Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF 5-year value: 5.460
IF 5-year
CiteScore value: 7.8
SNIP value: 1.623
IPP value: 4.91
SJR value: 2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
h5-index value: 65
Volume 18, issue 2
Hydrol. Earth Syst. Sci., 18, 559–573, 2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 18, 559–573, 2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 13 Feb 2014

Research article | 13 Feb 2014

Sr isotopic characteristics in two small watersheds draining silicate and carbonate rocks: implication for studies on seawater Sr isotopic evolution

W. H. Wu1, H. B. Zheng2, J. H. Cao3, and J. D. Yang4 W. H. Wu et al.
  • 1Key Laboratory of Surficial Geochemistry, Ministry of Education; School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210093, China
  • 2School of Geography Science, Nanjing Normal University, Nanjing, 210046, China
  • 3Institute of Karst Geology, Chinese Academy of Geological Science, Guilin, 541004, China
  • 4Center of Modern Analysis, Nanjing University, Nanjing, 210093, China

Abstract. We systematically investigated the Sr isotopic characteristics of a small silicate watershed, the Xishui River a tributary of the Yangtze River, and a small carbonate watershed, the Guijiang River a tributary of the Pearl River. The results show that the two rivers have uncommon Sr isotopic characteristics compared with most small watersheds. Specifically, the silicate watershed (Xishui River) has relatively high Sr concentrations (0.468 to 1.70 μmol L−1 in summer and 1.30 to 3.17 μmol L−1 in winter, respectively) and low 87Sr/86Sr ratios (0.708686 to 0.709148 in summer and 0.708515 to 0.709305 in winter). The carbonate watershed (Guijiang River) has low Sr concentrations (0.124 to 1.098 μmol L−1) and high 87Sr/86Sr ratios (0.710558 to 0.724605).

As the 87Sr/86Sr ratios in the Xishui River are lower than those in seawater, the 87Sr/86Sr ratio of seawater will decrease after the river water is transported to the oceans. Previous studies have also shown that some basaltic watersheds with extremely high chemical weathering rates reduced the seawater Sr isotope ratios. In other words, river catchments with high silicate weathering rates do not certainly transport highly radiogenic Sr into oceans. Therefore, the use of the variations in the seawater 87Sr/86Sr ratio to indicate the continental silicate weathering intensity may be questionable.

In the Guijiang River catchment, the 87Sr/86Sr ratios of carbonate rocks and other sources (rainwater, domestic and industrial waste water, and agricultural fertilizer) are lower than 0.71. In comparison, some non-carbonate components, such as sand rocks, mud rocks, and shales, have relatively high Sr isotopic compositions. Moreover, granites accounted for only 5% of the drainage area have extremely high 87Sr/86Sr ratios with an average of greater than 0.8. Therefore, a few silicate components in carbonate rocks obviously increase the Sr isotopic compositions of the river water.

Publications Copernicus