Buttle, J. M. and McDonald, D. J.: Coupled vertical and lateral preferential flow on a forested slope, Water Resour. Res., 38, 1060, https://doi.org/10.1029/2001WR000773, 2002.
De Lannoy, G. J. M., Verhoest, N. E. C., Houser, P. R., Gish, T. J., and van Meirvenne, M.: Spatial and temporal characteristics of soil moisture in an intensively monitored agricultural field (OPE3), J. Hydrol., 331, 719–730, 2006.
Elliot, J. A., Cessna, A. J., Best, K. B., Nicholaichuk, W., and Tollefson, L. C.: Leaching and preferential flow of clopyralid under irrigation: field observations and simulation modeling, J. Environ. Qual., 27, 124–131, 1998.
Erskine, R. H., Green, T. R., Ramirez, J. A., and MacDonald, L. H.: Comparison of gridbased algorithms for computing upslope contributing area, Water Resour. Res., 42, W09416, https://doi.org/10.1029/2005WR004648, 2006.
Fiori, A., Romanelli, M., Cavalli, D. J., and Russo, D.: Numerical experiments of streamflow generation in steep catchments, J. Hydrol., 339, 183–192, 2007.
Freer, J., McDonnell, J. J, Beven, K. J., Brammer, D., Burns, D. A, Hooper, R. P., and Kendall, C.: Topographic controls on subsurface storm flow at the hillslope-scale for two hydrologically distinct small catchments, Hydrol. Processes., 11, 1347–1352, 1997.
Freer, J., McDonnell, J. J, Beven, K. J., Peters, N. E., Burns, D. A, Hooper, R. P., Aulenbach, B., and Kendall, C.: The role of bedrock topography on subsurface storm flow, Water Resour. Res., 38, 1269, https://doi.org/10.1029/2001WR000872, 2002.
Gish, T. J., Dulaney, W. P., Kung, K.-J. S., Daughtry, C. S. T., Doolittle, J. A., and Miller, P. T.: Evaluating use of ground-penetrating radar for identifying subsurface flow pathways, Soil Sci. Soc. Am. J., 66, 1620–1629, 2002.
Gish, T. J., Walthall, C. L., Daughtry, C. S. T., and Kung, K.-J. S.: Using soil moisture and spatial yield patterns to identify subsurface flow pathways, J. Environ. Qual., 34, 274–286, 2005.
Guo, J. H., Liang, X., and Leung, L. R.: A new multiscale flow network generation scheme for land surface models, Geophys. Res. Lett., 32, L23502, https://doi.org/10.1029/2004GL021381, 2004.
Haga, H., Matsumoto, Y., Matsutani, J., Fujita, M., Nishida, K., and Sakamoto, Y.: Flow paths, rainfall properties, and antecedent soil moisture controlling lags to peak discharge in a granitic unchanneled catchment, Water Resour. Res., 41, W12410, https://doi.org/10.1029/2005WR004236, 2005.
Haria, A. H., Johnson, A. C., Bell, J. P., and Batchelor, C. H.: Water-movement and isoproturon behaviour in a drained heavy clay soil. 1. Preferential flow processes, J. Hydrol., 163, 201–216, 1994.
Jones, R.: Algorithms for using a DEM for mapping catchment areas of stream sediment samples, Comput. Geosci., 28, 1051–1060, 2002.
Ju, S. H. and Kung, K.-J. S.: Finite element simulation of funnel flow and overall flow property induced by multiple soil layers, J. Environ. Qual., 22, 432–442, 1993.
Kirkby, M. J.: Thresholds and instability in stream head hollows: a model of magnitude and frequency for wash processes, in: Process Models and Theoretical Geomorphology, edited by: Kirkby, M. J., Wiley, Chichester, UK, 295–314, 1994.
Krovchenko, A. N.: Influence of spatial structure on accuracy of interpolation methods, Soil Sci. Soc. Am. J., 67, 1564–1571, 2003.
Kung, K.-J. S.: Preferential flow in a sandy vadose zone: 1. Field observation, Geoderma, 46, 30 51–71, 1990.
Kung, K.-J. S.: Laboratory observation of the funnel flow mechanism and its influence on solute transport, J. Environ. Qual., 22, 91–102, 1993.
