning regression. The resulting runoff estimates compare well with observations.