Articles | Volume 10, issue 1
https://doi.org/10.5194/hess-10-93-2006
© Author(s) 2006. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
https://doi.org/10.5194/hess-10-93-2006
© Author(s) 2006. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Experimental and theoretical memory diffusion of water in sand
G. Iaffaldano
now at: Geophysics Section, Ludwig-Maximilians University, Munich, Germany
Department of Physics, University “La Sapienza", Rome, Italy
M. Caputo
Department of Geology and Geophysics, Texas A&M University, College Station, Texas
Department of Physics, University “La Sapienza", Rome, Italy
S. Martino
Department of Earth Sciences, University “La Sapienza", Rome, Italy
Viewed
Total article views: 2,824 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 02 Aug 2005)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,206 | 1,465 | 153 | 2,824 | 149 | 132 |
- HTML: 1,206
- PDF: 1,465
- XML: 153
- Total: 2,824
- BibTeX: 149
- EndNote: 132
Total article views: 2,014 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 15 Feb 2006)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
944 | 940 | 130 | 2,014 | 130 | 122 |
- HTML: 944
- PDF: 940
- XML: 130
- Total: 2,014
- BibTeX: 130
- EndNote: 122
Total article views: 810 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 02 Aug 2005)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
262 | 525 | 23 | 810 | 19 | 10 |
- HTML: 262
- PDF: 525
- XML: 23
- Total: 810
- BibTeX: 19
- EndNote: 10
Cited
53 citations as recorded by crossref.
- Thermomagnetic behavior of a nonlocal finite elastic rod heated by a moving heat source via a fractional derivative heat equation with a non-singular kernel A. Abouelregal 10.1080/17455030.2021.1971326
- A memory model of sedimentation in water reservoirs M. Caputo & J. Carcione 10.1016/j.jhydrol.2012.11.016
- ОБЗОР МОДЕЛИ СТОКСА-ДАРСИ 10.51889/2959-5894.2024.86.2.003
- Memory and relaxation time of biological systems. an analysis of the effect of abortion legalization in italy M. Caputo & F. Gloria-Bottini 10.4236/ns.2011.38093
- Semilinear subdiffusion with memory in multidimensional domains M. Krasnoschok et al. 10.1002/mana.201700405
- New conticrete inequalities of the Hermite-Hadamard-Jensen-Mercer type in terms of generalized conformable fractional operators via majorization T. Saeed et al. 10.1515/dema-2022-0225
- The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator M. Asjad et al. 10.3934/math.2022392
- Analysis of subdiffusion in disordered and fractured media using a Grünwald-Letnikov fractional calculus model A. Obembe et al. 10.1007/s10596-018-9749-1
- Modelling of fluid flow through porous media using memory approach: A review M. Hashan et al. 10.1016/j.matcom.2020.05.026
- Derivation of Hermite-Hadamard-Jensen-Mercer conticrete inequalities for Atangana-Baleanu fractional integrals by means of majorization S. Wu et al. 10.1515/dema-2024-0024
- Semilinear subdiffusion with memory in the one-dimensional case M. Krasnoschok et al. 10.1016/j.na.2017.09.004
- Novel Mean-Type Inequalities via Generalized Riemann-Type Fractional Integral for Composite Convex Functions: Some Special Examples M. Mukhtar et al. 10.3390/sym15020479
- Theory and simulation of time-fractional fluid diffusion in porous media J. Carcione et al. 10.1088/1751-8113/46/34/345501
- Effect of fractional interporosity flow on elastic waves propagation through a fluid-saturated double-porosity interlayer Y. Kang et al. 10.1016/j.soildyn.2021.107132
- Numerical approach of Fokker–Planck equation with Caputo–Fabrizio fractional derivative using Ritz approximation M. Firoozjaee et al. 10.1016/j.cam.2017.05.022
- Fractional derivatives in the diffusion process in heterogeneous systems: The case of transdermal patches M. Caputo & C. Cametti 10.1016/j.mbs.2017.07.004
- Numerical investigation of the variable-order fractional Sobolev equation with non-singular Mittag–Leffler kernel by finite difference and local discontinuous Galerkin methods S. Fouladi & M. Dahaghin 10.1016/j.chaos.2022.111915
- Fractional integral inequalities for $ h $-convex functions via Caputo-Fabrizio operator L. Chen et al. 10.3934/math.2021374
- Approximate analytical solution of coupled fractional order reaction-advection-diffusion equations P. Pandey et al. 10.1140/epjp/i2019-12727-6
- Modeling Extreme-Event Precursors with the Fractional Diffusion Equation M. Caputo et al. 10.1515/fca-2015-0014
