Modelling nitrogen and phosphorus loads in a Mediterranean river catchment (La Tordera, NE Spain)
Abstract. Human activities have resulted in increased nutrient levels in many rivers all over Europe. Sustainable management of river basins demands an assessment of the causes and consequences of human alteration of nutrient flows, together with an evaluation of management options. In the context of an integrated and interdisciplinary environmental assessment (IEA) of nutrient flows, we present and discuss the application of the nutrient emission model MONERIS (MOdelling Nutrient Emissions into River Systems) to the Catalan river basin, La Tordera (north-east Spain), for the period 1996–2002. After a successful calibration and verification process (Nash-Sutcliffe efficiencies E=0.85 for phosphorus and E=0.86 for nitrogen), the application of the model MONERIS proved to be useful in estimating nutrient loads. Crucial for model calibration, in-stream retention was estimated to be about 50 % of nutrient emissions on an annual basis. Through this process, we identified the importance of point sources for phosphorus emissions (about 94% for 1996–2002), and diffuse sources, especially inputs via groundwater, for nitrogen emissions (about 31% for 1996–2002). Despite hurdles related to model structure, observed loads, and input data encountered during the modelling process, MONERIS provided a good representation of the major interannual and spatial patterns in nutrient emissions. An analysis of the model uncertainty and sensitivity to input data indicates that the model MONERIS, even in data-starved Mediterranean catchments, may be profitably used by water managers for evaluating quantitative nutrient emission scenarios for the purpose of managing river basins. As an example of scenario modelling, an analysis of the changes in nutrient emissions through two different future scenarios allowed the identification of a set of relevant measures to reduce nutrient loads.