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Abstract. An empirical period-of-record flow–duration
curve (FDC) describes the percentage of time (duration) in
which a given streamflow was equaled or exceeded over
an historical period of time. In many practical applications
one has to construct FDCs in basins that are ungauged or
where very few observations are available. We present an
application strategy of top-kriging, which makes the geosta-
tistical procedure capable of predicting FDCs in ungauged
catchments. Previous applications of top-kriging mainly fo-
cused on the prediction of point streamflow indices (e.g.
flood quantiles, low-flow indices, etc.); here the procedure
is used to predict the entire curve in ungauged sites as a
weighted average of standardised empirical FDCs through
the traditional linear-weighting scheme of kriging methods.
In particular, we propose to standardise empirical FDCs by a
reference index-flow value (i.e. mean annual flow, or mean
annual precipitation× the drainage area) and to compute
the overall negative deviation of the curves from this ref-
erence value. We then propose to use these values, which
we term total negative deviation (TND), for expressing the
hydrological similarity between catchments and for deriv-
ing the geostatistical weights. We focus on the prediction
of FDCs for 18 unregulated catchments located in central
Italy, and we quantify the accuracy of the proposed tech-
nique under various operational conditions through an ex-
tensive cross-validation and sensitivity analysis. The cross-
validation points out that top-kriging is a reliable approach
for predicting FDCs with Nash–Sutcliffe efficiency measures
ranging from 0.85 to 0.96 (depending on the model set-
tings) very low biases over the entire duration range, and
an enhanced representation of the low-flow regime relative
to other regionalisation models that were recently developed
for the same study region.

1 Introduction

An empirical flow–duration curve (FDC) graphically rep-
resents the percentage of time (or duration) in which the
streamflow has been equalled or exceeded over a historical
period of time (see, e.g.Vogel and Fennessey, 1994). Empir-
ical FDCs are often used to represent the streamflow regime
of a given catchment when an adequate number of stream-
flow observations are available. A deterministic hydrologist
would probably refer to an FDC as a key signature of the hy-
drological behaviour of a given basin, as it results from the
interplay of climate, size, morphology, and permeability of
the basin; a statistical hydrologist would refer to an FDC as
the exceedance probability, or equivalently the complement
to the probability distribution function (cdf) of streamflows
(see, e.g.Castellarin et al., 2013).

Because of their ability to provide a simple and yet com-
prehensive graphical view of the overall historical variability
of streamflows in a river basin, from floods to low flows, and
their characteristic of being readily understandable by those
who do not have a strong hydrological background, empiri-
cal FDCs are routinely used in several water-related studies
and engineering applications such as hydropower generation,
design of water supply systems, irrigation planning and man-
agement, waste-load allocation, sedimentation studies, habi-
tat suitability, etc. (see, e.g.Vogel and Fennessey, 1995).

The literature reports two different representations of em-
pirical flow–duration curves, depending on the reference pe-
riod of time (seeVogel and Fennessey, 1994): (i) period-
of-record flow–duration curves (POR-FDCs), constructed on
the basis of the entire observation period, and (ii) annual
flow–duration curves (AFDCs), constructed year-wise. The
two representations are complementary to each other and
should be selected by practitioners depending on the water
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problem at hand (Castellarin et al., 2004b). For instance,
AFDCs are useful for quantifying the streamflow regime
in a typical hydrological year, or in a particularly wet or
dry year (seeVogel and Fennessey, 1994); POR-FDCs are
a steady-state representation of the long-term streamflow
regime and can be effectively used, for instance, for patch-
ing and extending streamflow data (Hughes and Smakhtin,
1996) or for assessing the long-term hydropower potential of
a given site.

In many practical applications one has to predict FDCs
at ungauged catchments or catchments for which the avail-
able hydrometric information is sparse (see, e.g.Castellarin
et al., 2013). This task is often addressed by developing re-
gional models of FDCs. The scientific literature proposes
several models, adopting different approaches to the prob-
lem: some models regard the curves as the exceedance proba-
bility function of streamflows and regionalise the parameters
of theoretical frequency distributions (seeFennessey and Vo-
gel, 1990; LeBoutillier and Waylen, 1993; Castellarin et al.,
2007; Mendicino and Senatore, 2013); similarly, some oth-
ers adopt a suitable mathematical expression for representing
the curves and regionalise the expression parameters (Fran-
chini and Suppo, 1996; Mendicino and Senatore, 2013); fi-
nally, some others do not make any attempt to mathemat-
ically represent the curves, they rather standardise empiri-
cal curves constructed for gauged catchments that are hydro-
logically similar to the target site (i.e. catchments that are
characterised by a similar physiographic, pedologic, and cli-
matic conditions, also referred to as donor sites; see, e.g.
Kjeldsen et al., 2000) by an index streamflow (e.g. mean
annual flow), and then average the dimensionless curves to
predict the standardised FDC for the study catchment. The
averaging procedure may (see, e.g.Ganora et al., 2009), or
may not (see, e.g.Smakhtin et al., 1997), adopt a weight-
ing scheme, which gives more importance to donor sites that
are more hydrologically similar to the target site. The litera-
ture commonly groups these regionalisation procedures into
parametric (i.e. procedures that parameterise FDCs and then
regionalise parameters, like the first two examples) and non-
parametric (i.e. procedure that dispense with a parameterisa-
tion of the curves, like the third example, see, e.g.Castellarin
et al., 2004a, 2013) procedures.

It is a common argument that an accurate representation
of FDCs for daily streamflows requires probabilistic mod-
els (or mathematical expressions) with four or more parame-
ters (LeBoutillier and Waylen, 1993; Castellarin et al., 2007),
which control the position, scale, and shape of the distribu-
tion. This hampers the construction of reliable regional mod-
els, due to the large uncertainty that is commonly associated
with regional relationships that express the shape parameters
in terms of physiographic and climatic catchment descriptors
(seeCastellarin et al., 2007). As a result,Ganora et al.(2009)
recently revisited the classical approach to FDCs regionalisa-
tion based on averaging standardised curves constructed for
neighbouring gauged sites (Smakhtin et al., 1997), they pro-

posed a mathematical model that enables the user to quantify
the dissimilarity between empirical FDCs and associate this
dissimilarity with a distance in the multidimensional space
of catchment descriptors. An innovative feature of this ap-
proach is the possibility to weight each empirical FDC ac-
cording to the distance between each gauged basin and the
target site in the space of catchment descriptors, therefore
accounting for the hydrological similarity of the donor sites
with the site of interest. Like many of the traditional ap-
proaches proposed in the literature, though, the approach pro-
posed inGanora et al.(2009) both (1) requires a prelimi-
nary subdivision of the study area into homogeneous pooling
groups of sites (i.e. clustering) and (2) predicts a standardised
(i.e. dimensionless) FDC for the target site, which needs then
to be multiplied by a dimensional-scale index (e.g. an indi-
rect estimate of mean annual streamflow) in order to be of
practical use. Both steps are critical phases of a regionalisa-
tion process. In particular concerning step (1), geostatistical
regionalisation approaches have been shown to be particu-
larly effective in dispensing with the preliminary identifica-
tion of the homogeneous pooling group of sites while us-
ing regional hydrological information for predicting stream-
flow indices in ungauged catchments (e.g. flood quantiles,
low-flow indices, etc.; see, e.g.Chokmani and Ouarda, 2004;
Skøien et al., 2006; Castiglioni et al., 2009, 2011; Archfield
et al., 2013; Laaha et al., 2013); nevertheless, no geostatisti-
cal procedure has been developed that specifically addresses
the problem of FDC regionalisation, aside from an interpola-
tion of the curves in the physiographic space through a three-
dimensional kriging, which is not a geostatistical procedure
in the strict sense (seeCastellarin, 2014).

