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Abstract. Water harvesting is predominantly carried out in arid and semi-arid regions. Site selection studies often rely on a 

methodology that calculates runoff using curve numbers to generate runoff maps. These maps, typically used as part of a 

multi-criteria selection process, identify areas conducive to the siting of water harvesting structures. However, traditional 10 

runoff maps do not account for transmission losses that occur along the surface flow path to the catchment outlet, and these 

losses can be significant in arid and semi-arid regions. Here we introduce a methodology that incorporates a curve number 

runoff method while also addressing transmission losses. 

 

Our approach, utilising three global datasets, was validated against observed runoff data from 28 catchments worldwide, and 15 

infers hydraulic characteristics of both overland and channel flow from curve number values. This involves leveraging the 

curve number dataset twice: initially for calculating runoff and subsequently for forecasting transmission losses. The 

outcomes include a runoff connectivity map, at a spatial resolution of 250 m × 250 m, presenting the runoff depth (in mm) 

for each pixel based on the direct runoff generated at that pixel and reaching the catchment outlet. This connectivity map 

aids planners in comprehending the dynamics of surface runoff towards a catchment outlet, assisting in identifying potential 20 

locations for future water harvesting structures. 

 

The process integrates 38 years of precipitation data, enabling predictions not only for average annual runoff but also for the 

return periods of various annual runoff volumes. Despite the simplicity of the model, a positive Nash-Sutcliffe efficiency 

value was observed in 11 out of the 28 catchments. 25 
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1 Introduction 

Water harvesting – the collection of runoff water for productive purposes (Critchley and Siegert, 1991) – is a common 

practice in arid and semi-arid regions. Beyond their primary role of collecting and storing water for domestic, agricultural or 

industrial use, water harvesting structures can have many other benefits, including increased plant biomass production, 

recharge of aquifers, reduced soil erosion, and flood mitigation (Gupta, 1994; Abdeldayem et al., 2020; 30 

Parimalarenganayaki, 2021; Strohmeier et al., 2021). There are many factors that need to be considered when deciding 

whether a location is appropriate for development as a water harvesting site, and several different methodologies have been 

deployed to identify sites. These include methods applicable to different types of water harvesting systems, including check 

dams (Patel et al., 2015, Ettazarini, 2021), structures located in gullies (Li et al., 2020), and small dams located on the 

surface or underground (Forzieri et al., 2008). Surprisingly, the prediction of runoff (i.e., water volume inflow to a water 35 

harvesting storage site from its catchment) is not routinely used in site selection. Adham et al. (2016a) reviewed water 

harvesting site selection studies and found only 13 of 48 included runoff as a site suitability criterion, while the most 

frequently used biophysical criterion was slope (40 of 48 studies). Quantifying runoff volume to a potential site is crucial to 

determine whether a scheme will receive sufficient water on an annual basis to fulfil its intended purpose; help determine the 

height of the storage structure that needs to be constructed (Stephens, 2010); and ascertain if excessive inflows will be 40 

problematic. Locations where the ratio of total volume of inflow to storage capacity is close to one are optimal for siting 

water harvesting structures (Adham et al., 2016). Hence, an important principle on which the work reported here is based is 

that the ratio of mean annual inflow volume to water harvesting storage volume is a key design metric and should be 

incorporated as one of the most important biophysical criteria in any water harvesting siting methodology.  

 45 

Predicting the harvested water volume at a potential site requires knowledge of its catchment’s area, rainfall, and rainfall-

runoff relationship (Critchley and Siegert, 1991). Because catchments differ in terms of size, topography, geology, and land 

cover, the rainfall-runoff relationship will vary between them. Rainfall patterns can also change significantly, even between 

nearby catchments. Moreover, climate change is affecting mean precipitation and evaporation with “seasonally variable 

regimes becoming more variable” (Konapala et al., 2020, p.1). Therefore, prediction of harvested water volumes for 50 

proposed storage sites requires contemporary data specific to the catchment in question. 

 

Several methods have been used to quantify runoff in water harvesting site selection studies. These include the empirical 

formula of Tixeront (Mechlia et al., 2009), the Finkel method (Elewa et al., 2012), the Watershed Modeling System 

conceptual model (Jabr and El-Awar, 2004) and the Soil Conservation Service Curve Number (SCS-CN) methodology 55 

(Gupta et al., 1997; Senay and Verdin, 2004; Kadam et al., 2012; Mugo and Odera, 2019; Shalamzari et al., 2019). Their 

outputs typically comprise of runoff maps (Senay and Verdin, 2004), predictions of total catchment runoff (e.g., Gupta et al., 

1997) and runoff coefficients (e.g., Ramakrishnan et al., 2009). Runoff maps allow the ratio of annual runoff to available 
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storage volume to be calculated for potential water harvesting sites (Sayl et al., 2019). Presented as a thematic layer, with 

runoff classified ordinally (e.g., low, moderate, or high) or fully quantitatively (e.g., depth, annual flood volume) they have 60 

been incorporated into GIS-based site selection methodologies in various ways. For example, De Winnaar et al. (2007) and 

Nagarajan et al. (2015) created maps showing zones of low, moderate, and high runoff potential. Sayl et al. (2019) and Al-

Ghobari et al. (2020) created maps of annual flood volume and potential runoff depth. Haile and Suryabhagavan (2019) 

incorporated a thematic map of runoff depth into a Fuzzy Logic model as part of a GIS-based approach for identifying 

potential rainwater harvesting sites. To improve the effectiveness of simulating the final runoff map of the watershed Karimi 65 

and Zeinivand (2021) used a distributed spatial-physical based model with 594 “subwatersheds” to create an annual runoff 

depth map to locate potential rainwater harvesting sites whilst accounting for daily temperature and evapotranspiration. 

 

The method used most commonly for runoff calculation in water harvesting site selection is the SCS-CN methodology, 

which was first introduced in 1956 (Mishra et al., 2012). It can be described as a conceptual model supported by empirical 70 

data, which is used to estimate the volume of direct runoff (i.e., runoff generated by rainfall, rather than from baseflow) 

generated at locations within a catchment from rainfall depth, using an empirical parameter known as a “curve number” 

(CN), values of which are determined based on soil type and soil cover (e.g., vegetation or crops, vegetative debris, built 

environment surface materials) (Ponce and Hawkins, 1996). CN is essentially a measure of land surface permeability and 

therefore of sub-surface potential moisture retention capacity, and by extension the potential for runoff to be generated by 75 

precipitation. The SCS-CN methodology calculates runoff using a CN value by first finding the soil water retention capacity, 

S, using: 

𝑆 = 25.4 (
1000

CN
− 10) , (1) 

where S is the maximum soil water retention (mm), and CN is the curve number (dimensionless). From this, runoff generated 

is computed using: 

𝑄 =
(𝑃 − 0.2𝑆)2

(𝑃 + 0.8𝑆)
      𝑖𝑓 𝑃 > 0.2𝑆 

 

𝑄 = 0                  𝑖𝑓 𝑃 ≤ 0.2𝑆 , (2) 

where Q is the direct runoff (mm), and P is the storm rainfall (mm). Curve number rainfall-runoff models are best used for 80 

ungauged catchments when runoff is the only output needed (Sitterson et al., 2017). As water harvesting site selection 

planners typically deal with ungauged catchments it is not surprising that so many water harvesting selection studies use the 

SCS-CN methodology to compute runoff. While this method is appropriate for such purposes, difficulties do remain. 

