Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF 5-year value: 5.460
IF 5-year
CiteScore value: 7.8
SNIP value: 1.623
IPP value: 4.91
SJR value: 2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
h5-index value: 65
Volume 12, issue 4
Hydrol. Earth Syst. Sci., 12, 959–973, 2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 12, 959–973, 2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

  11 Jul 2008

11 Jul 2008

Floodplain sediment from a 100-year-recurrence flood in 2005 of the Ping River in northern Thailand

S. H. Wood1 and A. D. Ziegler2,3 S. H. Wood and A. D. Ziegler
  • 1Department of Geosciences, Boise State University, Boise, Idaho 83702 USA
  • 2Geography Department, University of Hawaii, Honolulu, Hawaii 96822, USA
  • 3Geography, National University of Singapore, Singapore

Abstract. The tropical storm, floodwater, and the floodplain-sediment layer of a 100-year recurrence flood are examined to better understand characteristics of large monsoon floods on medium-sized rivers in northern Thailand. Storms producing large floods in northern Thailand occur early or late in the summer rainy season (May–October). These storms are associated with tropical depressions evolving from typhoons in the South China Sea that travel westward across the Indochina Peninsula. In late September, 2005, the tropical depression from Typhoon Damrey swept across northern Thailand delivering 100–200 mm/day at stations in mountainous areas. Peak flow from the 6355-km2 drainage area of the Ping River upstream of the city of Chiang Mai was 867 m3s−1 (river-gage of height 4.93 m) and flow greater than 600 m3s−1 lasted for 2.5 days. Parts of the city of Chiang Mai and some parts of the floodplain in the intermontane Chiang Mai basin were flooded up to 1-km distant from the main channel. Suspended-sediment concentrations in the floodwater were measured and estimated to be 1000–1300 mg l−1.

The mass of dry sediment (32.4 kg m-2), measured over a 0.32-km2 area of the floodplain is relatively high compared to reports from European and North American river floods. Average wet sediment thickness over the area was 3.3 cm. Sediment thicker than 8 cm covered 16 per cent of the area, and sediment thicker than 4 cm covered 44 per cent of the area. High suspended-sediment concentration in the floodwater, flow to the floodplain through a gap in the levee afforded by the mouth of a tributary stream as well as flow over levees, and floodwater depths of 1.2 m explain the relatively large amount of sediment in the measured area.

Grain-size analyses and examination of the flood layer showed about 15-cm thickness of massive fine-sandy silt on the levee within 15-m of the main channel, sediment thicker than 6 cm within 200 m of the main channel containing a basal coarse silt, and massive clayey silt beyond 200 m. The massive clayey silt would not be discernable as a separate layer in section of similar deposits. The fine-sand content of the levee sediment and the basal coarse silt of sediment within 200 m of the main channel are sedimentological features that may be useful in identifying flood layers in a stratigraphic section of floodplain deposits.

Publications Copernicus