Our paper focuses on the derivation of a geostatistical
technique that addresses both limitations mentioned above
for the prediction of FDCs in ungauged sites. We adopt
topological kriging or top-kriging, which is a block-kriging
with variable support area that interpolates streamflow in-
dices along stream networks (see, e.g.Skøien et al., 2006).
Top-kriging has been proved to be particularly successful in
predicting point streamflow values (e.g. low flow and flood
quantiles, mean annual flood, stream temperatures, etc.) in
various geographical and climatic contexts (see, e.g.Merz
et al., 2008; Castiglioni et al., 2011; Vormoor et al., 2011;
Archfield et al., 2013; Laaha et al., 2013).

We adopt top-kriging as the core tool for predicting stan-
dardised (i.e. divided by mean annual flow) and dimensional
long-term daily FDCs on the basis of empirical period-of-
record curves (POR-FDCs, hereafter referred to as FDCs
for the sake of brevity) constructed for neighbouring stream
gauges.

The idea behind our study is (i) to identify a meaning-
ful empirical point value (or index) that fully characterises
the whole empirical FDC; (ii) to model the spatial correla-
tion structure, or the spatial variability, of this index over the
study region through top-kriging; and (iii) to assess the capa-
bility of this very spatial correlation model to predict FDCs in
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ungauged sites by weighting neighbouring empirical FDCs.
We present two possible applications of the proposed proce-
dure, the first one predicts standardised FDCs, that is FDCs
divided by mean annual flow (MAF), the second one predicts
FDCs divided by the product between mean annual precip-
itation (MAP) and drainage area. MAP is generally easier
to predict than MAF in ungauged sites, due to the higher
density of rain-gauging networks relative to stream-gauging
ones. The second application can therefore be used to predict
dimensional FDCs in ungauged sites.

The approach is developed and tested through a compre-
hensive leave-one-out cross-validation procedure for a rather
wide geographical region located in eastern-central Italy in-
cluding 18 unregulated river basins.Castellarin et al.(2007)
propose regional models of long-term daily FDCs for this
area, which we use in this study as benchmark models for
comparing the accuracy and reliability of the proposed ap-
proach.

2 Geostatistical hydrological prediction in ungauged
sites

2.1 Top-kriging

Top-kriging is a powerful geostatistical procedure proposed
by Skøien et al.(2006) which performs hydrological predic-
tions at ungauged sites along stream-networks on the basis of
the empirical information collected at neighbouring gauging
stations. As kriging techniques, the spatial interpolation is
obtained in top-kriging by a linear combination of the empir-
ical values; therefore, the unknown value of the streamflow
index of interest at prediction locationx0, Ẑ(x0), can be esti-
mated as a weighted average of the variable measured in the
neighbourhood:

Ẑ(x0)=

n∑
i=1

λiZ(xi), (1)

whereλi is the kriging weight for the empirical valueZ(xi)
at locationxi , andn is the number of neighbouring stations
used for interpolation. Kriging weightsλi can be found by
solving the typical ordinary kriging linear system (Eq.2),
with the constrain of unbiased estimation (2b):
n∑
j=1

γi,jλj + θ = γ0,i i = 1, . . . ,n (2a)

n∑
j=1

λj = 1, (2b)

where θ is the Lagrange parameter andγi,j is the semi-
variance between catchmenti and j . The semi-variance is
also referred to as variogram in geostatistics and represents
the space variability of the regionalised variableZ. A pe-
culiar feature of top-kriging is to consider the variable de-
fined over a non-zero supportS (i.e. the catchment drainage

area) (Cressie, 1993; Skøien et al., 2006); this implies that
the kriging system (Eq.2) remains the same, but the gamma
values between the measurements need to be obtained by reg-
ularization, that is the smoothing effect of support areaS on
the point variogram, which is computed by applying an in-
tegral average of the variableZ overS. After this, the point
variogram can be back-calculated by fitting aggregated vari-
ogram values to the sample variogram (details can be found
in Skøien et al., 2006).

2.2 Total negative deviation (TND)

Top-kriging could in principle be directly applied to interpo-
late single streamflow values associated with a given dura-
tion (i.e. streamflow quantiles). Therefore, similarly to what
is proposed inShu and Ouarda(2012), a regional prediction
of FDCs could be obtained by repeatedly applying top-krging
r times, wherer is the number of durations considered to
provide an accurate representation of the curve (e.g. 15–20,
seeShu and Ouarda, 2012), and then by interpolating the
r predicted streamflow quantiles to obtain an FDC. Never-
theless, each FDC is a continuum resulting from the com-
plex interplay between climate conditions and geomorpho-
logic catchment characteristics (see, e.g.Yaeger et al., 2012;
Yokoo and Sivapalan, 2011; Beckers and Alila, 2004). This
continuum would be lost, entirely or in part, by using the
approach outlined above; moreover, this prediction strategy
might not preserve a fundamental property of FDCs, that is
the monotone (i.e. non-increasing in this paper) relationship
between streamflow and duration.

Our main goal is to develop a top-kriging procedure that
regionalises the whole curve seen as a single object. In geo-
statistical applications one should define a “regionalised vari-
able” to produce a characterisation of the spatial variability
of the investigated phenomenon. As mentioned above, top-
kriging has been shown to be particularly reliable in predict-
ing point (i.e. single values) streamflow indices in ungauged
locations. Therefore, a viable strategy could be to identify
a point index that effectively summarises the entire curve,
and to compute the top-krigingλi values of Eq. (2) relative
to this index. These values could then be used for averaging
neighbouring empirical FDCs and predicting the FDC at the
(ungauged) site of interest. This prediction strategy would re-
gard each curve as a single object, and the linear interpolation
of the curves (see also Sect.3) would preserve the monotone
relationship between streamflow and duration.

Some studies in the literature suggest to use the FDC slope
as an overall index for the curve (see, e.g.Sawicz et al.,
2011). We believe though that the definition of such an index
is associated with some degree of subjectivity (e.g. which
lower and upper durations to consider for the computation
of the slope), and may be hard to define in some cases (e.g.
ephemeral and intermittent streams).

Focusing on FDCs,Ganora et al.(2009) quantify the hy-
drological dissimilarity between a pair of catchments as the
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area between the corresponding empirical standardised (i.e.
divided by mean annual flow) FDCs: two hydrologically sim-
ilar catchments will show similar standardised curves, hence
a small area between the curves, whereby two basins that
are completely different in terms of hydrological behaviour
will be characterised by highly different FDCs, and there-
fore the area between the curves will be large. Following this
background idea, we propose to summarise the FDC through
a point index which we term total negative deviation (TND)
between a dimensionless (i.e. standardised by a reference
streamflow value) FDC and 1,

TND =

m∑
i=1

|qi − 1|1i, (3)

whereqi represents theith empirical dimensionless stream-
flow value,1i is half of the frequency interval between the
(i+1)th and(i−1)th streamflow values, and the summation
includes onlyi = 1, . . . ,m dimensionless streamflow values
that are lower than 1 (i.e. negative deviation).m stands for
the length of the dimensionless streamflow sample once val-
ues larger than 1 are excluded.

