Articles | Volume 16, issue 2
https://doi.org/10.5194/hess-16-573-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-16-573-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Groundwater flow inverse modeling in non-MultiGaussian media: performance assessment of the normal-score Ensemble Kalman Filter
L. Li
Group of Hydrogeology, Universitat Politècnica de València, 46022 Valencia, Spain
H. Zhou
Group of Hydrogeology, Universitat Politècnica de València, 46022 Valencia, Spain
H. J. Hendricks Franssen
Agrosphere, IBG-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
J. J. Gómez-Hernández
Group of Hydrogeology, Universitat Politècnica de València, 46022 Valencia, Spain
Viewed
Total article views: 3,027 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 12 Jul 2011)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,462 | 1,342 | 223 | 3,027 | 162 | 115 |
- HTML: 1,462
- PDF: 1,342
- XML: 223
- Total: 3,027
- BibTeX: 162
- EndNote: 115
Total article views: 2,286 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 27 Feb 2012)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,165 | 939 | 182 | 2,286 | 150 | 104 |
- HTML: 1,165
- PDF: 939
- XML: 182
- Total: 2,286
- BibTeX: 150
- EndNote: 104
Total article views: 741 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 12 Jul 2011)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
297 | 403 | 41 | 741 | 12 | 11 |
- HTML: 297
- PDF: 403
- XML: 41
- Total: 741
- BibTeX: 12
- EndNote: 11
Cited
46 citations as recorded by crossref.
- Inverse sequential simulation: Performance and implementation details T. Xu & J. Gómez-Hernández 10.1016/j.advwatres.2015.04.015
- The power of transient piezometric head data in inverse modeling: An application of the localized normal-score EnKF with covariance inflation in a heterogenous bimodal hydraulic conductivity field T. Xu et al. 10.1016/j.advwatres.2013.01.006
- Bayesian Inversion of Multi‐Gaussian Log‐Conductivity Fields With Uncertain Hyperparameters: An Extension of Preconditioned Crank‐Nicolson Markov Chain Monte Carlo With Parallel Tempering S. Xiao et al. 10.1029/2021WR030313
- Gaussian Anamorphosis for Ensemble Kalman Filter Analysis of SAR-Derived Wet Surface Ratio Observations T. Nguyen et al. 10.1109/TGRS.2023.3338296
- Contaminant Spill in a Sandbox with Non-Gaussian Conductivities: Simultaneous Identification by the Restart Normal-Score Ensemble Kalman Filter Z. Chen et al. 10.1007/s11004-021-09928-y
- Indicator geostatistics for reconstructing Baton Rouge aquifer-fault hydrostratigraphy, Louisiana, USA A. Elshall et al. 10.1007/s10040-013-1037-5
- Constructive epistemic modeling of groundwater flow with geological structure and boundary condition uncertainty under the Bayesian paradigm A. Elshall & F. Tsai 10.1016/j.jhydrol.2014.05.027
- Joint inference of groundwater–recharge and hydraulic–conductivity fields from head data using the ensemble Kalman filter D. Erdal & O. Cirpka 10.5194/hess-20-555-2016
- On the role of patterns in understanding the functioning of soil-vegetation-atmosphere systems H. Vereecken et al. 10.1016/j.jhydrol.2016.08.053
- Characterisation of river–aquifer exchange fluxes: The role of spatial patterns of riverbed hydraulic conductivities Q. Tang et al. 10.1016/j.jhydrol.2015.08.019
- Identification of high-permeability subsurface structures with multiple point geostatistics and normal score ensemble Kalman filter F. Zovi et al. 10.1016/j.jhydrol.2017.02.056
- Two-point or multiple-point statistics? A comparison between the ensemble Kalman filtering and the ensemble pattern matching inverse methods L. Li et al. 10.1016/j.advwatres.2015.05.014
- Contaminant source and aquifer characterization: An application of ES-MDA demonstrating the assimilation of geophysical data Z. Chen et al. 10.1016/j.advwatres.2023.104555
- Data assimilation for real-time subsurface flow modeling with dynamically adaptive meshless node adjustments S. Chen et al. 10.1007/s00366-023-01897-6
- An iterative normal-score ensemble smoother for dealing with non-Gaussianity in data assimilation L. Li et al. 10.1016/j.jhydrol.2018.01.038
- Investigating the pilot point ensemble Kalman filter for geostatistical inversion and data assimilation J. Keller et al. 10.1016/j.advwatres.2021.104010
- Reducing uncertainty in conceptual prior models of complex geologic systems via integration of flow response data A. Golmohammadi & B. Jafarpour 10.1007/s10596-019-09908-6
- The importance of state transformations when using the ensemble Kalman filter for unsaturated flow modeling: Dealing with strong nonlinearities D. Erdal et al. 10.1016/j.advwatres.2015.09.008
