Articles | Volume 19, issue 3
https://doi.org/10.5194/hess-19-1153-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-19-1153-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Sampling frequency trade-offs in the assessment of mean transit times of tropical montane catchment waters under semi-steady-state conditions
Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Cuenca, Ecuador
Institute for Landscape Ecology and Resources Management (ILR), Research Centre for Bio Systems, Land Use and Nutrition (IFZ), Justus-Liebig-Universität Gießen, Gießen, Germany
D. Windhorst
Institute for Landscape Ecology and Resources Management (ILR), Research Centre for Bio Systems, Land Use and Nutrition (IFZ), Justus-Liebig-Universität Gießen, Gießen, Germany
R. Celleri
Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Cuenca, Ecuador
Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca, Ecuador
L. Timbe
Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Cuenca, Ecuador
Facultad de Ciencias Químicas, Universidad de Cuenca, Cuenca, Ecuador
P. Crespo
Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Cuenca, Ecuador
Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca, Ecuador
H.-G. Frede
Institute for Landscape Ecology and Resources Management (ILR), Research Centre for Bio Systems, Land Use and Nutrition (IFZ), Justus-Liebig-Universität Gießen, Gießen, Germany
J. Feyen
Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Cuenca, Ecuador
L. Breuer
Institute for Landscape Ecology and Resources Management (ILR), Research Centre for Bio Systems, Land Use and Nutrition (IFZ), Justus-Liebig-Universität Gießen, Gießen, Germany
Viewed
Total article views: 3,146 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 07 Nov 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,841 | 1,151 | 154 | 3,146 | 115 | 123 |
- HTML: 1,841
- PDF: 1,151
- XML: 154
- Total: 3,146
- BibTeX: 115
- EndNote: 123
Total article views: 2,189 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 02 Mar 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,227 | 834 | 128 | 2,189 | 100 | 107 |
- HTML: 1,227
- PDF: 834
- XML: 128
- Total: 2,189
- BibTeX: 100
- EndNote: 107
Total article views: 957 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 07 Nov 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
614 | 317 | 26 | 957 | 15 | 16 |
- HTML: 614
- PDF: 317
- XML: 26
- Total: 957
- BibTeX: 15
- EndNote: 16
Cited
16 citations as recorded by crossref.
- Estimating retention potential of headwater catchment using Tritium time series H. Hofmann et al. 10.1016/j.jhydrol.2018.04.030
- Illuminating hydrological processes at the soil‐vegetation‐atmosphere interface with water stable isotopes M. Sprenger et al. 10.1002/2015RG000515
- A lab in the field: high-frequency analysis of water quality and stable isotopes in stream water and precipitation J. von Freyberg et al. 10.5194/hess-21-1721-2017
- Identification of groundwater mean transit times of precipitation and riverbank infiltration by two‐component lumped parameter models N. Le Duy et al. 10.1002/hyp.13549
- Using isotopes to understand the evolution of water ages in disturbed mixed land‐use catchments K. Dimitrova‐Petrova et al. 10.1002/hyp.13627
- Linking tracers, water age and conceptual models to identify dominant runoff processes in a sparsely monitored humid tropical catchment C. Birkel & C. Soulsby 10.1002/hyp.10941
- Mean transit times in headwater catchments: insights from the Otway Ranges, Australia W. Howcroft et al. 10.5194/hess-22-635-2018
- Factors controlling the temporal variability of streamflow transit times in tropical alpine catchments K. Larco et al. 10.1016/j.jhydrol.2022.128990
- Tracer sampling frequency influences estimates of young water fraction and streamwater transit time distribution M. Stockinger et al. 10.1016/j.jhydrol.2016.08.007
- Factors controlling inter-catchment variation of mean transit time with consideration of temporal variability W. Ma & T. Yamanaka 10.1016/j.jhydrol.2015.12.061
- Flow partitioning modelling using high-resolution electrical conductivity data during variable flow conditions in a tropical montane catchment P. Lazo et al. 10.1016/j.jhydrol.2022.128898
- On the shape of forward transit time distributions in low-order catchments I. Heidbüchel et al. 10.5194/hess-24-2895-2020
- Flow Partitioning Modelling Using High-Resolution Isotopic and Electrical Conductivity Data G. Mosquera et al. 10.3390/w10070904
- Effects of streamflow isotope sampling strategies on the calibration of a tracer‐aided rainfall‐runoff model J. Stevenson et al. 10.1002/hyp.14223
- Hydroclimatic controls on non-stationary stream water ages in humid tropical catchments C. Birkel et al. 10.1016/j.jhydrol.2016.09.006
- Contrasting transit times of water from peatlands and eucalypt forests in the Australian Alps determined by tritium: implications for vulnerability and the source of water in upland catchments I. Cartwright & U. Morgenstern 10.5194/hess-20-4757-2016
16 citations as recorded by crossref.