Empirical TND values are proportional to the filled areas
in Fig. 1, where black thick curves represent the empirical
FDCs. More specifically, Fig.1 represents the dimension-
less empirical FDCs that were constructed for three stream
gauges (see Sect.4 for a brief description of the study area)
by using two standardisation methods: in one case the curve
is standardised by the mean annual flow (standardisation by
MAF; TND1; top panels of Fig.1); in the other case the curve
is standardised by MAP∗, that is a reference streamflow equal
to the catchment area A times the mean annual precipitation
MAP (standardisation by MAP∗; TND2; bottom panels in
Fig.1) (see details on standardisation procedure in Sect.3.2).

Even though TND defined by Eq. (3) and illustrated in
Fig. 1 does not describe the portion of the curve associ-
ated with low durations (high flows), it is very informative
on the shape of the FDC, which, in turn, is controlled by
climatic, physiographic, and geo-pedological characteristics
of the catchment. Catchments that are dominated by rapidly
responding near-surface runoff processes have steeper FDC
slopes, and therefore larger TND, while FDCs are less steep
where slower responding runoff generation processes prevail,
and under these circumstances TND will be smaller. This is
related to functional similarity: catchments that store and re-
tain more water should have smaller TNDs. The magnitude
of TND is related not only to the climate but also to how
efficiently the catchment partitions water into runoff.

3 Top-kriging of flow–duration curves

3.1 Construction of empirical FDCs

The construction of empirical FDCs for gauged sites is
straightforward: (i) pooling all observed streamflows in one
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Figure 1.Total negative deviation (TND, filled area) for three catch-
ments with different hydrological behaviours (see Sect.4). Top
panels: TND1 (red area) for an empirical FDC (black thick line)
standardised by mean annual flow (MAF); bottom panels: TND2
(blue area) for an empirical FDC (black tick line) standardised by
MAP∗

= MAP·A·CF, where MAP is the mean annual precipitation,
A is the drainage area, and CF is a unit-conversion factor.

sample, (ii) ranking the observed streamflows in ascending
order, and (iii) plotting each ordered observation vs. its cor-
responding duration. We adopt as duration of theith obser-
vation in the ordered sample in our study the estimate of the
exceedance probability of the observation, 1−Fi . If Fi is es-
timated using a Weibull plotting position, the durationdi is

di = Prob{Q> qi} = 1−
i

N + 1
, (4)

whereN is the length of daily streamflows observed in
a gauged site andi = 1, . . . ,N is the ith position in the re-
arranged sample.

A common representation of FDCs reports log-flows on
they axis and the duration on thex axis (see Fig. 1). Another
common representation adopts a log-normal space instead,
in which log-transformation of streamflows are still reported
on they axis, while thex axis reports duration expressed as
a normal standard variatez,

zi =8−1(1− di), (5)

where8 is the cdf of the standard normal distribution.
The combination of the two transformations improves sig-
nificantly the readability of the FDC (see Fig.2), the
log-transformation enhances the representation of observed
streamflows, which usually spans over two or more orders
of magnitude, while expressing the duration as a standard
normal variate improves the visualization of small and large
durations, that is flood and low flows, respectively.
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3.2 Computation of empirical TND values

According to what we anticipated in Sect.2.2, two differ-
ent standardisation procedures are considered for computing
TND values: TND1 and TND2.

TND1

TND values are computed after standardisation by mean an-
nual flow (MAF), that is the traditional way to standardise
FDCs.

TND2

TND values are computed for FDCs that are standardised by
a rescaled mean annual precipitation (MAP∗). The standardi-
sation is performed by dividing each streamflow value by the
empirical catchment-scale MAP value, rescaled to basin size
as

MAP∗
= MAP ·A · CF, (6)

whereA is the catchment area and CF is a unit-conversion
factor (e.g. if streamflows are in m3 s−1, MAP in mm year−1

andA in km2, then CF= 3.171× 10−5
[

year
s

m2

km2
m

mm]). Once
the dimensionless FDC is predicted for an ungauged site,
then a dimensional FDC can be obtained by multiplying the
curve by a local catchment-scale estimate of MAP∗.

The idea behind the choice of two different standardisa-
tions of FDCs derives from two different purposes: (TND1)
MAF standardisation is the traditional choice when an index-
flow regionalisation approach, with MAF being the index-
flow, is used to regionalise FDCs (seeCastellarin et al.,
2004b; Ganora et al., 2009). Such an approach, as already
mentioned, then needs an appropriate regional model for pre-
dicting the index flow in ungauged basins (e.g. a multiregres-
sion model), in fact, once a standardised FDC is predicted
for an ungauged site, a dimensional FDC can be obtained
by multiplying the dimensionless curve by an estimate of
MAF for the site of interest. Setting up a regional model for

predicting MAF is a critical and delicate step in the region-
alisation procedure (see, e.g.Brath et al., 2001; Castellarin
et al., 2004a): (TND2) MAP∗ standardisation enables one
to derive dimensionless FDCs to be used for regionalisation,
and to predict a dimensional curve, which is ultimately what
practitioners really need for addressing the water problem at
hand, simply by multiplying the dimensionless FDC by MAP
and catchment area. The uncertainty associated with predic-
tions of MAP is generally significantly smaller than the un-
certainty associated with predictions of MAF for ungauged
sites, in virtue of the large availability of raingauges and the
accuracy of geostatistical procedure for interpolating point
observations (see, e.g.Brath et al., 2003; Castellarin et al.,
2004a).

Concerning the practical computation of empirical TND
values, that is TND1 or TND2, the record length generally
varies among the available stream gauges. Therefore, before
applying Eq. (3) one needs to set a maximum durationdmax
that can be used in order to compute the TND values consis-
tently for all sites in the region.dmax should be set according
to the minimum record length in the region (e.g. if the min-
imum record length in the region is 5 years, one could set
dmax = (5 · 365)/(5 · 365+ 1)).

Once a suitable reference streamflow is selected for per-
forming the standardisation of the curves (i.e. MAF or
MAP∗), one can easily identify the number of durations
m for which the empirical dimensionless streamflow values
are lower than 1 (i.e. streamflow values lower than MAF
or MAP∗) and compute TND according to Eq. (3). For in-
stance, once computed the standard-normal durationzi as-
sociated with each standardised and log-transformed stream-
flow quantileqi ,1i in Eq. (3) can be computed as

1i = 0.5(zi+1 − zi−1) for i < m (7a)

1i = 0.5(zi − zi−1) for i = 1,m. (7b)
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3.3 Geostatistical interpolation of TND and FDCs

Empirical TND (i.e. TND1 and TND2) values are site spe-
cific and can be interpolated with geostatistical techniques.
Top-kriging can be applied as illustrated in the stepwise de-
scription bySkøien(2013) andSkøien et al.(2014) through
the suite of R-functions included in the R-packagertop ,
which can be accessed from the Comprehensive R Archive
Network (CRAN,http://cran.r-project.org/). The application
of top-kriging formally requires exactly the same steps in
both cases (i.e. for empirical TND1 and TND2 values).