- Simultaneous identification of a contaminant source and hydraulic conductivity via the restart normal-score ensemble Kalman filter T. Xu & J. Gómez-Hernández 10.1016/j.advwatres.2017.12.011
- Non-point contaminant source identification in an aquifer using the ensemble smoother with multiple data assimilation T. Xu et al. 10.1016/j.jhydrol.2021.127405
- Ensemble smoother with multiple data assimilation for reverse flow routing V. Todaro et al. 10.1016/j.cageo.2019.06.002
- A multimodel data assimilation framework via the ensemble Kalman filter L. Xue & D. Zhang 10.1002/2013WR014525
- Posterior population expansion for solving inverse problems C. Jäggli et al. 10.1002/2016WR019550
- Data assimilation in the geosciences: An overview of methods, issues, and perspectives A. Carrassi et al. 10.1002/wcc.535
- Joint identification of contaminant source and aquifer geometry in a sandbox experiment with the restart ensemble Kalman filter Z. Chen et al. 10.1016/j.jhydrol.2018.07.073
- A coupled stochastic inverse-management framework for dealing with nonpoint agriculture pollution under groundwater parameter uncertainty C. Llopis-Albert et al. 10.1016/j.jhydrol.2014.01.021
- Hybrid Inversion Method to Estimate Hydraulic Transmissivity by Combining Multiple-Point Statistics and a Direct Inversion Method A. Comunian & M. Giudici 10.1007/s11004-018-9727-0
- Inverse methods in hydrogeology: Evolution and recent trends H. Zhou et al. 10.1016/j.advwatres.2013.10.014
- Hydrogeochemical characterization and CO2 consumption in the Maqu catchment of the Qinghai-Tibetan Plateau by multiple hydrogeochemical methods M. Li et al. 10.1016/j.jhydrol.2023.129899
- Using Deep Learning to Improve Ensemble Smoother: Applications to Subsurface Characterization J. Zhang et al. 10.1029/2020WR027399
- Gaussian and non‐Gaussian inverse modeling of groundwater flow using copulas and random mixing A. Bárdossy & S. Hörning 10.1002/2014WR016820
- Multiresolution Approach to Condition Categorical Multiple‐Point Realizations to Dynamic Data With Iterative Ensemble Smoothing D. Lam et al. 10.1029/2019WR025875
- Identification of non-Gaussian parameters in heterogeneous aquifers by a modified probability conditioning method through hydraulic-head assimilation T. Lan et al. 10.1007/s10040-020-02243-6
- A new method to improve estimation of uncertain parameters in the Ensemble Kalman filter by re-parameterization employing prior statistics correction A. Bagherinezhad et al. 10.1016/j.jngse.2015.08.057
- Random Mixing: An Approach to Inverse Modeling for Groundwater Flow and Transport Problems A. Bárdossy & S. Hörning 10.1007/s11242-015-0608-4
- A comparison of nonlinear extensions to the ensemble Kalman filter I. Grooms 10.1007/s10596-022-10141-x
- Advances in understanding river‐groundwater interactions P. Brunner et al. 10.1002/2017RG000556
- Comparing Seven Variants of the Ensemble Kalman Filter: How Many Synthetic Experiments Are Needed? J. Keller et al. 10.1029/2018WR023374
- Estimation of Facies Boundaries Using Categorical Indicators with P-Field Simulation and Ensemble Kalman Filter (EnKF) S. Nejadi et al. 10.1007/s11053-014-9233-0
- Maximizing the value of pressure data in saline aquifer characterization S. Yoon et al. 10.1016/j.advwatres.2017.08.019
- Application of ensemble-based data assimilation techniques for aquifer characterization using tracer data at Hanford 300 area X. Chen et al. 10.1002/2012WR013285
- Evaluation of the benefits of improved permeability estimation on high-resolution characterization of DNAPL distribution in aquifers with low-permeability lenses Q. Guo et al. 10.1016/j.jhydrol.2021.126955
- Inverse sequential simulation: A new approach for the characterization of hydraulic conductivities demonstrated on a non‐Gaussian field T. Xu & J. Gómez‐Hernández 10.1002/2014WR016320
- Characterization of non‐Gaussian conductivities and porosities with hydraulic heads, solute concentrations, and water temperatures T. Xu & J. Gómez‐Hernández 10.1002/2016WR019011
- Preconditioned Crank‐Nicolson Markov Chain Monte Carlo Coupled With Parallel Tempering: An Efficient Method for Bayesian Inversion of Multi‐Gaussian Log‐Hydraulic Conductivity Fields T. Xu et al. 10.1029/2020WR027110
- The power of transient piezometric head data in inverse modeling: An application of the localized normal-score EnKF with covariance inflation in a heterogenous bimodal hydraulic conductivity field T. Xu et al. 10.1016/j.advwatres.2013.01.006
40 citations as recorded by crossref.