Notably, as it was formulated for use on small agricultural catchments (Soulis, 2021), its application to larger catchments 

needs to take into account the tendency for runoff efficiency to decrease as catchment area increases (Karnieli et al., 1988).  85 
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To predict the water storage yield at a particular location from precipitation in its catchment, in addition to knowledge of 

catchment area, rainfall and rainfall-runoff relationships, understanding is also required of the transmission losses – to 

infiltration, evaporation or other processes – experienced by the runoff as it travels from its points of creation (where the 

precipitation falls) to the proposed storage location. These losses are typically high in arid regions, where water harvesting is 90 

commonly practised (McMahon and Nathan, 2021).  Hughes and Sami (1992) estimated total transmission losses of 22 % 

and 75 % for two rainfall events in a semi-arid ephemeral channel system located in Africa with transmission losses largely 

taking the form of infiltration of water into the ground. For a semi-arid basin in Brazil, Toledo et al. (2020) stated that 

transmission losses accrued at a rate of 2.7 % for every kilometre of river system. Consequently, runoff maps which do not 

include an allowance for transmission losses cannot be verified against observed flow data, should they exist. Thus, another 95 

difficulty in using the SCS-CN method in larger catchments is obtaining data quantifying the land surface conditions over 

which transmission losses occur at sufficient spatial resolution. Typically, modelling a catchment to incorporate such 

transmission losses involves aggregating land into sub-catchments with uniform runoff-loss characteristics. This “lumped” 

approach reduces spatial variability. Remote sensing offers an ever-increasing availability of high spatial resolution data 

products that can address this problem. The method described in this paper aims to exploit this to create high-spatial 100 

resolution runoff maps whilst incorporating transmission losses. 

 

The aim of this study is to develop and test a novel procedure to create maps showing the mean annual runoff from locations 

within arid and semi-arid catchments to collection points that takes into account transmission losses at high spatial 

resolution, i.e., at the pixel resolution of currently available remote sensing data, rather than at the much coarser sub-105 

catchment scale that has typically been used to date. The intention is that this procedure can be used to aid the siting of water 

harvesting structures in regions where on-the-ground data is sparse. This aim is addressed through the following objectives: 

 

1. Create a model to compute generated runoff using global precipitation and curve number datasets. 

2. Model flowpaths from points where runoff is generated to the catchment outlet. 110 

3. Develop a transmission loss model to determine the proportion of runoff reaching the outlet. 

4. Evaluate model results against observed runoff data, including evaluating the effect of incorporating transmission 

losses by comparing results for model runs with and without them incorporated. 

5. Examine the characteristics of catchments best modelled by the procedures developed. 

 115 

The novel contributions of this work lie in the use of fully distributed data sets, rather than the lumped approach taken 

previously, and in the novel method put forward for calculation of transmission losses. The approach taken to calculating 

transmission losses is based on the following argument. In arid and semi-arid regions, there are far fewer rainy days than in 

humid regions. Only some rainy days create direct runoff. Even fewer rainy days are responsible for runoff reaching a 

collection point. So, in these regions, where water harvesting is largely practiced, there are only brief periods when runoff is 120 
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being generated and transferred to a candidate water harvesting site downstream. Within such ephemeral systems, baseflow 

is less significant, or largely absent, compared to more humid regions. The method described here exploits these 

characteristics of arid zone hydrology, generating runoff using daily precipitation data, while surface flow (and hence 

transmission loss) is modelled as a singular annual event. Such an approach negates the need to route hydrographs hence 

sub-basins do not have to be created and catchments can be modelled at relatively high spatial resolution.  125 

 

The rainfall–runoff yield model effectively consists of two components. The first component generates direct runoff from 

daily precipitation data using the SCS-CN method with curve number values extracted from a global dataset (Jaafar et al., 

2019). The second component calculates transmission losses over flowpaths from cells where the runoff is generated to the 

candidate water harvesting storage site, at high spatial resolution. Outputs include a runoff connectivity map (RCM) of 130 

annual runoff depth reaching the storage site, and the predicted mean annual runoff volume. These two components are 

combined in the “High Resolution Runoff and Transmission Loss Estimation” tool, or HRRTLE (pronounced “hurtle”).  

2 Materials and Methods 

2.1 Method summary 

A set of catchments in arid or semi-arid climate zones were identified for which the necessary data sets – elevation (as a 135 

digital elevation model, DEM), curve number, rainfall, and discharge – were available. The position of the gauging station 

used to gather discharge data determined the outlet of each catchment, hence catchments became proxies for candidate water 

harvesting catchments for model development purposes, with their outlets (gauging station location) acting as places for 

potential collection and storage sites for the harvested water. Each catchment in turn was represented as an array of 250 m × 

250 m cells and characterised in terms of its size, shape, and elevation. Using a long-term precipitation dataset and a global 140 

curve number dataset, runoff generated directly by precipitation was calculated for all cells within each catchment at a daily 

resolution using the SCS-CN procedure. These were summed to give an annual value of runoff (in mm) generated at each 

cell. This was followed by the calculation of transmission losses – quantified as transferral ratios, the fraction of generated 

runoff reaching the catchment outlet on an annual time scale – which involved several stages. Firstly, analysis of pixel-scale 

flow accumulation, derived from the catchment’s DEM, was used to define the catchment’s stream network, and distinguish 145 

it from the rest of the catchment, where water fluxes were assumed to occur via overland flow. Flowpaths were then defined 

between each cell and the catchment outlet and classified into sections of in-stream and overland flow. Transferral ratios for 

the in-stream segment of each flow pathway were determined by considering the curve number and flow transit time. The 

transit time was derived from the length of the in-stream flow path and the velocity of the flow. The flow velocity was 

computed using Manning's equation, utilising proxies for hydraulic radii and roughness coefficients, which were determined 150 

based on available data and a set of assumptions and approximations. For the overland section of each flow path, transferral 

ratios were again calculated as a function of curve number and flow transit time, of the same form as that for in-stream flow, 
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but with different values of the curve number power law index and travel time constant. Overland flow transit time was 

calculated from overland flow path length and flow speed, and flow speed was calculated as a function of curve number and 

topographic slope, again based on the available data and a set of assumptions and approximations. The overall transferral 155 

ratio was then calculated as the product of the in-stream and overland flow section transferral ratios. This was multiplied by 

the annual runoff value for each cell, and the total modelled discharge at the catchment outlet calculated by: 

𝑄𝑎 =  (
∑ (𝑄𝑐(𝑖,𝑗)𝑇𝑅𝑐(𝑖,𝑗))

𝑖=𝑚,𝑗=𝑛
𝑖=1,𝑗=1

1000𝑁
) 𝐴𝑐 , 

(3) 

where Qa is the annual discharge (m3 y-1); i and j are cells in the X and Y directions respectively, i running from 1 to m, and j 

running from 1 to n; Qc(i,j) is the annual direct runoff (expressed in rainfall depth equivalent, mm y-1) generated at cell (i,j); 

TRc(i,j) is the overall transferral ratio for cell (i,j); N is the total number of cells in the catchment; and Ac is the total 160 

catchment area (m2). A schematic diagram of the main stages of the HRRTLE tool is presented (Figure 1).  