- Estimating retention potential of headwater catchment using Tritium time series H. Hofmann et al. 10.1016/j.jhydrol.2018.04.030
- Illuminating hydrological processes at the soil‐vegetation‐atmosphere interface with water stable isotopes M. Sprenger et al. 10.1002/2015RG000515
- A lab in the field: high-frequency analysis of water quality and stable isotopes in stream water and precipitation J. von Freyberg et al. 10.5194/hess-21-1721-2017
- Identification of groundwater mean transit times of precipitation and riverbank infiltration by two‐component lumped parameter models N. Le Duy et al. 10.1002/hyp.13549
- Using isotopes to understand the evolution of water ages in disturbed mixed land‐use catchments K. Dimitrova‐Petrova et al. 10.1002/hyp.13627
- Linking tracers, water age and conceptual models to identify dominant runoff processes in a sparsely monitored humid tropical catchment C. Birkel & C. Soulsby 10.1002/hyp.10941
- Mean transit times in headwater catchments: insights from the Otway Ranges, Australia W. Howcroft et al. 10.5194/hess-22-635-2018
- Factors controlling the temporal variability of streamflow transit times in tropical alpine catchments K. Larco et al. 10.1016/j.jhydrol.2022.128990
- Tracer sampling frequency influences estimates of young water fraction and streamwater transit time distribution M. Stockinger et al. 10.1016/j.jhydrol.2016.08.007
- Factors controlling inter-catchment variation of mean transit time with consideration of temporal variability W. Ma & T. Yamanaka 10.1016/j.jhydrol.2015.12.061
- Flow partitioning modelling using high-resolution electrical conductivity data during variable flow conditions in a tropical montane catchment P. Lazo et al. 10.1016/j.jhydrol.2022.128898
- On the shape of forward transit time distributions in low-order catchments I. Heidbüchel et al. 10.5194/hess-24-2895-2020
- Flow Partitioning Modelling Using High-Resolution Isotopic and Electrical Conductivity Data G. Mosquera et al. 10.3390/w10070904
- Effects of streamflow isotope sampling strategies on the calibration of a tracer‐aided rainfall‐runoff model J. Stevenson et al. 10.1002/hyp.14223
- Hydroclimatic controls on non-stationary stream water ages in humid tropical catchments C. Birkel et al. 10.1016/j.jhydrol.2016.09.006
- Contrasting transit times of water from peatlands and eucalypt forests in the Australian Alps determined by tritium: implications for vulnerability and the source of water in upland catchments I. Cartwright & U. Morgenstern 10.5194/hess-20-4757-2016
Saved (final revised paper)
Discussed (preprint)
Latest update: 08 Nov 2024
Short summary
Stream, soil and precipitation waters were collected in a tropical montane cloud forest catchment for 2 years and analyzed for stable water isotopes in order to infer transit time distribution functions and mean transit times for semi-steady-state conditions. Samples were aggregated to diverse sampling resolutions for checking the sensitivity of sampling frequency on lumped-model predictions. Results provide valuable information for the planning of future fieldwork in similar catchments.
Stream, soil and precipitation waters were collected in a tropical montane cloud forest...