Geostatistical prediction of flow–duration curves in an index-flow framework
Abstract. An empirical period-of-record flow–duration curve (FDC) describes the percentage of time (duration) in which a given streamflow was equaled or exceeded over an historical period of time. In many practical applications one has to construct FDCs in basins that are ungauged or where very few observations are available. We present an application strategy of top-kriging, which makes the geostatistical procedure capable of predicting FDCs in ungauged catchments. Previous applications of top-kriging mainly focused on the prediction of point streamflow indices (e.g. flood quantiles, low-flow indices, etc.); here the procedure is used to predict the entire curve in ungauged sites as a weighted average of standardised empirical FDCs through the traditional linear-weighting scheme of kriging methods. In particular, we propose to standardise empirical FDCs by a reference index-flow value (i.e. mean annual flow, or mean annual precipitation × the drainage area) and to compute the overall negative deviation of the curves from this reference value. We then propose to use these values, which we term total negative deviation (TND), for expressing the hydrological similarity between catchments and for deriving the geostatistical weights. We focus on the prediction of FDCs for 18 unregulated catchments located in central Italy, and we quantify the accuracy of the proposed technique under various operational conditions through an extensive cross-validation and sensitivity analysis. The cross-validation points out that top-kriging is a reliable approach for predicting FDCs with Nash–Sutcliffe efficiency measures ranging from 0.85 to 0.96 (depending on the model settings) very low biases over the entire duration range, and an enhanced representation of the low-flow regime relative to other regionalisation models that were recently developed for the same study region.