 

 

 

Figure 1. Schematic of the main stages of the HRRTLE process [CN = Curve Number; TR = Transferral Ratio]. 165 
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The model was calibrated by comparing its outputs with the outflow data available for each catchment and adjusting the 

values of the power law index and time constant in the transferral ratio equations to optimise the model results’ fit to the 

observed data. An assessment was then made of which types of catchments the model worked best for, why, and how the 

model might therefore be applied in practice, and improved in future research.  170 

2.2 Methods in detail 

2.2.1 Catchment area selection and characterisation 

Observed catchment outflow records from the Global Runoff Data Center database (GRDC, 2020) were scrutinised to 

identify catchments located primarily in arid or semi-arid regions with records spanning four decades from the early 1980’s 

and missing <3 % daily values. Once a catchment was identified as a potential study area, three catchment morphometric 175 

parameters were computed. A GIS was used to define the catchment area from a DEM (USGS EROS, 2018), with a spatial 

resolution of 3 arc-seconds for global coverage. The catchment form factor (CFF), defined as the ratio of catchment area to 

the square of the basin length (Patel et al., 2015), and the Height Above Nearest Drainage (HAND) were then computed 

from the DEM – see Sect. 2.2.3 below for details of how the drainage network was identified.  Each catchment was 

classified based on its area, CFF and HAND (Table A1). A subset of 28 catchments (Figure 2) that offered a range of 180 

permutations of area (large, intermediate or small), shape (CFF), and elevation (HAND) were then selected for the purposes 

of model development (Table A2). Of these, 15 are in South Africa, 7 in Australia, 3 in the USA, 2 in Brazil and 1 in Israel.  

 

 

Figure 2: Map showing locations of runoff gauging stations used. Each station represents the outlet of a modelled catchment. 185 
Basemap of Global Aridity Index (Zomer and Trabucco, 2022).  

To further characterise the selected catchments, additional datasets were obtained. The mean aridity index was found for 

each catchment using a global aridity dataset (Zomer and Trabucco, 2022). Mean rainfall was derived from a Global 

Precipitation Climatology Centre (GPCC) 1° resolution dataset (Ziese et al., 2022). The baseflow percentage (i.e., the 
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proportion of runoff at the catchment outlet that is derived from baseflow, rather than direct runoff generated by 190 

precipitation) was computed for each catchment by inputting the GRDC daily runoff data into a baseflow index calculator 

(U.S. Geological Survey, 2016). The runoff efficiency was calculated for each catchment by taking the ratio of the long-term 

runoff depth (mm) from the GRDC records to the mean depth (mm) obtained from the precipitation dataset. The mean peak 

runoff month was found by analysing observed runoff data. Land cover (spatial resolution ~1 km) for each catchment was 

obtained from global land cover datasets for the year 2000 (Eva et al., 2003; Latifovic et al., 2003; Mayaux et al., 2003; 195 

Mayaux and Bossard, 2003; Tateishi et al., 2003). 

2.2.2 Direct runoff calculation 

The spatial resolution of the GPCC precipitation data was enhanced from 1° (approximately 110 km on a great circle) to 250 

m using linear interpolation, to create a precipitation dataset, P (mm) that matched the spatial resolution of the CN dataset 

used (see below). Antecedent precipitation values, PΣ5 (mm), were then calculated for each day at each 250 m cell by 200 

summing the precipitation from the five preceding days. The antecedent moisture condition (AMC) was then assigned to 

each cell for each day based on the value of PΣ5 for that day and the season (Table 1), following Silveira et al. (2000). 

 

Table 1. Selection of antecedent moisture condition (AMC) using antecedent precipitation (PΣ5) and season. 

AMC  
dormant season  

PΣ5 (mm) 

growing season  

PΣ5 (mm) 

I (dry) <13  36 

II (normal) 13 to 28 36 to 53 

III (wet) >28 >53 

 205 

Curve number values were taken from a global curve number dataset with a spatial resolution of 250 m (Jaafar et al., 2019), 

which provided CN values for the three AMC groups defined in Table 1. The appropriate CN value was selected according 

to the AMC value derived from Table 1 and assigned to each cell in the extent. The daily direct runoff was then calculated 

from CN and P for each cell using the SCS-CN equations Eq. (1) and Eq. (2).  

2.2.3 Transferral ratio calculations 210 

To determine catchment outflow from the direct runoff values for each cell in the catchment, knowledge of transmission 

losses is needed. These quantify how much of the direct runoff is lost – primarily to infiltration but also to evaporation and 

other processes (e.g., uptake by plants or animals) – on its journey from its source cell to the catchment outlet. Here, this is 

quantified in the form of transferral ratios – the fraction of the runoff that makes it to the catchment outlet. The transferral 

ratios are calculated by dividing the catchment into cells that form its drainage stream network (where fluxes are denoted 215 

“in-stream flow”) and the rest of the catchment (where fluxes are denoted “overland flow”). For runoff from each cell, partial 
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transferral ratios are calculated for both that part of its journey that occurs as overland flow (TRo), and that part that occurs as 

in-stream flow (TRn). The overall transferral ratio (TRc) is then calculated as the product of TRo and TRn. 

 

Stream network identification and parameterisation 220 

To identify the cells that formed the catchment’s stream network, the spatial resolution of the DEM was increased from 3 

arc-seconds to 250 m by unifying and filling its tiles in a GIS environment (ArcGIS Pro 2.8) effectively matching its spatial 

resolution to that of the curve number and precipitation data. D8 flow direction value for each cell was then derived by 

identifying the neighbouring cell whose elevation was lowest. The D8 flow direction values were then used to calculate an 

unweighted flow accumulation value for each cell, defined as the total number of cells flowing into it. 225 

 

Having calculated the flow accumulation value for each cell, the catchment’s stream network was defined as being made up 

of all cells with a flow accumulation value greater than 65. This was based on the assumption that the threshold drainage 

area required to initiate stream formation and maintenance in arid or semi-arid zones is 4.05 km2 (Gao et al., 2019), which 

approximates to 65 cells of size 250 m × 250 m, to the nearest whole number. Rasters of the following variables covering all 230 

cells in the stream network were then created within the GIS: the height above the catchment outlet, HACOn (m); the 

horizontal distance to the catchment outlet along the stream network, HFDn (m); the mean downstream slope of stream 

network cells, Sn (m m-1), found by dividing HACOn by HFDn, and the stream network mean downstream length, Ln (m), 

calculated by taking the square root of the sum of the squares of HACOn and HFDn.  

 235 

In-stream flow transferral ratio calculation 

The transferral ratio for that part of a cell’s runoff’s journey to the catchment outlet that travels down the stream network , 

TRn, was calculated as: 

𝑇𝑅𝑛 =  (
𝐶𝑁𝑓𝑑,𝑛

100
)

𝑝𝑛

𝑒𝑘𝑛𝑇𝑛  
(4) 

Of the terms on the right hand side, CNfd,n – the stream network mean annual curve number value for flood-days 

(dimensionless) – and Tn – the stream network travel time (days) are calculated, whereas pn – the “curve number power law 240 

index” (dimensionless) – and kn – the “travel time constant” (dimensionless) – are parameters whose values are adjusted in 

the calibration process whereby the calculated outflow is compared with observed outflow data for each catchment. Thus, 

Eq. (4) encapsulates the assumptions that more runoff will reach the outlet as curve number increases (which follows from 

the definition of curve number), and the longer the runoff takes to reach the outlet, the more of it will be lost along the way. 