- Fractional derivatives and their applications in reservoir engineering problems: A review A. Obembe et al. 10.1016/j.petrol.2017.07.035
- Lattice Boltzmann method for tempered time-fractional diffusion equation J. Ren et al. 10.1088/1402-4896/ad837e
- Time-fractional particle deposition in porous media J. Xu 10.1088/1751-8121/aa66ac
- Time and spatial concentration profile inside a membrane by means of a memory formalism M. Caputo et al. 10.1016/j.physa.2007.11.033
- On Fractional Integral Inequalities of Riemann Type for Composite Convex Functions and Applications M. Vivas-Cortez et al. 10.3390/fractalfract7050345
- A modified memory-based mathematical model describing fluid flow in porous media A. Obembe et al. 10.1016/j.camwa.2016.11.022
- Numerical schemes for anomalous diffusion of single-phase fluids in porous media A. Awotunde et al. 10.1016/j.cnsns.2016.03.006
- Fractionalization of Forchheimer’s correction to Darcy’s law in porous media in large deformations S. Gunda et al. 10.1177/10812865241252577
- Error Bounds for Fractional Integral Inequalities with Applications N. Alqahtani et al. 10.3390/fractalfract8040208
- Lattice Boltzmann model for incompressible flows through porous media with time-fractional effects J. Ren & H. Lei 10.1016/j.cnsns.2024.108035
- An improved lattice Boltzmann model for variable-order time-fractional generalized Navier-Stokes equations with applications to permeability prediction J. Ren et al. 10.1016/j.chaos.2024.115616
- A memory effect model to predict COVID-19: analysis and simulation A. Ali et al. 10.1080/10255842.2022.2081503
- Hyers–Ulam stability and existence of solutions for fractional differential equations with Mittag–Leffler kernel K. Liu et al. 10.1016/j.chaos.2019.109534
- A Review of Modeling Thermal Displacement Processes in Porous Media A. Obembe et al. 10.1007/s13369-016-2265-5
- Role of Porosity on Energy Transport with Equal Rock-Fluid Temperatures During Thermal EOR Process M. Hossain 10.1007/s13369-016-2343-8
- Flux in Porous Media with Memory: Models and Experiments E. Di Giuseppe et al. 10.1007/s11242-009-9456-4
- Dimensionless Scaling Parameters During Thermal Flooding Process in Porous Media M. Enamul Hossain 10.1115/1.4039266
- A Novel Formulation of the Fractional Derivative with the Order α≥0 and without the Singular Kernel H. Jassim & M. Hussein 10.3390/math10214123
- Numerical Investigation of Memory-Based Diffusivity Equation: The Integro-Differential Equation M. Hossain 10.1007/s13369-016-2170-y
- On Caputo–Fabrizio Fractional Integral Inequalities of Hermite–Hadamard Type for Modified h -Convex Functions X. Wang et al. 10.1155/2020/8829140
- Fractional‐order poromechanics for a fully saturated biological tissue: Biomechanics of meniscus F. Amiri et al. 10.1002/cnm.3732
- Effective medium equations for fractional Fick's law in porous media F. Valdes-Parada et al. 10.1016/j.physa.2006.06.007
- A fractional order theory of poroelasticity G. Alaimo et al. 10.1016/j.mechrescom.2019.103395
- A Review of Modeling Thermal Displacement Processes in Porous Media A. Obembe et al. 10.1007/s13369-016-2265-5
- Numerical simulations of multilingual competition dynamics with nonlocal derivative K. Owolabi & J. Gómez-Aguilar 10.1016/j.chaos.2018.10.020
- Fractional derivatives and their applications in reservoir engineering problems: A review A. Obembe et al. 10.1016/j.petrol.2017.07.035
- Second-order predictor-corrector schemes for nonlinear distributed-order space-fractional differential equations with non-smooth initial data T. Biala 10.1080/00207160.2018.1539480
- A linearized spectral collocation method for Riesz space fractional nonlinear reaction–diffusion equations M. Almushaira 10.1002/cmm4.1177
- On the Self-Similar, Wright-Function Exact Solution for Early-Time, Anomalous Diffusion in Random Networks: Comparison with Numerical Results J. Padrino 10.1007/s40819-018-0559-x
- A fractional diffusion model for single-well simulation in geological media A. Obembe 10.1016/j.petrol.2020.107162
- Optimal control problem for an equation of filtration with memory M. Krasnoshchok 10.37069/1683-4720-2019-33-12
- Parallel algorithms for nonlinear time–space fractional parabolic PDEs T. Biala & A. Khaliq 10.1016/j.jcp.2018.08.034
- Modeling of temperature distribution and oil displacement during thermal recovery in porous media: A critical review M. Miah et al. 10.1016/j.fuel.2018.04.018
40 citations as recorded by crossref.