- Inverse sequential simulation: Performance and implementation details T. Xu & J. Gómez-Hernández 10.1016/j.advwatres.2015.04.015
- The power of transient piezometric head data in inverse modeling: An application of the localized normal-score EnKF with covariance inflation in a heterogenous bimodal hydraulic conductivity field T. Xu et al. 10.1016/j.advwatres.2013.01.006
- Bayesian Inversion of Multi‐Gaussian Log‐Conductivity Fields With Uncertain Hyperparameters: An Extension of Preconditioned Crank‐Nicolson Markov Chain Monte Carlo With Parallel Tempering S. Xiao et al. 10.1029/2021WR030313
- Gaussian Anamorphosis for Ensemble Kalman Filter Analysis of SAR-Derived Wet Surface Ratio Observations T. Nguyen et al. 10.1109/TGRS.2023.3338296
- Contaminant Spill in a Sandbox with Non-Gaussian Conductivities: Simultaneous Identification by the Restart Normal-Score Ensemble Kalman Filter Z. Chen et al. 10.1007/s11004-021-09928-y
- Indicator geostatistics for reconstructing Baton Rouge aquifer-fault hydrostratigraphy, Louisiana, USA A. Elshall et al. 10.1007/s10040-013-1037-5
- Constructive epistemic modeling of groundwater flow with geological structure and boundary condition uncertainty under the Bayesian paradigm A. Elshall & F. Tsai 10.1016/j.jhydrol.2014.05.027
- Joint inference of groundwater–recharge and hydraulic–conductivity fields from head data using the ensemble Kalman filter D. Erdal & O. Cirpka 10.5194/hess-20-555-2016
- On the role of patterns in understanding the functioning of soil-vegetation-atmosphere systems H. Vereecken et al. 10.1016/j.jhydrol.2016.08.053
- Characterisation of river–aquifer exchange fluxes: The role of spatial patterns of riverbed hydraulic conductivities Q. Tang et al. 10.1016/j.jhydrol.2015.08.019
- Identification of high-permeability subsurface structures with multiple point geostatistics and normal score ensemble Kalman filter F. Zovi et al. 10.1016/j.jhydrol.2017.02.056
- Two-point or multiple-point statistics? A comparison between the ensemble Kalman filtering and the ensemble pattern matching inverse methods L. Li et al. 10.1016/j.advwatres.2015.05.014
- Contaminant source and aquifer characterization: An application of ES-MDA demonstrating the assimilation of geophysical data Z. Chen et al. 10.1016/j.advwatres.2023.104555
- Data assimilation for real-time subsurface flow modeling with dynamically adaptive meshless node adjustments S. Chen et al. 10.1007/s00366-023-01897-6
- An iterative normal-score ensemble smoother for dealing with non-Gaussianity in data assimilation L. Li et al. 10.1016/j.jhydrol.2018.01.038
- Investigating the pilot point ensemble Kalman filter for geostatistical inversion and data assimilation J. Keller et al. 10.1016/j.advwatres.2021.104010
- Reducing uncertainty in conceptual prior models of complex geologic systems via integration of flow response data A. Golmohammadi & B. Jafarpour 10.1007/s10596-019-09908-6
- The importance of state transformations when using the ensemble Kalman filter for unsaturated flow modeling: Dealing with strong nonlinearities D. Erdal et al. 10.1016/j.advwatres.2015.09.008
- Simultaneous identification of a contaminant source and hydraulic conductivity via the restart normal-score ensemble Kalman filter T. Xu & J. Gómez-Hernández 10.1016/j.advwatres.2017.12.011
- Non-point contaminant source identification in an aquifer using the ensemble smoother with multiple data assimilation T. Xu et al. 10.1016/j.jhydrol.2021.127405
- Ensemble smoother with multiple data assimilation for reverse flow routing V. Todaro et al. 10.1016/j.cageo.2019.06.002
- A multimodel data assimilation framework via the ensemble Kalman filter L. Xue & D. Zhang 10.1002/2013WR014525
- Posterior population expansion for solving inverse problems C. Jäggli et al. 10.1002/2016WR019550
