A consideration of rainfall, runoff and losses at Plynlimon in the context of long term hydrological variability in the UK and maritime Western Europe
Abstract. Important questions concerning the resilience of current water management strategies have been raised by the recent volatility of climatic conditions across large parts of western Europe. The last decade, overall, has been exceptionally warm and there have been very large spatial and temporal variations in rainfall, river flows and aquifer recharge rates. Examination of historical rainfall and runoff records for parts of maritime western Europe confirms that there is no close modern parallel to the conditions experienced recently. Some-but far from complete-consistency with a number of favoured climate change scenarios may be recognised.
Analyses of recent trends in lengthy rainfall and runoff series for the UK demonstrate significant regional differences and provide conflicting signals especially in relation to trends in catchment losses. Difficulties in reconciling the results from different areas may reflect both real hydroclimatological differences between catchments and variations in the precision of hydrometric time series-uncertainties in the assessment of areal precipitation in upland areas in particular. The dense monitoring networks at Plynlimon together with a rigorous data quality control programme underpins the value of the hydrometric datasets as important benchmarks against which to assess the significance of the very unusual patterns of rainfall and runoff which have characterised the recent past.
This paper places the rainfall, runoff and losses data for Plynlimon in the perspective provided by a number of long hydrometric records for maritime western Europe. The representativeness of the Plynlimon base period is considered with particular reference to both the historical stability which typifies the great majority of European hydrometric time series and the recent extension in the recorded range of accumulated rainfall and runoff totals which has been identified in some regions (e.g. western Scotland and Norway). Particular attention is directed to changes in seasonal rainfall and runoff patterns and the recent increases in evaporative demands. Some of the implications for the overall water balance and for water resource management are considered.