The point sample variogram for each standardisation (see
Sect.3.2) can be computed using the binned variogram tech-
nique (seeSkøien et al., 2014, for details), for which sample
points are aggregated in distance and area classes or bins un-
der the hypothesis of isotropy, i.e. the variogram does not
vary with direction. The sample point variogram can then be
modelled through a suitable theoretical model (e.g. exponen-
tial, Gaussian, spherical, fractal, etc.).Skøien et al.(2006)
recommend the use of the exponential variogram.

Once the empirical variogram is modelled, the numbern

of neighbouring stations on which to base the spatial inter-
polation is set iteratively by the user on the basis of a first
set of preliminary analyses, which aim at identifying the
n value that produces the most accurate predictions in cross-
validation (i.e. for predicting TND values in ungauged loca-
tions). This means that the local prediction of TND values,
i.e. the computation of ordinary linear system in Eq. (2), de-
pends onn-dimensional kriging weights.

We assume in our study that then kriging weights that are
computed for predicting TND in ungauged locations can also
be adopted for predicting the flow–duration curve in the same
locations as a weighted average ofn standardised empirical
curves as,

ψ̂(x0,d)=

n∑
i=1

λiψ(xi,d) d ∈ (0,1), (8)

whereλi are the top-kriging weights resulting from TND
interpolation;ψ(xi,d) indicates the standardised empirical
FDC for site xi , that is a flow–duration curve in which
streamflow quantiles are divided either by MAF or by MAP∗;
ψ̂(x0,d) stands for the standardised FDC predicted for site
x0 over the entire duration domaind; andn is the number
of neighbouring sites in the vicinity of the site of interest.
It is worth noting that while FDC predictions are performed
by using empirical standardised FDCs as a whole (i.e. the
prediction is performed over the entire duration interval),
the computation of empirical TND values does not consider
lower durations (see details in Sect.2.2). Therefore, it will
be particularly interesting to analyse the performance of the
proposed procedure for predicting high flows. We will assess
our assumption relative to a study area which was extensively
analysed in previous studies in the context of regionalisation
of FDCs (see, e.g.Castellarin et al., 2004a, 2007).

4 Study area and data

The study region includes 18 unregulated catchments, which
previous studies describe as a rather heterogeneous group of
sites in terms of physiographic and climatic characteristics
(see, e.g.Castellarin et al., 2007, 2004a). Daily streamflow
series were obtained for all basins from the stream gauges
belonging to the former National Hydrographic Service of
Italy (SIMN) over the time period 1920–2000. The length of
the observed series ranges from 5 to 40 years (average record
length: 18 years). Also, the empirical MAP value relative to
each of the 18 catchments was estimated using data collected
from a rather dense raingauge network (i.e. 1 raingauge per
≈ 50 km2) during the same time interval of daily streamflow
observations.

Empirical FDCs were constructed from the daily stream-
flow series for the 18 catchments as described in Sect.3.1.
Empirical TND1 and TND2 values were computed for
each catchment according to standardisations described in
Sect.3.2, and are illustrated in Fig.3. As shown in the left
panel of Fig.3, empirical TND1 values increase moving from
south-east to north-west. This outcome reflects the lower per-
viousness of the northern catchments, which are then less ca-
pable of storing water volumes and consequently are char-
acterised by steeper empirical FDCs. Moving from south-
east to north-west, one can note for TND2 (right panel of
Fig. 3) similar patterns to those observed for TND1 values,
i.e. TND values tend to increase along the SE–NW direction.
On the one hand, this general behaviour suggests that in our
case study mean annual flow (MAF) is largely controlled by
precipitation, on the other hand, karst phenomena associated
with the presence of fractured limestones result in an increase
of TND2 for the southern catchments, i.e. sites 3006, 3003,
and 3002, for which subsurface flows play a significant role.

Table1 illustrates the variability over the study region of
catchment areaA (km2), mean annual flow MAF (m3 s−1),
mean annual precipitation MAP (mm), MAP∗ (m3 s−1), and
empirical TND1 (–) and TND2 (–) values, by reporting the
minimum, mean, and maximum values together with the
first, second, and third quartiles of each index. For detailed
information on the study area please refer to the Supplement.

5 Analysis and results

5.1 Prediction of FDCs in cross-validation

We will refer to the proposed approach as TNDTK (i.e. total
negative deviation top-kriging) in the remainder of the paper.
This section illustrates in detail the application of TNDTK
in cross-validation, describing the accuracy of the procedure
when applied in ungauged basins.
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Figure 3. Empirical TND1 and TND2 values for the study catch-
ments.

Table 1. Study catchments: variability of drainage area (A), mean
annual flow (MAF), mean annual precipitation (MAP), rescaled
mean annual precipitation (AP∗), empirical TND1 and TND2 and
length of the observed streamflow series (Y); minimum, maximum,
mean, first, second (median), and third quartiles of the sample dis-
tributions.

A MAF MAP MAP∗ TND1 TND2 Y
[km2] [m3 s−1] [mm] [m3 s−1] [–] [–] [year]

Min 61 1.49 918 2.17 1.59 1.25 5
1st Qu. 104 2.63 1079 3.60 2.76 4.38 8.5
Median 164 3.83 1123 5.99 3.82 5.78 11.5
Mean 330 6.51 1118 11.69 4.52 6.11 18.1
3rd Qu. 562 7.54 1162 17.53 5.74 7.55 26
Max 1044 21.29 1298 37.07 9.83 13.21 40

5.1.1 Standardisation by MAF

The application of TNDTK to the prediction of FDCs stan-
dardised by MAF requires the preliminary application of top-
kriging to TND1 values, which we performed by calculat-
ing binned sample variogram first, and then by modelling
binned empirical data with a 5-parameter “modified” ex-
ponential theoretical variogram (a combination of exponen-
tial and a fractal model, see details inSkøien et al., 2006).
As an example, Fig.4 illustrates the comparison between
some selected bins of the sample variogram and the regu-
larised semi-variance for those bins (see alsoSkøien et al.,
2014, and Fig. 4 therein). The numbers in the legend refer
to different combinations of catchment areas, so that, e.g.,
300 vs. 75 means the regularized variogram as a function
of distance for two catchments of size∼ 300 and∼ 75 km2,
respectively; while the solid lines represent a regularized
variogram of equally sized catchments (∼ 300 km2). In the
same figure, the black solid line represents the fitted the-
oretical point variogram, and its five parameters were ob-
tained through the weighted least squares (WLS) regression
method fromCressie(1985), by fitting simultaneously all
regularised binned variograms that were computed for vari-

0 5 10 15 20 25 30 35

0
2

4
6

8

Distance [km]

S
e

m
iv

a
ri
a

n
c
e

 [
-]

point
300 vs 75
750 vs 300
300 vs 300
750 vs 75
3000 vs 300

Figure 4. Sample variogram (points) and regularized variograms as
function of distance and area. The black solid line represents the fit-
ted point variogram, the blue line represents regularized variogram
of equally sized catchments (∼ 300 km2), dotted lines show the ef-
fect of combinations of different catchments sizes in square kilome-
ters (see also Fig. 4 inSkøien et al., 2014).

ous area classes (seeSkøien et al., 2014). Top-kriging was
then iteratively applied to the study catchments in cross-
validation to identify the most suitable number of neighbours
n. Preliminary iterations indicatedn= 6 as a good candidate
for the study area (see Sect.5.5.2).