Mathematically, these effects have been assumed to follow power law and exponential relationships, respectively.  245 

 

Of the two calculated terms on the right hand side, the stream network mean annual curve number value for flood-days 

(CNfd,n) was calculated as the mean CN value for stream network cells in the runoff’s path for all days in the year when direct 
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runoff occurred (i.e., when PΣ5 > 0.2S). The calculation of the stream network travel time is more complex and is described 

in the following section.   250 

 

Stream network travel time calculation 

The stream network travel time to the catchment outlet was calculated using: 

𝑇𝑛 =  𝐿𝑛 (86400𝑉𝑛)⁄  , (5) 

where Tn is the network mean downstream transit time (days), Ln is the stream network mean downstream length (m), and Vn 

is the stream network mean downstream velocity (m s-1). Calculation of Ln is described above. Calculation of Vn is based on 255 

Mannings equation for open channel flow (e.g., Chow et al., 1988) shown by:  

𝑉𝑛 =  
1

𝑛
𝑅2 3⁄ 𝑆𝑓

1 2⁄
   

(6) 

where n is Manning’s roughness coefficient (m-1/3s), R is the hydraulic radius (m), and Sf is the friction slope 

(dimensionless). Here, Sf is assumed to be equal to the mean downstream slope of stream network cells, Sn (see above), and 

the – more complex – procedures for calculating n and R are as follows. 

 260 

To calculate values for n, it is first noted that there is a relationship between land use, CN and Manning’s n. For example, 

natural forests have relatively low CN values and relatively high Manning’s n values, whereas bare land has relatively high 

CN values and relatively low Manning’s n values (Schwab et al., 1981 cited in Tarigan, 2016). Using this principle, that 

higher CN values are associated with lower hydraulic resistance to surface flow, a proxy for Manning’s n was established by 

creating a linear relationship between it and CN. This was done by noting that the maximal Manning’s n value is 265 

approximately 0.15, which is associated with “very weedy reaches, deep pools, or floodways with heavy stand of timber and 

underbrush”, while its minimal value is approximately 0.025, associated with “clean, straight, full stage, no rifts or deep 

pools” (Das, 2016). Similarly, CN values vary from a minimum of approximately 20 to a maximum of 100. By associating 

the maximal Manning’s n with the minimal CN, and vice versa, and applying a linear regression between these two points, 

the relationship  270 

𝑛 =  −0.0018𝐶𝑁 + 0.185  (7) 

was derived. Using the stream network mean annual curve number value for flood-days (CNfd,n), values of Manning’s n can 

thus be estimated and used in Eq. (6) to calculate flow speed and thus stream network travel time.  

 

The final element of Manning’s equation, the hydraulic radius, R, is defined as A/P, the ratio of the stream flow cross-

sectional area, A, to its wetted perimeter, P. These stream parameters cannot be determined directly from a DEM, or from 275 

any of the other input data sets that are commonly available. The parameter most closely related to A and P that may be 

derived from the available data is stream channel width, W. The precise relationship between W and A and P will vary, but 
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for small streams in arid or semi-arid zones, we assumed that the channels would be approximately triangular and have depth 

W/12. The decision to select a depth of W/12 was influenced by the common use of a width-to-depth ratio of 12 when 

delineating natural rivers (Rosgen, 1994). This choice was anticipated to accommodate a diverse range of river types. Thus, 280 

we estimated the hydraulic radius using: 

𝑅 =

𝑊
2

 ×  
𝑊
12

2 ((
𝑊
2 )

2

+ (
𝑊
12)

2

)

0.5 =
𝑊

2√148
≈

𝑊

24
 

(8) 

We derived channel widths by assuming that they were linearly related to the flow accumulation value for each stream 

network pixel, the calculation of which is described in this section, above. Thus: 

𝑊𝑛 = 𝑎𝐹𝐴𝑛 + 𝑏  (9) 

where a and b are empirical constants that require determination. This was carried out by manually measuring 20 stream 

widths using an ArcGIS Pro World Imagery basemap (Source: Esri, Maxar, Earthstar Geographic, and the GIS User 285 

Community) from locations within each catchment selected to cover a range of flow accumulation values. These widths were 

regressed against their locations’ flow accumulation values, to give catchment specific values for a and b. A list of 

catchment codes alongside the values of these constants is provided in the Supplementary Materials.  

 

Overland flow transferral ratio calculation 290 

All catchment cells not designated as stream network cells, i.e., all cells with a flow accumulation value of 65 or less, were 

classified as “overland flow” cells. The calculation of the transferral ratio for runoff flowing through these cells followed the 

same general approach as that laid out above for in-stream cells, but required some different assumptions and 

approximations to be made to reflect the different nature of the conditions. Using the same assumptions as those represented 

in Eq. (4) for stream network cells, the overland transferral ratio, TRo, was calculated as: 295 

𝑇𝑅𝑜 =  (
𝐶𝑁𝑓𝑑,𝑜

100
)

𝑝𝑜

𝑒𝑘𝑜𝑇𝑜   
(10) 

where CNfd,o is the mean CN value along the overland flow path for flood days; po is the overland curve number power law 

index; ko is the overland travel time constant; and To is the overland travel time (days). For each overland cell, the travel time 

for runoff to reach the catchment outlet, To, was calculated, analogously to Eq. (5), as: 

𝑇𝑜 =  𝐿𝑜 (86400𝑉𝑜)⁄   (11) 

where Lo is the mean downstream overland length (m), and Vo is the mean downstream overland velocity (m s-1). Lo was 

calculated as the square root of the sum of the squares of HANDo and HFDo, whose definition and derivation are described 300 

previously in this section. Vo was calculated using a method based on the shallow concentrated flow equations. For unpaved 
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(grassed waterway) and paved surfaces, respectively, these give the relationships between flow speed, V, and along-flow 

slope, Sf, as (Cronshey et al., 1985) by:  

𝑉 = 4.9178𝑆𝑓
0.5  (12) 

and 

𝑉 = 6.1960𝑆𝑓
0.5  (13) 

By adopting a similar principle to that used for relating CN to Manning’s coefficient in Eq. (7) above, a linear relationship 305 

was assumed between CNfd,o and the coefficients in Eq. (12) and Eq. (13). The coefficient for the rough, unpaved surface, 

4.9178 in Eq. (12), was given an equivalent CNfd,o value of 60, while that for the smoother, paved surface, 6.1960 in Eq. 

(13), was given an equivalent CNfd,o value of 100. This recasts Eq. (12) and Eq. (13) as: 

𝑉𝑜 = (0.0325𝐶𝑁𝑓𝑑,𝑜 + 2.95)𝑆𝑜
0.5  (14) 

where Vo is the mean downstream overland velocity (m s-1), CNfd,o is the overland mean downstream annual curve number 

for flood-days (dimensionless), and So is the mean downstream overland slope (m m-1). 310 

 

Overall transferral ratio 

For each cell within the catchment, the overall transferral ratio, i.e., the proportion of rainfall running off from that cell that 

reached the catchment outlet, was calculated as: 

𝑇𝑅𝑐 =  𝑇𝑅𝑛  × 𝑇𝑅𝑜   (15) 

where TRc is the catchment transferral ratio; TRn is the in-stream transferral ratio; and TRo is the overland transferral ratio 315 

(which is defined as 1 if the cell in question is part of the stream network). This was then multiplied by the (annual) direct 

runoff for the cell to give the model’s estimate of that cell’s contribution to the annual runoff at the catchment outlet (i.e., the 

harvested water if the catchment outlet represents a potential water harvesting location).  

