Astel, A., Tsakovski, S., Barbieri, P., and Simeonov, V.: Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets, Water Res., 41(19), 4566–4578, 2007.
Cameron, D., Kneale, P., and See, L.: An evaluation of a traditional and a neural net modelling approach to flood forecasting for an upland catchment, Hydrol. Process., 16, 1033–1046, 2002.
Corzo, G. A. and Solomatine, D. P.: Baseflow separation techniques for modular artificial neural networks modelling in flow forecasting, Hydrolog. Sci. J., 52(3), 491–507, 2007.
de Vos, N. J. and Rientjes, T. H. M.: Multi-objective performance comparison of an artificial neural network and a conceptual rainfall-runoff model, Hydrolog. Sci. J., 52(3), 397–413, https://doi.org/10.1623/hysj.52.3.397, 2007.
de Vos, N. J. and Rientjes, T. H. M.: Multiobjective training of artificial neural networks for rainfall-runoff modeling, Water Resour. Res., 44, W08434, https://doi.org/10.1029/2007WR006734, 2008.
Foody, G.: Applications of the self-organising feature map neural network in community data analysis, Ecol. Model., 120, 97–107, 1999.
Furundzic, D.: Application example of neural networks for time series analysis: rainfall-runoff modelling, Signal Process., 64, 383–396, 1998.
Georgakakos, K. P., Seo, D., Gupta, H., Schaake, J., and Butts, M. B.: Towards the characterization of streamflow simulation uncertainty through multimodel ensembles, J. Hydrol., 298, 222–241, 2004.
Gopakumar R., Takara, K., and James E. J.: Hydrologic Data Exploration and River Flow Forecasting of a Humid Tropical River Basin Using Artificial Neural Networks, Water Resour. Manag., 21(11), 1915–1940, 2007.
Hsu, A. L. and Halgamuge, S. K.: An unsupervised hierarchical dynamic selforganizing approach to cancer class discovery and marker gene identification in microarray data (supplementary information on "Dynamic SOM with hexagonal structure for data mining"), Bioinformatics, 19(16), 2131–2140, 2003.
Hsu, K., Gupta, H. V., Gao, X., Sorooshian, S., and Imam, B.: Self-organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis, Water Resour. Res., 38(12), 1302, https://doi.org/10.1029/2001WR000795, 2002.
Jain, A. and Srinivasulu, S.: Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques, J. Hydrol., 317, 291–306, 2006.
Khan, M. S. and Coulibaly, P.: Bayesian neural network for rainfall-runoff modeling, Water Resour. Res., 42(7), W07409, https://doi.org/10.1029/2005WR003971, 2006.
Kohonen, T.: Self-organized formation of topologically correct feature maps, Biol. Cybern., 43, 59–69, 1982.
Kohonen, T.: Self-Organizing Maps (third edn.), Springer, Berlin, Germany, 2001.
Legates, D.R. and McCabe, G.J.: Evaluating the use of `goodness-of-fit' measures in hydrologic and hydroclimatic model validation, Water Resour. Res., 35, 233-241, 1999.
Madsen, H.: Automatic calibration of a conceptual rainfall-runoff model using multiple objectives, J. Hydrol., 235, 267–288, 2000.
Maier, H. and Dandy, G.: Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications, Environ. Modell. Softw., 15(1), 101–104, 2000.
Moradkhani, H., Hsu, K., Gupta, H. V., and Sorooshian, S: Improved streamflow forecasting using self-organizing radial basis function artificial neural networks, J. Hydrol., 295, 246–262, 2004.
Shamseldin, A. Y., O'Connor, K. M., and Liang, G. C.,: Methods for combining the outputs of different rainfall-runoff rodels, J. Hydrol., 197, 203–229, 1997.
Shamseldin, A. Y., O'Connor, K. M., and Nasr, A. E.: A comparative study of three neural network forecast combination methods for simulated river flows of different rainfall-runoff models, Hydrolog. Sci. J., 52(5), 896–916, 2007. natural phenomena, Neural Networks, 19, 215–224, 2006.
Shirazi, J. and Menhaj, M. B.: A SOM Based 2500-Isolated-Farsi-Word Speech Recognizer, in: ICANN 2005, LNCS 3696, edited by: Duch, W., Kacprzyk, J., Oja, E., and Zadrony, S., Springer-Verlag Berlin Heidelberg, 589–595, 2005.
Srivastav, R. K., Sudheer, K. P., and Chaubey, I.: A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models, Water Resour. Res., 23(10), W10407, https://doi.org/10.1029/2006WR005352, 2007.
Tang, Y., Reed, P., and Wagener, T.: How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration?, Hydrol. Earth Syst. Sci., 10, 289–307, 2006.
Toth, E. and Brath, A.: Multistep ahead streamflow forecasting: Role of calibration data in conceptual and neural network modeling, Water Resour. Res., 43, W11405, https://doi.org/10.1029/2006WR005383, 2007.
Vrugt, J. A., Gupta, H. V., Bastidas, L. A., Bouten, W., and Sorooshian, S.: Effective and efficient algorithm for multiobjective optimization of hydrologic models, Water Resour. Res., 39, 1–19, 2003.
Wang, W., Gelder, P., Vrijling, J. K., and Ma, J.: Forecasting daily streamflow using hybrid ANN models, J. Hydrol., 324(1), 383–399, 2006.
Wheater, H. S., Jakeman, A. J., and Beven, K. J.: Progress and directions in rainfall-runoff modelling, in: Modelling change in environmental systems, edited by: Jakeman, A. J., Beck, M. B., and McAleer, M. J., Wiley, Chichester, 101–132, 1993.
Young, P. C.: Advances in real-time flood forecasting, Philos. T. R. Soc. Lond., 360, 1433–1450, 2002.
Zhang, B. and Govindaraju, S.: Prediction of Watershed Runoff using Bayesian Concepts and Modular Neural Networks, Water Resour. Res., 36(3), 753–762, 2000.