- Data assimilation in the geosciences: An overview of methods, issues, and perspectives A. Carrassi et al. 10.1002/wcc.535
- Joint identification of contaminant source and aquifer geometry in a sandbox experiment with the restart ensemble Kalman filter Z. Chen et al. 10.1016/j.jhydrol.2018.07.073
- A coupled stochastic inverse-management framework for dealing with nonpoint agriculture pollution under groundwater parameter uncertainty C. Llopis-Albert et al. 10.1016/j.jhydrol.2014.01.021
- Hybrid Inversion Method to Estimate Hydraulic Transmissivity by Combining Multiple-Point Statistics and a Direct Inversion Method A. Comunian & M. Giudici 10.1007/s11004-018-9727-0
- Inverse methods in hydrogeology: Evolution and recent trends H. Zhou et al. 10.1016/j.advwatres.2013.10.014
- Hydrogeochemical characterization and CO2 consumption in the Maqu catchment of the Qinghai-Tibetan Plateau by multiple hydrogeochemical methods M. Li et al. 10.1016/j.jhydrol.2023.129899
- Using Deep Learning to Improve Ensemble Smoother: Applications to Subsurface Characterization J. Zhang et al. 10.1029/2020WR027399
- Gaussian and non‐Gaussian inverse modeling of groundwater flow using copulas and random mixing A. Bárdossy & S. Hörning 10.1002/2014WR016820
- Multiresolution Approach to Condition Categorical Multiple‐Point Realizations to Dynamic Data With Iterative Ensemble Smoothing D. Lam et al. 10.1029/2019WR025875
- Identification of non-Gaussian parameters in heterogeneous aquifers by a modified probability conditioning method through hydraulic-head assimilation T. Lan et al. 10.1007/s10040-020-02243-6
- A new method to improve estimation of uncertain parameters in the Ensemble Kalman filter by re-parameterization employing prior statistics correction A. Bagherinezhad et al. 10.1016/j.jngse.2015.08.057
- Random Mixing: An Approach to Inverse Modeling for Groundwater Flow and Transport Problems A. Bárdossy & S. Hörning 10.1007/s11242-015-0608-4
- A comparison of nonlinear extensions to the ensemble Kalman filter I. Grooms 10.1007/s10596-022-10141-x
- Advances in understanding river‐groundwater interactions P. Brunner et al. 10.1002/2017RG000556
- Comparing Seven Variants of the Ensemble Kalman Filter: How Many Synthetic Experiments Are Needed? J. Keller et al. 10.1029/2018WR023374
- Estimation of Facies Boundaries Using Categorical Indicators with P-Field Simulation and Ensemble Kalman Filter (EnKF) S. Nejadi et al. 10.1007/s11053-014-9233-0
- Maximizing the value of pressure data in saline aquifer characterization S. Yoon et al. 10.1016/j.advwatres.2017.08.019
6 citations as recorded by crossref.
- Application of ensemble-based data assimilation techniques for aquifer characterization using tracer data at Hanford 300 area X. Chen et al. 10.1002/2012WR013285
- Evaluation of the benefits of improved permeability estimation on high-resolution characterization of DNAPL distribution in aquifers with low-permeability lenses Q. Guo et al. 10.1016/j.jhydrol.2021.126955
- Inverse sequential simulation: A new approach for the characterization of hydraulic conductivities demonstrated on a non‐Gaussian field T. Xu & J. Gómez‐Hernández 10.1002/2014WR016320
- Characterization of non‐Gaussian conductivities and porosities with hydraulic heads, solute concentrations, and water temperatures T. Xu & J. Gómez‐Hernández 10.1002/2016WR019011
- Preconditioned Crank‐Nicolson Markov Chain Monte Carlo Coupled With Parallel Tempering: An Efficient Method for Bayesian Inversion of Multi‐Gaussian Log‐Hydraulic Conductivity Fields T. Xu et al. 10.1029/2020WR027110
- The power of transient piezometric head data in inverse modeling: An application of the localized normal-score EnKF with covariance inflation in a heterogenous bimodal hydraulic conductivity field T. Xu et al. 10.1016/j.advwatres.2013.01.006
Saved (final revised paper)
Latest update: 10 Sep 2024