 

2.3. Model performance 320 

The performance of the HRRTLE tool was evaluated used two commonly used measures, the Nash-Sutcliffe simulation 

efficiency (NSE) and percentage bias (Pbias), which were calculated, respectively, as: 

NSE = 1 −  
∑ (𝑄𝑖,𝑜𝑏𝑠 − 𝑄𝑖,𝑐𝑎𝑙)

2𝑛
𝑖=1

∑ (𝑄𝑖,𝑜𝑏𝑠 − 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ )

2𝑛
𝑖=1

  
(16) 

and 
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Pbias =  [
∑ (𝑄𝑖,𝑐𝑎𝑙 −  𝑄𝑖,𝑜𝑏𝑠)𝑛

𝑖=1

∑ (𝑄𝑖,𝑜𝑏𝑠)𝑛
𝑖=1

] × 100 %  
(17) 

where n is the total number of events, Qi,obs is the observed flow, Qi,cal is the calculated flow, both at time i, and 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅  is the 

average observed flow (Cirilo et al., 2020). NSE is commonly used to assess the predictive abilities of hydrological models, 325 

and generates values that can range from - to 1. An NSE value of 1 indicates a perfect model, with zero mean difference 

between observed and calculated flows. NSE = 0 implies that the model has no greater predictive power than simply 

assuming constant flow equal to the observed mean. NSE < 0 means that the model has worse predictive power than the 

observed mean flow (Knoben et al., 2019). Pbias measures the tendency of the calculated flows to be larger or smaller than 

their observed counterpart flows (Yapo et al., 1996), with Pbias > 0 indicating that the model underestimates the observed 330 

flows, and vice versa (Mendoza et al., 2021). While achieving a bias of zero would be an ideal target for a model for the sake 

of scoping potential water harvesting (especially for ungauged catchments), Moriasi et al. (2007) and Abbaspour et al. 

(2015) suggest that an absolute value of Pbias less than 25 % indicates good model performance. Here, as we are working 

with ungauged catchments, we argue that this criterion for good performance should be somewhat relaxed, and thus take an 

absolute value of Pbias less than 50 % to indicate a threshold between adequate and inadequate performance.  335 

 

HRRTLE was applied to each of the 28 catchments and the calculated flows evaluated against observed runoff records. In 

each case, in order to assess the value of applying the transferral ratio calculations described above, the model was run both 

with and without transmission losses, TRc. If the values of NSE and Pbias improved when TRc was applied, this would imply 

that its use was beneficial for model accuracy.  Four parameters (kn, pn, ko, po) from the stream network and overland 340 

transferral ratio equations, Eq. (4) and Eq. (10), were adjusted during the calibration stage. Each time one of these 

parameters was adjusted, the model was re-run and the NSE recorded. Once the NSE could not be increased by adjusting a 

particular parameter, the next parameter was used. Once a combination of parameter values whose NSE value could not be 

improved had been found via this process, it was recorded and subsequently used in the model validation stage. Observed 

runoff data from even years was used in the calibration stage, while odd years’ data was used for validation . The number of 345 

years of data used for the calibration and validation stages, together with the optimum transferral ratio parameter values used 

in the validation stage for each catchment are presented in the Supplementary Materials.   

 

3 Results  

3.1. Model output 350 

Runoff connectivity maps (RCMs) were generated by the HRRTLE modelling process to visually communicate the 

distribution of runoff contributions to the catchment outlets. An example of these maps is presented in Figure 3 for 
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catchment AUNP, which has its outlet at a gauging station on the Shaw River in northern Western Australia. In this case, 18 

years of validation model outputs were used to create the RCM, which shows the annual runoff depth (mm) for each cell that 

reaches the catchment outlet, taking transmission losses into account. The spatial resolution of the map is 250 m × 250 m. 355 

The map shows the importance of proximity to both the outlet and the stream network for maximising outlet runoff 

contributions.  

 

 

Figure 3: (a) location of AUNP catchment; (b) runoff connectivity map (RCM) for the catchment of a gauging station located on 360 
the Shaw River, showing mean annual runoff reaching catchment outlet taking transmission losses into account, created using 

validation data. 
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3.2. Assessment of model performance 

Table 2 summarises the optimum NSE and Pbias values for each catchment in the calibration and validation stages, for both 

the runoff-only (‘ro’) and runoff-and-transferral-ratio (‘tr’) versions of the model.  365 

 

Table 2. Values of the Nash-Sutcliffe efficiency (NSE) and percentage of average tendency (Pbias) for calibration (cal) and validation 

(val) runs of the runoff-only (ro) and runoff-and-transferral-ratio (tr) versions of the model, for each of the 28 test catchments. The first 

two letters of the catchment code indicate country: Australia (AU), Brazil (BR), Israel (IR), USA (US) or South Africa (ZA).  

 370 

 calibration validation 

catchment 

code 

NSEro,cal NSEtr,cal Pbiasro,cal Pbiastr,cal NSEro,val NSEtr,val Pbiasro,val Pbiastr,val 

(-) (-) (%) (%) (-) (-) (%) (%) 

AUFR -305.564 0.039 1158.3 -35.0 -185.942 -0.209 1382.6 -3.2 

AUGD -1.966 0.705 130.0 20.0 0.668 0.609 42.9 -26.7 

AULT -92.259 0.105 1064.0 16.5 -1.310 0.058 324.9 -62.9 

AUMF -0.629 -0.835 -52.8 -63.4 0.193 0.009 -34.3 -48.7 

AUMS -8.442 0.240 199.0 7.4 -0.407 0.672 136.7 -13.1 

AUNP -0.903 0.353 183.8 -6.5 -8.376 0.410 312.6 56.0 

AUSJ -0.327 -0.407 -51.8 -54.4 -0.764 -1.875 -35.5 -38.8 

BRMN 0.281 0.265 12.7 -17.9 0.283 0.199 -2.7 -28.9 

BRPR -5.280 0.648 206.9 -3.9 -0.964 0.328 228.0 6.4 

ILOB -3.110 -3.155 -96.5 -97.1 -5.055 -5.138 -96.4 -97.0 

USMH -4.046 -6.209 -67.6 -82.2 -1.899 -2.092 -64.0 -66.7 

USNP -8.220 -8.501 -57.0 -62.8 -12.502 -10.082 -10.8 -22.0 

USSC -4.646 -4.688 -97.3 -97.7 -6.489 -6.540 -97.6 -98.0 

ZAAN -0.440 -0.663 -45.6 -50.5 -0.027 -0.109 -35.5 -41.2 

ZABT -8.615 0.044 314.1 -11.7 -30.761 -0.387 388.9 26.4 

ZADE -31.513 0.186 1175.7 4.5 -37.383 0.125 1006.1 -22.4 

ZADK -0.082 0.129 10.6 -16.8 -3.608 -1.415 108.5 64.0 

ZAHE -1.467 0.129 121.2 -27.9 -14.182 -1.712 328.0 101.7 

ZAHH 0.077 0.100 4.7 -18.4 0.014 0.011 -23.3 -42.0 

ZAKK -20.469 -0.404 331.3 -12.6 -18.204 -0.117 283.7 -24.3 

ZAMB -1.951 -1.972 -88.9 -90.3 -0.882 -0.926 -91.3 -92.4 

ZAMK 0.096 0.057 -44.1 -47.5 -0.036 -0.052 -11.9 -17.1 

ZAO -0.866 -0.061 76.6 24.6 -6.524 -1.319 165.1 64.7 

ZAOS -28.792 -0.274 527.9 -4.1 -0.353 -0.442 61.3 -73.8 

ZASD -1.661 -1.890 -61.9 -66.6 -1.512 -1.755 -56.0 -64.9 

ZAT -50.187 0.186 961.6 -20.5 -301.272 0.148 1646.3 43.8 
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ZAUL -0.546 0.012 59.9 4.0 -0.870 0.441 77.1 14.4 

ZAW -0.378 0.527 62.3 2.0 -3.170 -0.423 87.5 19.9 

 

A first assessment of these results suggests that the use of transferral ratios improves the performance of the model (i.e., 

moves the NSE closer to 1 and Pbias closer to zero) as demonstrated in  Table 3. However, it also indicates that there is a 

significant proportion of the 28 test catchments used where it does not lead to satisfactory performance by any of the 

measures.  375 

 

Table 3. Number (out of 28) catchments which show satisfactory values (NSE > 0; -50 % < Pbias < 50 %) for the NSE and Pbias 

performance metrics at the calibration (cal) and validation (val) stage of model development. 

performance  

measure 

number of satisfactory 

catchments runoff only 

number of satisfactory 

catchments with transferral ratio 

improved 

(yes/no) 

NSEcal 3 16 yes 

Pbiascal 5 19 yes 

NSEval 4 11 yes 

Pbiasval 8 17 yes 

  

The sensitivity of the NSE to the transferral ratio equation parameters (kn, pn, ko, po – see equations (4) and (10)) that were 380 

adjusted calibrate the model is shown in Figure 4, for an example test catchment (code AULT), which shows typical 

behaviour for this analysis. It indicates that the NSE was most sensitive to the stream network flow travel time constant, and 

least sensitive to the overland flow travel time constant, and had intermediate sensitivity to the two curve number power law 

indices. 