We then used the kriging weights obtained for predicting
TND1 in cross-validation at each site to estimate dimension-
less FDCs. In order to assess the prediction accuracy and to
compare the performances of different models, we choose
to resample each curve usingp = 20 points equally spaced
in the log-normal representation (see Sect.2.2 and Fig.2),
adopting as duration extremesd1 = 0.00135 (lower bound)
and d20 = 0.9986 (upper bound), whered1 and d20 values
are selected by referring to the minimum record length in
the regional sample, i.e. 5 years. Predictions were performed
through a weighted average, as expressed in Eq. (8), using
the optimal top-kriging cross-validation weighting scheme,
i.e.λi with i = 1, . . . ,n, wheren= 6.

As mentioned in Sect.1, a leave-one-out cross-validation
procedure (LOOCV) was performed in order to simulate un-
gauged conditions at each gauged site in the study area and to
quantitatively test the reliability and robustness of TNDTK
for predicting FDCs in ungauged basins (see examples in
Kroll and Song, 2013; Salinas et al., 2013; Wan Jaafar et al.,
2011; Srinivas et al., 2008).

The LOOCV can be summarised by the following steps:

1. empirical and theoretical variograms are computed us-
ing the entire data set of TND1 values;

2. one of the gauging station, saysi , is removed from the
set of available stations;

www.hydrol-earth-syst-sci.net/18/3801/2014/ Hydrol. Earth Syst. Sci., 18, 3801–3816, 2014



3808 A. Pugliese et al.: Geostatistical prediction of flow-duration curves

3. a top-kriging regional model for predicting TND1 val-
ues is developed using the remainingNsite− 1 sites;

4. TND1 is predicted for sitesi as a weighted average of
the empirical values computed forn= 6 neighbouring
stations (see, e.g. Fig.5);

5. the weighting scheme computed in step 4 is then used to
predict a standardised FDC for sitesi through Eq. (8);

6. steps from 2 to 5 are repeatedNsite− 1 times.

The accuracy of the cross-validated standardised FDCs
was scrupulously assessed by means of several performance
indices and diagrams, which are illustrated in detail in
Sect.5.3. The algorithm described above is tailored for the
proposed procedure, TNDTK, but one can implement and
apply similar resampling procedures to any regional model
for simulating ungauged conditions.

5.1.2 Standardisation by MAP∗

Top-kriging was applied also to predict empirical TND2 val-
ues as well as FDCs standardised by MAP∗. The number
of neighbouring stationsn, theoretical variogram, and fit-
ting procedure were the same as for standardisation based
on MAF. We used a LOOCV analogous to the one described
above (i.e. standardisation by MAF) in order to identify the
weighting scheme to be used for simulating ungauged condi-
tions for all of the study basins.

Furthermore, in order to obtain dimensional predictions,
each estimated curvêψ(x0,d) was then transformed into
a dimensional FDC, as

Ψ̂ (x0,d)= ψ̂(x0,d)MAP∗(x0) with d ∈ [d1,d20] , (9)

where MAP∗(x0) indicates the local MAP∗ value.

5.2 Reference regional models of FDCs

The same gauged stations and data considered herein were
analysed in previous studies that developed regional models
of FDCs (seeCastellarin et al., 2004a, 2007). This enabled us
to identify for both TNDTK applications two different refer-
ence regional models for comparing the performance of the
approaches. Below we give a brief description of such re-
gional models.

5.2.1 Standardisation by MAF

TNDTK predictions of dimensionless FDCs were compared
against the dimensionless curves predicted by two reference
regional models, which we also applied in cross-validation
through a LOOCV procedure: KMOD and MEAN.

KMOD

K model (or KMOD) is a statistical regionalisation model de-
veloped byCastellarin et al.(2007) that uses the 4-parameter
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Figure 5. Top-kriging predictions of TND1 and TND2 values in
cross-validation; predictions for site 3701 are highlighted.

unit-mean kappa distribution as parent distribution for rep-
resenting standardised FDCs (see, e.g. Hosking and Wallis,
1997). Three parameters, namely the parameter of location
and the two shape parameters, were estimated by applying
an ordinary least squares (OLS) regression algorithm. The
scale parameter is derived as a function of the previous three
under the hypothesis that the mean of the distribution is equal
to one.Castellarin et al.(2007) regressed the parameters esti-
mates against a suitable set of catchment descriptors through
a stepwise-regression procedure in order to enable the esti-
mation of the kappa distribution in ungauged sites. KMOD
is therefore a traditional parametric regional model which we
adopted as the benchmark regional model for predicting stan-
dardised FDCs (see for detailsCastellarin et al., 2007).

MEAN

MEAN is a simple approach to regionalisation, which ne-
glects the physiographic and climatic heterogeneities of the
study area, and predicts the standardised FDC for any un-
gauged site in the region as the average of all available stan-
dardised FDCs. We adopted MEAN as a baseline model due
to its crude assumption and the resulting low-level accuracy.

5.2.2 Standardisation by MAP∗

TNDTK predictions of dimensional FDC were compared
with the predictions resulting from two benchmark models,
both applied in cross-validation: LLK and KMOD.

LLK

This model, based on an index-flow approach (seeCastel-
larin et al., 2004b), adopts a two-parameter log-logistic (LL)
distribution as a suitable distribution for describing the em-
pirical frequency of the annual flow series (i.e. index-flow)
and a four-parameter kappa (K) as the parent distribution
for dimensionless daily streamflow frequency. Parameters of
both distribution were estimated using the routine based on
L moments developed by Hosking and Wallis (seeHosk-
ing and Wallis, 1997), re-estimated through a constrained
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sequential quadratic programming optimisation procedure
aimed at minimising the squared differences between theo-
retical and empirical non-exceedence probabilities, and then
regressed against a suitable set of catchment descriptors
through a stepwise-regression procedure. More details can
be found inCastellarin et al.(2007).

KMOD

Same as KMOD for dimensionless FDCs prediction, but
using a multiregression regional model to predict MAF as
a function of a suitable set of catchment descriptors in un-
gauged basins (see, e.g.Castellarin et al., 2007for details).

5.3 Performance indices

TNDTK performance in cross-validation is analysed for both
standardisation methods (MAF and MAP∗) and compared
with the results of reference regional models through sev-
eral performance indices and diagrams. A deep analysis of
model performances in terms of relative prediction residu-
als, i.e. relative errors between modelled and emprical values
(with sign), is presented through error–duration curves. The
curves show relative residuals against duration arranged in
gray nested bands containing 50, 80, and 90 % of relative
residuals, while a solid line illustrates the progression with
duration of the median residual. Also, we use as performance
descriptors the scatter diagrams between cross-validated and
empirical streamflow quantiles associated with the same du-
ration. On the basis of the same information, NSE (Nash–
Sutcliffe efficiency) indices for each model are computed,
both for natural and log-transformed streamflows. Such dia-
grams and indices provide a complete representation of the
performance of each model in cross-validation for the en-
tire streamflow regime, from low durations (high flows and
floods) to high durations (droughts).