- Thermomagnetic behavior of a nonlocal finite elastic rod heated by a moving heat source via a fractional derivative heat equation with a non-singular kernel A. Abouelregal 10.1080/17455030.2021.1971326
- A memory model of sedimentation in water reservoirs M. Caputo & J. Carcione 10.1016/j.jhydrol.2012.11.016
- ОБЗОР МОДЕЛИ СТОКСА-ДАРСИ 10.51889/2959-5894.2024.86.2.003
- Memory and relaxation time of biological systems. an analysis of the effect of abortion legalization in italy M. Caputo & F. Gloria-Bottini 10.4236/ns.2011.38093
- Semilinear subdiffusion with memory in multidimensional domains M. Krasnoschok et al. 10.1002/mana.201700405
- New conticrete inequalities of the Hermite-Hadamard-Jensen-Mercer type in terms of generalized conformable fractional operators via majorization T. Saeed et al. 10.1515/dema-2022-0225
- The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator M. Asjad et al. 10.3934/math.2022392
- Analysis of subdiffusion in disordered and fractured media using a Grünwald-Letnikov fractional calculus model A. Obembe et al. 10.1007/s10596-018-9749-1
- Modelling of fluid flow through porous media using memory approach: A review M. Hashan et al. 10.1016/j.matcom.2020.05.026
- Derivation of Hermite-Hadamard-Jensen-Mercer conticrete inequalities for Atangana-Baleanu fractional integrals by means of majorization S. Wu et al. 10.1515/dema-2024-0024
- Semilinear subdiffusion with memory in the one-dimensional case M. Krasnoschok et al. 10.1016/j.na.2017.09.004
- Novel Mean-Type Inequalities via Generalized Riemann-Type Fractional Integral for Composite Convex Functions: Some Special Examples M. Mukhtar et al. 10.3390/sym15020479
- Theory and simulation of time-fractional fluid diffusion in porous media J. Carcione et al. 10.1088/1751-8113/46/34/345501
- Effect of fractional interporosity flow on elastic waves propagation through a fluid-saturated double-porosity interlayer Y. Kang et al. 10.1016/j.soildyn.2021.107132
- Numerical approach of Fokker–Planck equation with Caputo–Fabrizio fractional derivative using Ritz approximation M. Firoozjaee et al. 10.1016/j.cam.2017.05.022
- Fractional derivatives in the diffusion process in heterogeneous systems: The case of transdermal patches M. Caputo & C. Cametti 10.1016/j.mbs.2017.07.004
- Numerical investigation of the variable-order fractional Sobolev equation with non-singular Mittag–Leffler kernel by finite difference and local discontinuous Galerkin methods S. Fouladi & M. Dahaghin 10.1016/j.chaos.2022.111915
- Fractional integral inequalities for $ h $-convex functions via Caputo-Fabrizio operator L. Chen et al. 10.3934/math.2021374
- Approximate analytical solution of coupled fractional order reaction-advection-diffusion equations P. Pandey et al. 10.1140/epjp/i2019-12727-6
- Modeling Extreme-Event Precursors with the Fractional Diffusion Equation M. Caputo et al. 10.1515/fca-2015-0014
- Fractional derivatives and their applications in reservoir engineering problems: A review A. Obembe et al. 10.1016/j.petrol.2017.07.035
- Lattice Boltzmann method for tempered time-fractional diffusion equation J. Ren et al. 10.1088/1402-4896/ad837e
- Time-fractional particle deposition in porous media J. Xu 10.1088/1751-8121/aa66ac
- Time and spatial concentration profile inside a membrane by means of a memory formalism M. Caputo et al. 10.1016/j.physa.2007.11.033
- On Fractional Integral Inequalities of Riemann Type for Composite Convex Functions and Applications M. Vivas-Cortez et al. 10.3390/fractalfract7050345
- A modified memory-based mathematical model describing fluid flow in porous media A. Obembe et al. 10.1016/j.camwa.2016.11.022