 385 
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Figure 4: Sensitivity of Nash-Sutcliffe efficiency (NSE) to variation in transmission loss parameters (catchment code AULT) for 

calibration data. 

 

3.3. Determination of catchment types for best model performance 390 

To determine which types of catchments the model performs best upon we focus on the results from the validation stage of 

the modelling (since this is a test of model performance, c.f. the calibration stage, which is an exercise in optimising the 

model performance) and on the results for model runs where transferral ratios are incorporated (since this is the main novel 

contribution of this work). On this basis, 11 of the 28 catchments have satisfactory NSE values (>0) and 17 have satisfactory 

Pbias values (absolute values <50 %), with 9 having both. These nine are listed in Table 4, with their predominant land 395 

cover characteristics.  

 

Table 4. Catchments with NSE > 0 and absolute Pbias values <50 % for validation models with transferral ratio effects incorporated, with 

the predominant land cover characteristics. 

catchment 

code 
predominant land cover (classification and percentage of coverage) 

AUGD grasslands with sparse shrubs 77 % 

AUMS closed shrublands 80 % 

BRMN mosaic agriculture / degraded vegetation 34 %; open deciduous forest 27 %; Montane forests 500–

1000 m - open deciduous 15 % 

BRPR open shrublands 32 %; Montane forests 500–1000 m - open deciduous 18 %; Montane forests 500–

1000 m - open semi-humid 10 %; mosaic agriculture / degraded vegetation 9 %; agriculture – 

intensive 8 % 
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ZADE open grassland with sparse shrubs 85 % 

ZAHH open grassland 47 %; open grassland with sparse shrubs 38 % 

ZAT open grassland with sparse shrubs 63 %; closed grassland 34 % 

ZAUL deciduous woodland 40 %; croplands (>50 %) 32 % 

 400 

 

 

 

Table 5. Proportion of catchments of different dominant landcover type for which the model performed satisfactorily in the validation 

stage with transferral ratios incorporated. 405 

dominant 

landcover type 

total number of 

catchments / 28 

# of catchments with 

NSE>0; -50 %<Pbias<50 % 

% of total catchments with 

NSE>0; -50 %<Pbias<50 % 

grassland 4 4 100 

agriculture 1 1 100 

woodland 2 1 50 

shrubland 9 3 33 

croplands 7 0 0 

forest 5 0 0 

 28 9  

 

Their ranges of values, in the context of the ranges for all 28 catchments, for seven other biophysical catchment parameters 

are shown in Figure 5. The full set of values of these parameters are provided in tabular format in the Supplementary 

Materials. The nine catchments with a positive NSE value and absolute Pbias values less than 50 % (Table 4) are compared 

to all 28 catchments is a summarised format (Table 5). Table 5 shows that while seven of the 28 catchments have a 410 

dominant landcover type of ‘croplands’ none of these catchments are amongst of the nine catchments that demonstrated 

superior model performance (Table 4). The same situation is repeated for five catchments with a dominant landcover type of 

‘forest’. All four ‘grassland’ catchments (Table 5) provided model results that fell into the top nine catchments (Table 4) as 

did the single catchment with a dominant landcover type of agriculture. Taken as a whole, this suggests that the model works 

best in catchments where there is low-growing vegetation (grassland or (pastoral) agriculture), and not well in catchments 415 

where the vegetation is tall and/or dense (croplands and forests). 
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Figure 5: Range of values of seven biophysical catchment parameters for 9 catchments with NSE > 0 and absolute Pbias < 50 %, in 

the context of the full range of values for all 28 catchments for each parameter. Size: catchment area; CFF: catchment form 420 
factor; HAND: heigh above nearest drainage; Rainfall: mean annual rainfall; Aridity: mean aridity index; Baseflow: % of runoff 

from baseflow; Efficiency: runoff efficiency. 

Turning next to Figure 5, the group of nine catchments for which the model performed satisfactorily are distinguished 

amongst the full set of 28 by their (a) relatively small size (<17,027 km2); (b) relatively low (<0.147) catchment form factor 

(i.e., lack of elongation in any direction); (c) low (<12.4 %) runoff efficiency (proportion of rainfall that becomes runoff at 425 

the catchment outlet); and to a lesser extent (d) height (<90 m) above nearest drainage (i.e., mean elevation). The appearance 

of runoff efficiency in this list suggests the effect of our transferral ratio calculation method being incorporated into the 

model. The hydrological parameters considered – mean rainfall, aridity index and percentage of runoff from baseflow, do not 

distinguish the nine catchments from the full set of 28 at all. Considered together, therefore, the results shown in  Table 4, 

Table 5 and Figure 5 suggest that the model works best in catchments that are relatively small; of approximately equal 430 

length in all directions; of relatively low topography; have high levels of transmission losses of runoff on its journey to the 

catchment outlet; and have predominantly low-growing vegetation.  
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4. Discussion 

4.1 Methodology 435 

HRRTLE employs three global datasets, one being the SRTM void filled elevation product, encompassing 80 % of the 

Earth's land surface between 60° north and 56° south. This dataset offers a spatial resolution of 3 arc-seconds, approximately 

90 m spatial resolution, based on radar data acquired in 2000. The suitability of the elevation dataset for the HRRTLE 

process relies on the assumption that the elevation data from the year 2000 adequately represents in-stream networks for all 

modelled years, disregarding changes in morphology. The SRTM void filled elevation data, has previously been applied in 440 

hydrologic analyses for water harvesting studies (Sreedevi et al., 2009; Grum et al., 2016; Salih and Hamid, 2017; Ahmed 

and Diab, 2018; Abdekareem et al., 2022). The HRRTLE process reduces the spatial resolution of the SRTM dataset to 250 

m to match the curve number dataset. Consequently, some degree of diminished hydrological model performance might be 

anticipated compared to using the process with the original 90 m × 90 m data. Yang et al. (2001) investigated the sensitivity 

of hydrological models to spatial resolution changes, exploring resolutions up to 1,000 m × 1,000 m. They found that the 445 

hydrological response is sensitive to changes in the spatial resolution of the DEM, but the significance is greater for hourly 

response over daily response.  Since the HRRTLE process employs a daily temporal resolution for runoff computation then 

this would suggest that the downgrade in spatial resolution from 90 m to 250 m is not expected to significantly affect runoff 

computation. Nevertheless, it should be noted that the HRRTLE process goes beyond mere direct runoff computation at 

individual cells or pixels. Instead, it models the runoff path to the designated catchment outlet and, for the modelled 450 

pathways, acquires curve number data to predict transmission losses. Hence, when a DEM is not adequately suited for 

modelling in-stream networks, there is a greater probability that the curve number data acquired through the HRRTLE 

process for cells identified as part of the 'network' does not accurately reflect channelised flow.  