Concerning the performances of the model at each site,
and in particular the assessment of the number of sites for
which TNDTK is more reliable than the selected reference
regional models, we adopt an error index that summarises
the prediction performance over the entire duration range by
deriving the distance between predicted and empirical FDCs,
as proposed inGanora et al.(2009):

δmod =

p∑
k=1

|qk,emp− q̂k,mod| , (10)

where p = 20 resampled points, whileqk,emp and q̂k,mod
stand for the empirical and predicted streamflow quantiles
(dimensionless or dimensional, depending on the applica-
tion) ranked at thekth duration.

5.4 Results

5.4.1 Standardisation by MAF: dimensionless FDCs

Figure5 (left) reports empirical TND1 values against their
top-kriging predictions in cross-validation. The overall NSE
is 0.81. In the same figure one can observe a poor predic-
tion (i.e. significant underprediction) for site 3701, which
can be interpreted as a result of the very high empirical
TND value obtained for that site (site 3701, TND1 = 9.8 [–],
A= 605 [km2]), the largest in the study region.

Concerning the predictions of standardised FDCs, the
error–duration curves of Fig.6 clearly shows that TNDTK
significantly outperforms KMOD and MEAN: the distribu-
tion of relative residuals plotted against duration is charac-
terised by narrower bands (50, 80, and 90 % of the relative
errors) for the entire duration interval, even though this be-
haviour is more marked for lower durations. The progression
with duration of the median residual (black thick line) in the
same figure highlights unbiasedness being close to zero for
the entire duration interval. Scatter diagrams between pre-
dicted and observed standardised flows indicate high accu-
racy of TNDTK, with NSE= 0.958 and LNSE' 0.96, the
latter computed for log-flows. MEAN and KMOD are asso-
ciated with lower NSE and LNSE values.

Finally, Fig.7 presents the overall absolute error for each
site. In particular in Fig.7, scatter diagrams ofδmod are illus-
trated in two panels, where thex axes report errors computed
for the proposed model (TNDTK), while they axes report in
turn errors from reference models. In this representation an
equivalence between model performances is represented by
the solid bisecting line; therefore, if one point falls in the
top-left above the 1: 1 line, TNDTK will provide better pre-
dictions than the reference model; otherwise, it will fall be-
low the 1: 1 line. Figure7 clearly shows that KMOD is less
accurate than TNDTK for 14 out of 18 sites, while MEAN
performs the poorest, with 16 out of 18 sites characterised by
higherδ values relative to TNDTK.

5.4.2 Standardisation by MAP∗: dimensional FDCs

Right panel of Fig.5 highlights satisfactory performance of
top-kriging for predicting TND2 values in ungauged basins,
NSE value is approximately 0.6, and site 3701 still presents
an outlying behaviour for the same reason explained before.

Although the cross-validated predictions of TND2 are
less accurate than TND1, TNDTK performance for predict-
ing dimensional FDCs is good. Comparing TNDTK with
LLK models, Fig. 8 shows for LLK narrower bands for
d < 0.8, particularly the band illustrating 90 % of residu-
als, while in the low-flow range (i.e. 0.8< d < 1) TNDTK
shows slightly better performances, resulting in narrower
error bands. The bottom panels in the same figure report
the scatter diagrams of predicted vs. observed dimensional
flows, expressing the goodness and reliability of TNDTK

www.hydrol-earth-syst-sci.net/18/3801/2014/ Hydrol. Earth Syst. Sci., 18, 3801–3816, 2014
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when used for predicting dimensional FDC on the basis of
MAP. Even though TNDTK shows an NSE= 0.914, which
is lower than the NSE value associated with LLK and equal
to KMOD NSE value, TNDTK is associated with the highest

LNSE value (i.e. 0.922), highlighting a good performance of
TNDTK for low flows. Figure9 confirms good performance
of TNDTK against LLK and KMOD, showing in both cases
better accuracy for 10 out of 18 catchments. Also, among the
8 catchments for which LLK and KMOD perform better than
TNDTK, it is worth noting that performances are practically
coincident with TNDTK in 2 cases for LLK (i.e. sites 3006
and 2201) and 3 cases for KMOD (i.e. sites 1004, 2101 and
3006).

5.5 Sensitivity analysis

5.5.1 Consistency of the kriging weighting scheme

The core assumption of the proposed method is that top-
kriging weightsλs identified for predicting TND values can
be used to weight empirical FDCs. In order to test and val-
idate this assumption, we analysed the relationship between
such weights and the degree of dissimilarity between empir-
ical FDCs. In particular, we computed for each pair of catch-
ments a dissimilarity metric between catchmenti andj , βi,j ,
proposed byGanora et al.(2009), which can be expressed as
follows:

βi,j =

365∑
k=1

|qi,k − qj,k|, (11)

where 365 is the number of points used for the resampling
andqi,k andqj,k are the streamflow values associated with
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Figure 8. Cross-validation of regional models: KMOD (right), LLK (centre), TNDTK (proposed approach, left); error–duration bands re-
porting the profile of the median relative error (thick black line) and the bands containing 50, 80, and 90 % of the relative errors (grey nested
bands) as a function of duration (top); empirical vs. predicted dimensional streamflows (bottom).

durationdk =
k

365+1 for sitesi andj , respectively. If our as-
sumption is correct, largeβ values (i.e. dissimilar curves)
should be associated with smallλ values, and vice-versa.
Top-kriging takes into account the nested structure of catch-
ments; therefore, where the upstream–downstream correla-
tion occurs (i.e. similar curve with smallβ) relative high-
λ value is expected.

Figure 11 (right panel) plotsβi,j values computed with
Eq. (11) for each pair of basins in the study area, with
i,j = 1, . . . ,18 andi 6= j (i.e. 306 points), against the corre-
spondingλi,j weights obtained by running a TNDTK session
with TND = TND1 and, necessarily, a number of neighbours
n= 17 (i.e. all stations need to be considered if we have to
compareβi,j with λi,j for i,j = 1, . . . ,18 andi 6= j ). The
figure also highlights the differences between nested (large
black dots) and un-nested (gray circles) catchments pairs.
The figure clearly proves that the hypotheses are satisfied:
(1) weightsλi,j show a descending pattern asβi,j values in-
crease and (2) none of the nested pair of catchments presents
kriging weightλ associated with a high or very highβ value
(i.e. all nested catchments are on the left-hand side with small
β values).

