Confidence intervals for the coefficient of L-variation in hydrological applications
Abstract. The coefficient of L-variation (L-CV) is commonly used in statistical hydrology, in particular in regional frequency analysis, as a measure of steepness for the frequency curve of the hydrological variable of interest. As opposed to the point estimation of the L-CV, in this work we are interested in the estimation of the interval of values (confidence interval) in which the L-CV is included at a given level of probability (confidence level). Several candidate distributions are compared in terms of their suitability to provide valid estimators of confidence intervals for the population L-CV. Monte-Carlo simulations of synthetic samples from distributions frequently used in hydrology are used as a basis for the comparison. The best estimator proves to be provided by the log-Student t distribution whose parameters are estimated without any assumption on the underlying parent distribution of the hydrological variable of interest. This estimator is shown to also outperform the non parametric bias-corrected and accelerated bootstrap method. An illustrative example of how this result can be used in hydrology is presented, namely in the comparison of methods for regional flood frequency analysis. In particular, it is shown that the confidence intervals for the L-CV can be used to assess the amount of spatial heterogeneity of flood data not explained by regionalization models.