 

The HRRTLE modelling process consists essentially of two components. The first component utilises the GPCC 455 

precipitation data to predict runoff from each 250 m × 250 m gridded cell using curve number maps (Jaafar et al., 2019) 

based on the SCS-CN method.  The second (novel) component predicts the amount of runoff reaching the catchment outlet 

from the cell where runoff occurs, accounting for transmission losses. The journey from the runoff cell to the outlet, is 

modelled as ‘overland’ flow followed by in-steam ‘network’ flow. This process makes a universal assumption that, 

regardless of actual catchment characteristics, overland flow transitions to network flow when the catchment area reaches 460 

approximately 4 km2. One of the simplifying assumptions in the HRRTLE process involves maintaining a consistent 

relationship between flow accumulation (and consequently catchment area) and stream width across the entire catchment. 

The HRRTLE process assumes that curve number values along the overland and network flowpaths can be used to infer 

channel properties (i.e., Manning’s roughness coefficient). To our knowledge, HRRTLE is the first rainfall-runoff model that 

utilises such an assumption, although Soni et al. (2022) did estimate equivalent runoff coefficients based on the colour of 465 

Google Earth pixels to predict runoff. Associating curve number with hydraulic roughness relies on the presumption that 
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flowpaths characterised by a higher average curve number are prone to greater wetness or saturation compared to those with 

lower curve number values. Consequently, these paths pose reduced resistance to open channel flow and, simultaneously, 

result in fewer transmission losses due to the relatively higher saturation of the ground.  Employing curve number values in 

this manner eliminates the necessity of incorporating extra datasets to define hydraulic roughness. The curve number dataset, 470 

utilised for calculating transmission losses along flowpaths, is the same dataset employed in the initial component of the 

model for runoff computation using the SCN-CN method. As a result, this approach restricts the number of datasets, each 

carrying its own uncertainties, to three. 

 

4.2 Performance 475 

Out of the 28 catchments simulated with HRRTLE, nine demonstrate a positive NSE value and a Pbias within the range of -

50 % to 50 % during the validation stage. Additionally, by expanding the Pbias to ±65 %, eleven catchments show a positive 

NSE value in the validation results. It is thus worthwhile to examine the potential factors contributing to the superior 

performance of HRRTLE in certain situations and its poorer performance in others.  The findings suggest that HRRTLE 

exhibits improved performance with smaller catchment sizes, although some larger catchments still produced reasonable 480 

results. Among the ten catchments categorised as the largest in size, four (AUGD; AUNP; ZADE; ZAT) yielded a positive 

NSE value during the calibration stage. One plausible explanation could be that the contributing factor to suboptimal results 

may not be the sheer size of the catchment, but rather the potential for larger catchments to be more diverse and complex. 

This complexity, which may include engineered structures, could pose challenges for HRRTLE in achieving satisfactory 

modelling results. None of three large catchments located in North America (USMH; USNP; USSC) gave a positive NSE 485 

value for the validation stage.  

 

Certain catchments exhibit relatively high runoff efficiencies, as determined through the calculation using GPCC 

precipitation and observed discharge data. For instance, one catchment (ILOB) has a runoff efficiency value of 47.7 %. One 

possible explanation for this is that the observed discharge data incorporates flows beyond those generated solely by 490 

precipitation within the catchment boundary — suggesting potential external introduction of water in some manner. Six of 

the 28 catchments tested in this study had a runoff efficiency greater than 16 %, none of which produced a positive NSE 

value in the validation stage.  

 

The results suggest a tendency of superior model performance for catchments characterized by low-lying vegetation. One 495 

potential rationale is that the radar technology employed to generate the SRTM product encounters difficulties in penetrating 

vegetation. As a result, digital elevation models (DEMs) for catchments with sparse or low-lying vegetation might be more 

advantageous for hydrological modelling processes compared to catchments with dense canopy cover. For this study 

HRRTLE was used to analyse 28 catchments, five of which can be classified by a dominant ‘forest’ cover yet none of these 
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five catchments are included in the group of nine catchments that performed better than others in terms of NSE and absolute 500 

Pbias (Table 5).   

 

Several test catchments (coded as AUFR, ZADE, ZAT) exhibited Pbias values exceeding 1,000 % during the validation 

stage (Table 2) when transmission losses were not taken into account. The calculated baseflows for these catchments are 3.8 

%, 7.1 %, and 14.1 %, respectively (see Supplementary Materials) which aligns closely with existing literature on this 505 

topic. Pilgrim et al. (1988) proposed that the rainfall-runoff modelling approach for arid and semi-arid regions may differ 

from that for humid zones, as baseflow is essentially absent in arid zone hydrology, while channel transmission losses are 

crucial. Transmission losses have been documented to surpass 75 % in arid regions (Knighton and Nanson, 1994) and up to 

~70 % in semi-arid regions (Abboushi et al., 2015). Studies based in arid and semi-arid regions have generated runoff maps 

without incorporating transmission losses (Al-Ghobari et al., 2020; Karimi and Zeinivand 2021; Alataway, 2023; Radwan 510 

and Alazba, 2023). Such maps, if used to compute inflows for potential ex-situ water harvesting structures, run the risk of 

overestimating runoff (or runoff potential) as they do not allow for transmission losses which in dryland regions can be 

considerable as previously noted. Sayl et al. (2019) created a runoff volume map linking infiltration losses with drainage 

frequency density. The concept of a connectivity map is not new, as D'Haen et al. (2013) previously developed a 

connectivity map of geomorphic coupling for points within a catchment in relation to the catchment outlet. Current rainfall-515 

runoff models exhibit limitations in certain aspects. According to Shanafield et al. (2021, p. 12), rainfall-runoff models 

"…tell us little of the physical processes and dominant hydrologic flowpaths by which water migrates from its landing place 

within the catchment to become streamflow." The HRRTLE process addresses this criticism in part, as the connectivity 

runoff map (e.g., Figure 3) provides information on flowpaths and quantifies (in mm) the annual runoff reaching the 

catchment outlet (which theoretically could be a potential water harvesting location) for every pixel at a high spatial 520 

resolution allowing planners to understand the relative significance of various parts of the catchment with respect to outlet 

discharge.  

 

4.3 Application 

The development of the HRRTLE process was geared towards aiding the assessment of potential water harvesting sites 525 

within a designated area. This involves a comprehensive examination of numerous locations to pinpoint areas where water 

harvesting offers the most advantages. The primary phase where HRRTLE is anticipated to deliver valuable applications is 

during the initial scoping phase of a project cycle. Several characteristics of HRRTLE make it attractive to planners and 

specialists in the water harvesting sector. Firstly, it relies on freely available global datasets, eliminating the costs and delays 

associated with acquiring national data. Secondly, it utilises commonly available software such as MATLAB and ArcGIS 530 

Pro, as opposed to specialised hydrologic modelling software. Thirdly, HRRTLE is a relatively straightforward in terms of 

model construction, requiring only the catchment output and the extent boundaries to be defined by the modeller. 
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Numerous rainfall-runoff models exist, and some of them have been applied in water harvesting research. As previously 

mentioned in this paper, the SCS-CN model is frequently utilised in such studies (Ramakrishnan et al., 2009; Kadam et al., 535 