5.5.2 Sensitivity to the number of neighboursn

As mentioned in Sects.5.1.1and5.1.2, we set the number of
neighboursn= 6 in Eq. (8) for performing the prediction of
FDCs. We identified this value through a sensitivity analysis,
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Figure 9. Comparison between TNDTK, KMOD and LLK models
in terms of distances between empirical and predicted dimensional
FDCs,δmod (where mod stands for TNDTK, KMOD or LLK); val-
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(right) for each study basin; the solid line represents the ratio 1: 1
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limit the areas where errors for the TNDTK model are twice as large
as the LLK or KMOD ones, or vice versa. Points above the solid
line represent curves that are better estimated by TNDTK; points
above the top dashed line represent curves much better estimated
by TNDTK (see alsoGanora et al., 2009, Fig. 8).

which was carried out by running multiple top-kriging ses-
sions, each one referring to a differentn value. The main out-
come of our sensitivity analysis is that the performance of the
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Figure 11. Nested structure of the study area: (left) black dots
identify nested pairs (i.e. basin–subbasin relationships); (right) top-
kriging weightsλi,j obtained for predicting TND1 vs. the corre-
sponding degree of dissimilarity between empirical FDCs for sitesi

andj , βi,j , nested pairs are highlighted.

approach is not dramatically dependent onn, quite the oppo-
site. Figure10shows the results of the sensitivity analysis for
both standardisations (i.e. MAF and MAP∗) obtained in each
session in terms of NSE and LNSE forn, ranging from 3 to
17 (i.e. being 18 the total number of catchments for the study
area). The left panel refers to dimensionless FDCs (i.e stan-
dardisation by MAF) and shows forn= 6 the best trade-off
between NSE and LNSE. Nevertheless, NSE and LNSE are
rather high for alln values. Likewise, the right panel refers to
the prediction of dimensional FDCs (i.e. standardisation by
MAP∗) and it shows that performances in terms of sensitivity
of NSE values ton is rather low for the study area, while in
terms of LNSE, we obtain slightly better performances that
are associated withn≤ 6. As a result of the analysis we se-
lectedn= 6 for all applications for the sake of consistency,
even though selecting a different value forn does not impact
the results significantly.

5.5.3 Sensitivity to the degree of nesting of the study
catchments

From an operational view point it is important to under-
stand if the degree of nesting of the study catchments im-
pacts the performance of the approach. Better performances
are to be expected in all those cases in which empirical FDCs
can be constructed upstream or downstream the (ungauged)
site of interest. In order to quantify this impact we vali-
dated TNDTK by removing all catchments that are nested
with the catchment of interest. Figure11 (left panel) shows
all nested pairs through a graphical matrix where nested
pairs are highlighted with large black dots (catchment IDs
are also indicated). First, we identified all nested pairs of
catchments (i.e. basin–subbasin relationships). Second, we
used a cross-validation procedure similar to the procedure
described in Sect.5.1.1, in which, at step 2, we neglected
all information collected for the site of interest, but also up-
stream or downstream from that site. We termed this proce-
dure leave nested out cross-validation (LNOCV). It is worth
noting that LNOCV estimates empirical and theoretical var-
iograms at each step of the validation procedure, differently
from LOOCV, where they are estimated beforehand conclu-
sively (see step 1 in Sect.5.1.1).

We report here only the results referring to the prediction
of dimensionless FDCs (i.e. standardisation by MAF). Re-
sults obtained relative to dimensional FDCs (i.e. standardisa-
tion by MAP∗) are analogous. The results, shown in Fig.12,
highlight a slight reduction of performances, with NSE and
LNSE indices equal to 0.95 and 0.92, respectively (central
panel). In particular, looking at the error–duration bands (left
panel in the same figure), the distribution of relative resid-
uals presents slightly wider bands and a larger bias for the
median line, especially relative to the high durations (low
flows). Moreover, comparing the overall error index for each
site produced by the two cross-validations (i.e. LOOCV and
LNOCV) (right panel), most of the points (14 out of 18) falls
above the solid bisecting line, confirming an impoverished
prediction capability of the latest approach. Nevertheless, the
detriment of performances obtained with LNOCV appears
to be limited and associated in particular with the low-flow
regime (high-duration values). This was to be expected as
this portion of FDC is the hardest to predict (see, e.g. Figs.6,
8 and12andCastellarin et al., 2004a), and therefore not con-
sidering catchments having their outlet located upstream or
downstream the target site has the strongest effects due to
the strong hydrological affinity of these catchments with the
target one catchment (i.e. they share local climate as well as
physiographic and geological characteristics, see, e.g.Laaha
et al., 2014; Castiglioni et al., 2011).
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6 Discussion and future work

6.1 Is top-kriging suitable for predicting long-term
FDCs?

The results of the cross-validation show that top-kriging
can be effectively applied for predicting standardised FDCs
(i.e. flow–duration curves divided by the mean annual flow,
MAF) in the study region. In particular, the interpolation
strategy applied in this study (termed total negative devia-
tion top-kriging, TNDTK), that is (1) the computation of the
streamflow index total negative deviation (TND) for empir-
ical standardised FDCs, (2) the modelling of spatial corre-
lation of empirical TND values along the stream network,
and (3) the identification of a linear-weighting scheme for
averaging empirical dimensionless FDCs on the basis of the
correlation model identified at step (2), results in reliable pre-
dictions of standardised FDCs in ungauged sites.

It is worth highlighting that the application of the proce-
dure may produce negative weights (see Fig.11 for the case
in which the number of neighbours in set ton= 17). Neg-
ative weights are often the result of the so-called screening
effect (i.e. remote data points are screened by a set of closer
data locations in front of them; see, e.g.Deutsch, 1996),
which can be accentuated by a zero-nugget variogram model,
as it is in our case. We did not experience adverse effects as-
sociated with negative weights in our analysis, but, in case
the presence of negative weights results in non-physical es-
timates (e.g. negative streamflow values), one may set all
weights to be positive through thertop routine options (see
Skøien et al., 2014).

The curves predicted in cross-validation are unbiased for
the entire duration range (i.e. from high- to low-flows) and
the prediction residuals are as small as, or smaller than, the
residuals resulting from the application of traditional region-
alisation schemes. Analysing the results in detail, Fig.7 in-

dicates that TNDTK performed significantly worse than the
baseline and benchmark regional models in three cases only.
The benchmark model (i.e. KMOD) better predicts the FDC
for site 3701 (left panel of Fig.7). As illustrated in the right
panel in Fig.2, site 3701 is associated with the steepest em-
pirical flow–duration curve of the study region and therefore
the highest empirical TND value (see Table1 and Figs.1
and5).

The core assumption of top-kriging hypothesises is that
hydrological similarity is mainly controlled by spatial prox-
imity, and this may represent an important limitation in some
regions where geology and/or morphology have a large im-
pact on streamflows, such that the hydrological regime of
nearby catchments may be quite different. This could in prin-
ciple explain the poor prediction obtained in the study for site
3701, which is characterised by a very limited permeability
(i.e. can be regarded as impervious) relative to the surround-
ing catchments and, consequently, a much steeper empirical
FDC than the neighbouring sites. Conversely, information on
permeability is explicitly incorporated in the multiregression
models included in KMOD (see, e.g.Castellarin et al., 2007).
Furthermore, the baseline model MEAN significantly outper-
forms TNDTK for sites 2502 and 801, and this result can be
explained by noting that both sites are associated with empir-
ical standardised curves that are well represented by the aver-
age standardised FDC for the study region (see right panel in
Fig.2 andCastellarin, 2014), that is the curve associated with
the baseline regional model (MEAN) in cross-validation.