- Numerical schemes for anomalous diffusion of single-phase fluids in porous media A. Awotunde et al. 10.1016/j.cnsns.2016.03.006
- Fractionalization of Forchheimer’s correction to Darcy’s law in porous media in large deformations S. Gunda et al. 10.1177/10812865241252577
- Error Bounds for Fractional Integral Inequalities with Applications N. Alqahtani et al. 10.3390/fractalfract8040208
- Lattice Boltzmann model for incompressible flows through porous media with time-fractional effects J. Ren & H. Lei 10.1016/j.cnsns.2024.108035
- An improved lattice Boltzmann model for variable-order time-fractional generalized Navier-Stokes equations with applications to permeability prediction J. Ren et al. 10.1016/j.chaos.2024.115616
- A memory effect model to predict COVID-19: analysis and simulation A. Ali et al. 10.1080/10255842.2022.2081503
- Hyers–Ulam stability and existence of solutions for fractional differential equations with Mittag–Leffler kernel K. Liu et al. 10.1016/j.chaos.2019.109534
- A Review of Modeling Thermal Displacement Processes in Porous Media A. Obembe et al. 10.1007/s13369-016-2265-5
- Role of Porosity on Energy Transport with Equal Rock-Fluid Temperatures During Thermal EOR Process M. Hossain 10.1007/s13369-016-2343-8
- Flux in Porous Media with Memory: Models and Experiments E. Di Giuseppe et al. 10.1007/s11242-009-9456-4
- Dimensionless Scaling Parameters During Thermal Flooding Process in Porous Media M. Enamul Hossain 10.1115/1.4039266
- A Novel Formulation of the Fractional Derivative with the Order α≥0 and without the Singular Kernel H. Jassim & M. Hussein 10.3390/math10214123
- Numerical Investigation of Memory-Based Diffusivity Equation: The Integro-Differential Equation M. Hossain 10.1007/s13369-016-2170-y
- On Caputo–Fabrizio Fractional Integral Inequalities of Hermite–Hadamard Type for Modified h -Convex Functions X. Wang et al. 10.1155/2020/8829140
13 citations as recorded by crossref.
- Fractional‐order poromechanics for a fully saturated biological tissue: Biomechanics of meniscus F. Amiri et al. 10.1002/cnm.3732
- Effective medium equations for fractional Fick's law in porous media F. Valdes-Parada et al. 10.1016/j.physa.2006.06.007
- A fractional order theory of poroelasticity G. Alaimo et al. 10.1016/j.mechrescom.2019.103395
- A Review of Modeling Thermal Displacement Processes in Porous Media A. Obembe et al. 10.1007/s13369-016-2265-5
- Numerical simulations of multilingual competition dynamics with nonlocal derivative K. Owolabi & J. Gómez-Aguilar 10.1016/j.chaos.2018.10.020
- Fractional derivatives and their applications in reservoir engineering problems: A review A. Obembe et al. 10.1016/j.petrol.2017.07.035
- Second-order predictor-corrector schemes for nonlinear distributed-order space-fractional differential equations with non-smooth initial data T. Biala 10.1080/00207160.2018.1539480
- A linearized spectral collocation method for Riesz space fractional nonlinear reaction–diffusion equations M. Almushaira 10.1002/cmm4.1177
- On the Self-Similar, Wright-Function Exact Solution for Early-Time, Anomalous Diffusion in Random Networks: Comparison with Numerical Results J. Padrino 10.1007/s40819-018-0559-x
- A fractional diffusion model for single-well simulation in geological media A. Obembe 10.1016/j.petrol.2020.107162
- Optimal control problem for an equation of filtration with memory M. Krasnoshchok 10.37069/1683-4720-2019-33-12
- Parallel algorithms for nonlinear time–space fractional parabolic PDEs T. Biala & A. Khaliq 10.1016/j.jcp.2018.08.034
- Modeling of temperature distribution and oil displacement during thermal recovery in porous media: A critical review M. Miah et al. 10.1016/j.fuel.2018.04.018
Saved (preprint)
Latest update: 23 Nov 2024