Lin, H. S., Bouma, J., Wilding, L. P., Richardson, J.L., Kutilek, M., and Nielsen, D. R.: Advances in hydropedology, Adv. Agron., 85, 1–89, 2005.
Lin, H. S., Kogelmann, W., Walker, C., and Bruns, M. A.: Soil moisture patterns in a forested catchment: A hydropedological perspective, Geoderma, 131, 345–368, 2006.
Lin, H. S., Brook, E., McDaniel, P., and Boll, J.:Hydropedology and Surface/Subsurface Runoff Processes, in: Encyclopedia of Hydrologic Sciences.edited by: Anderson, M. G., John Wiley & Sons, Ltd., https://doi.org/10.1002/0470848944.hsa306, 1–25, 2008.
Maidment, D.: Arc Hydro: GIS for Water Resources, ESRI, Redlands, CA, USA, 55–86, 2002.
McDaniel, P. A., Regan, M. P., Brooks, E., Boll, J., Bamdt, S., Falen, A., Young, S. K., and Hammel, J. E.: Linking fragipans, perched water tables, and catchment-scale hydrological processes, Catena, 73, 166–173, 2008.
Noguchi, S., Tsuboyama, Y., Sidle, R. C., and Hosoda, I.: Morphological characteristics of macropores and the distribution of preferential flow paths in a forested slope segment, Soil Sci. Soc. Am. J., 63, 1413–1423, 1999.
Orlandini, S., Moretti, G., Franchini, M., Aldighieri, B., and Testa, B.: Path-based methods for the determination of nondispersive drainage directions in grid-based digital elevation models, Water Resour. Res., 39, 1144, https://doi.org/10.1029/2002WR001639, 2003.
Paik, K.: Global search algorithm for nondispersive flow path extraction, J. Geophys. Res., 113, F04001, https://doi.org/10.1029/2007JF000964, 2008.
Quinn, P. F., Beven, K. J., Chevallier, P., and Planchon, O.: The prediction of hillslope flowpaths for distributed modelling using digital terrain models, Hydrol. Proc., 5, 59–80, 1991.
Seibert, J. and McGlynn, B. L.: A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models, Water Resour. Res., 43, W04501, https://doi.org/10.1029/2006WR005128, 2007.
Sherlock, M. D. and McDonnell, J. J.: A new too for hillslope hydrologists: spatial distributed groundwater level and soilwater content measured using electromagnetic induction, Hydrol. Proc., 17, 1965–1977, 2003.
Sidle, R. C., Noguchi, S., Tsuboyama, Y., and Laursen, K.: A conceptual model of preferential flow systems in forested hillslopes: evidence of self-organization, Hydrol. Proc., 15, 1675–1962, 2001.
Soil Survey Division Staff.: Soil Survey Manual, U.S. Department of Agriculture Handbook No. 18, US Government Printing Office, Washington, DC, USA, 1993.
Tarboton, D. G.: A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resour. Res., 33, 309–319, 1997.
Vachaud, G., De Silans Passerat, A., Balabanis, P., and Vauclin, M.: Temporal stability of spatial measured soil water probability density function, Soil Sci. Soc. Am. J., 49, 822–827, 1985.
Van Genuchten, M. T.: A closed form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892–898, 1980.
Vogt, J. V., Colombo, R., and Bertolo, F.: Deriving drainage networks and catchment boundaries: a new methodology combining digital elevation data and environmental characteristics, Geomorphology, 53, 281–298, 2003.
Walker, C. and Lin, H. S.: Soil property changes after four decades of wastewater irrigation: a landscape perspective, Catena, 73, 63–74, 2008.
Wu, S., Li, J., and Huang, G. H.: A study on DEM-derived primary topographic attributes for hydrologic applications: sensitivity to elevation data resolution, Appl. Geogr., 28, 210–223, 2008.
Zhu, Q. and Lin, H. S.: Combining sample size, spatial structure, and auxiliary variables to determine optimal kriging in contrasting landscapes, Ecol. Model., in review, 2009.
Zinko, U., Seibert, J., Dynesius, M., and Nilsson, C.: Plant species numbers predicted by topography-based groundwater flow index, Ecosystems, 8, 430–441, 2005.