Aside from peculiar cases highlighted above, TNDTK
shows a high performance in cross-validation that is likely
to result from several advantages of the proposed proce-
dure. TNDTK dispenses with the critical phase of delineat-
ing hydrologically homogeneous pooling group of sites (see
Castellarin et al., 2004a) by exploiting the spatial correlation
structure of the streamflow regime (seeArchfield and Vo-
gel, 2010). Nevertheless, the approach does not require to set
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up multiregression models for estimating the parameters of
a mathematical expression (e.g. a theoretical frequency dis-
tribution) controlling the shape of the curve, which are of-
ten associated with a large uncertainty and limited robustness
(seeCastellarin et al., 2007); TNDTK predicts the shape of
the curve for an ungauged basin through a non-parametric
procedure as a weighted average of empirical standardised
FDCs (e. g.Smakhtin et al., 1997; Ganora et al., 2009). The
weighting scheme also ensures for the predicted curve a non-
increasing (i.e. monotone) relationship between streamflow
and duration, which is one of the main properties of flow–
duration curves.

The study also points out that TNDTK can be used for pre-
dicting dimensional FDCs in ungauged sites on the basis of
a minimal set of hydrological information, that is (a) empiri-
cal FDCs for a group of gauged basins and (b) an estimate of
mean annual precipitation (MAP) for all gauged basins in the
region, as well as for the target ungauged basin. By compar-
ing Figs.6 and7 with Figs.8, and9 one may get the impres-
sion that a standardisation of streamflows by MAP∗ reduces
TNDTK performance relative to a standardisations by MAF.
It is worth pointing out that one cannot directly compare the
results for these two cases since Figs.6 and 7 (standardi-
sation by MAF) refer to the prediction of a dimensionless
FDCs, while Figs.8 and9 (standardisation by MAP∗) refer
to the prediction of dimensional FDCs. Moreover, concern-
ing the prediction of dimensional FDCs (standardisation by
MAP∗), the similar performances between TNDTK and the
benchmark regional models are rather surprising; while the
benchmark regional models incorporate a regionalisation of
empirical mean annual flows, TNDTK uses only local infor-
mation on precipitation for predicting a dimensional FDC in
the target site. Even though TNDTK does not show a clear
supremacy relative to more traditional approaches, it has to
be highlighted that its application is rather straightforward
and does not require any subjective choice, which, together
with the fact that the procedure can be implemented with
a limited amount of input data, makes TNDTK a very in-
teresting alternative for predicting dimensional FDCs.

6.2 Future analyses

Our study is evidently a preliminary analysis, which tack-
les the exploration of geostatistical approaches for predict-
ing FDCs. Therefore, the results of our study open up sev-
eral possible research avenues. In particular, we focus on
the prediction of long-term steady-state FDCs, on the basis
of period-of-record (POR) empirical FDCs. Applicability of
TDNTK to the prediction of annual FDCs for typical hydro-
logic years, as well as for particularly wet or dry years (see,
e.g.Vogel and Fennessey, 1994; Castellarin et al., 2004b), is
an open problem that needs to be specifically and quantita-
tively addressed. Evidently, the proposed approach needs to
be further investigated in other geographical contexts. In par-
ticular, the application of TNDTK for predicting dimensional

FDCs on the basis of catchment-scale MAP values deserves
some additional tests that aim at verifying its suitability for
significantly different climatic conditions (e.g. arid regions,
alpine catchments, etc.), in which the streamflow regime is
not heavily controlled by the rainfall regime, as for the con-
sidered case study.

Also, future analyses will focus on a comparison between
TNDTK with other methods that use weighted combinations
from dynamic pooling-groups of sites, such as the region of
influence (RoI) approach (e.g.Burn, 1990; Holmes et al.,
2002). This will enable a better understanding of the poten-
tial of geostatistical techniques and the informativeness of
spatial structure of signatures of the streamflow-regime, such
as TND, relative to approaches that incorporate other infor-
mation than spatial proximity when it comes to the prediction
of FDCs in ungauged sites (see, e.g.Merz and Blöschl, 2005,
for the prediction of flood quantiles).

Finally, we propose to summarise empirical flow–duration
curves through the index TND, which expresses the total
negative deviation of the curve from a reference streamflow
value. We are aware that the proposed procedure needs to be
further tested in different geographical and climatic contexts
before its general validity can be acknowledged. Also, we be-
lieve that the TND index identified in this study incorporates
a wealth of hydrological information and has the potential to
be extremely useful in a number of hydrological problems
other than the prediction of FDCs, such as catchment classi-
fication (seeWagener et al., 2007; Di Prinzio et al., 2011) or
regionalisation studies (Laaha and Blöschl, 2006; Gaál et al.,
2012). Future analyses will specifically address these points.
Moreover, future analyses will focus on the identification
of a global indicator of the similarity between FDCs to be
used to analyse and model geographical correlation between
the empirical curves themselves, this would enable one to
base the definition of the linear-weighting scheme on a more
comprehensive and descriptive indicator of the streamflow
regime.

7 Conclusions

This study explores the possibility to extend the application
of top-kriging, which is generally used for spatial interpola-
tion of point streamflow indices (e.g. estimated flood quan-
tiles, low-flow indices, temperature, etc.), to the prediction of
period-of-record flow–duration curves (FDCs) in ungauged
basins. Top-kriging is used in this study to geostatistically
interpolate standardised FDCs along the stream network of
a broad geographical area in central-eastern Italy. We iden-
tify the linear weighting typical of any kriging procedure
by modeling the spatial correlation structure of an empiri-
cal streamflow index, which was shown in the study to be
particularly useful in describing the daily streamflow regime
of a given catchment. In particular, we define the index,
which we term total negative deviation (TND), as the overall
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negative deviation of an empirical FDC relative to a refer-
ence streamflow value used for the standardisation of the
curve itself. We consider two different reference streamflow
values, that is the mean annual flow (MAF) and catchment-
scale mean annual precipitation× the drainage area of the
catchment (MAP∗), and we use these streamflow values for
standardisation of the empirical FDCs prior to regionalisa-
tion. The standardisation based on MAF enables us to de-
velop a top-kriging-based regional model of dimensionless
FDCs, while the standardisation based on MAP∗ enables
us to predict dimensional flow–duration curves in ungauged
basins via top-kriging. The two regional estimators were
cross-validated and compared in terms of prediction perfor-
mances with other regional models of dimensionless and di-
mensional flow–duration curves that were previously devel-
oped for the study area. The comparison highlights good per-
formances of the proposed procedure, which we termed to-
tal negative deviation top-kriging (TNDTK) relative to tra-
ditional regional models. TNDTK is unbiased throughout
the entire duration interval and characterised by particularly
small residuals for high durations (i.e. improved predictions
of low flows). Moreover, the prediction accuracy of TNDTK
is similar to, or higher than, more complex regionalisation
approaches that use multiregression models incorporating in-
formation on the permeability, morphology, climate, etc. of
the catchment. This result seems to confirm the value of
spatial proximity relative to catchment attributes (see, e.g.
Merz and Blöschl, 2005) when hydrological predictions in
ungauged basins are concerned.

The Supplement related to this article is available online
at doi:10.5194/hess-18-3801-2014-supplement.
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