2012; Moawad, 2013; Mahmoud, 2014; Pathak et al., 2020; Aghad, 2021; Manaouch et al., 2022). However, none of these 

studies address transmission losses. In contrast, the HRRTLE process, while also employing the SCS-CN method, takes 

transmission losses into account. The well-known Hydrologic Modelling System software (HEC-HMS) has also been 

utilised by researchers in the field of water harvesting (El Osta et al., 2021; Ghanem et al., 2021; Ndeketeya and Dundu, 

2021; Ramadan et al., 2022; Soomro et al., 2022) and offers hydrologic modelling features such as runoff hydrographs, 540 

something that the HRRTLE process does not. The Soil and Water Assessment Tool (SWAT) model has also been used in 

water harvesting studies, as demonstrated by Ouessar et al. (2009), Al-wadaey et al. (2016), Doulabian et al. (2021) and 

Umugwaneza et al. (2022). Ouessar et al. (2009) expressed a preference for a cell-based routing procedure over SWAT's 

semi-distributed approach at the subbasin level when modelling flows in arid environments. While the HRRTLE process 

does not route hydrographs it does provide a runoff connectivity map at cell-level.  545 

 

There are various ways in which HRRTLE could be employed in the context of water harvesting site suitability. If a specific 

location has been identified for siting a water harvesting structure, HRRTLE could be configured with the catchment outlet 

designated as the proposed structure's location. To provide planners with a diverse set of information including a high spatial 

resolution runoff connectivity map (e.g., Figure 3) which would enable planners to visualise parts of the catchment that 550 

contribute varying amounts of runoff to the outlet. The tool uses almost 40 years of precipitation data allowing the return 

period of annual discharge to be determined.  

 

Assuming a consistent relationship between stream width and flow accumulation, the HRRTLE process could be automated 

for multiple points, each representing an outlet (i.e., a potential location for a water harvesting structure), by repeating the 555 

transferral ratio elements of HRRTLE (Figure 1) without the need to re-process the SCS-CN computations over the ‘extent’. 

Should the outlets points be sufficiently varied in terms of location and catchment area it would be possible to establish a 

regression relationship between catchment area and annual runoff discharge, allowing a prediction of annual runoff for every 

pixel within an area of interest. HRRTLE does not route hydrographs, resulting in the absence of peak flow estimations. 

Estimating peak inflows in response to a single flood event is essential when designing a water harvesting structure so excess 560 

inflows can bypass safely.  Here we suggest that during the initial scoping phase of water harvesting sites, considering the 

ratio of annual runoff to the size of the water harvesting reservoir can aid the selection process.  This approach would help 

streamline site options, allowing modelling efforts for individual events to focus on a reduced number of potential water 

harvesting sites. Potentially HRRTLE results could be combined with automated tools that compute water harvesting 

reservoir metrics (Petheram et al., 2017; Wimmer et al., 2019; Teschemacher et al., 2020; Delaney et al., 2022) so the site 565 

selection criteria such as reservoir storage volume to annual inflow volume ratio could be computed. The HRRTLE process 
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does not serve as a substitute for established rainfall-runoff models (such as SWAT and HEC-HMS), but such models could 

be utilised after HRRTLE has been used to narrow down the number of possible sites or to reinforce the findings from the 

HRRTLE process.  

 570 

In cases where observed runoff data is available, HRRTLE can undergo calibration against this data. However, in practical 

terms, water harvesting scoping studies often occur in regions where obtaining observed runoff data is unavailable (i.e., 

ungauged catchments). The absence of observed discharge data presents challenges. As Beven (2012, p. 329) notes, "One of 

the great unsolved challenges in hydrology is the accurate simulation of a catchment without any observational data with 

which to calibrate a hydrological model, i.e., an ungauged basin." Despite this obstacle, HRRTLE does possess potential 575 

uses in ungauged catchments. Results could be sensitivity-based, with calibration performed for a range of runoff 

efficiencies. Alternatively, by matching catchment characteristics from gauged catchments where HRRTLE has been 

successfully calibrated and verified with observed discharge data to another ungauged catchment with the same essential 

characteristics, HRRTLE parameters could be applied to the ungauged catchment. 

 580 

4.4 Future work 

The GPCC precipitation dataset (Ziese et al., 2022) used in the HRRTLE process has a temporal range of 39 years (1982–

2020) and a spatial resolution of 1.0 degree × 1.0 degree. The dataset is based on precipitation data provided by national 

meteorological and hydrological services, regional and global data collections as well as the World Meteorological 

Organization Global Telecommunication System data. GPCC offers full global coverage of the Earth’s surface. Basheer and 585 

Elagib (2019) evaluated this for the Nile Basin, along with another five long-term rainfall products, and ranked the GPCC 

project the best performing based on monthly, maximum monthly and annual scales. Nevertheless, the spatial resolution of 

this dataset is rather coarse in comparison to the sizes of most of the 28 catchments examined in this study. To illustrate this 

point, a precipitation tile with a spatial resolution of 1.0 degree (~110 km on the equator) encompasses an area of about 

12,000 km², whereas only 5 of the catchments studied exceed this size. Therefore, future efforts could explore the sensitivity 590 

of HRRTLE to precipitation from higher resolution datasets.  

 

In this investigation, the SCS-CN component of the HRRTLE process incorporated an initial abstraction ratio of 0.2, 

aligning with earlier studies (Sekar and Randhir, 2007; Elewa et al., 2012; Shalamzari et al., 2019). Nevertheless, other 

studies have utilised different ratio values (Liu et al., 2021; Weerasinghe et al., 2011). Subsequent research could investigate 595 

the consequences of altering the initial abstraction ratio. In this version of HRRTLE the SCS-CN component assumes a 

permanent dormant season so additional work could investigate how to distinguish between the dormant and growing season 

especially if this can be achieved without the need to introduce additional datasets.  The HRRTLE modelling process 

computes annual runoff based on the calendar year, presuming that the entirety of annual discharge stems exclusively from 
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precipitation occurring within the same calendar year. Future work could explore the effects of re-designing the modelling 600 

process, so the annual discharge calculations begin at the end of the dry season for example. 

 

To model the 28 catchments using the HRRTLE process and establish the relationship between stream width and flow 

accumulation, a manual and subjective approach was employed, relying on individual judgment to delineate the riverbank. 

Introducing an objective and automated process to determine the relationship between stream width and flow accumulation 605 

would likely be advantageous. Flow width rasters can be created using SAGA-GIS (Conrad, 2009) based on the work by 

Gruber and Peckham (2009) and Quinn et al. (1991) yet flow widths are limited by the spatial resolution of the raster pixels. 

Automated tools based on remote sensing products have been developed such as RivWidthCloud (Yang et al., 2020) and 

GrabRiver (Wang et al., 2022), while Mengen et al., 2020 created an automated process using Sentinel-1 products. These 

tools and processes could potentially automate the stream width measurement stage in future iterations of HRRTLE. 610 

However, the effectiveness of these tools to measure river widths for non-perennial river systems (typically associated with 

water harvesting) may be diminished compared to perennial rivers. 

 

The HRRTLE process utilises in-stream network cells to extract CN values as a component of its methodology for 

calculating the transferral ratio. It is preferable therefore for an accurate alignment between the modelled in-stream cells and 615 

the actual stream network. The underlying assumption is that the current version of HRRTLE adequately maps genuine in-

stream networks. Nonetheless, future work could assess the sensitivity of network modelling accuracy and explore ways to 

enhance the modelling process by using other elevation products than the SRTM void filled used in this study. HydroSHEDS 

is modified SRTM elevation data that integrates hydrographic baseline data (Lehner and Grill, 2013), is freely available, and 

could be more appropriate for the HRRTLE process should it offer superior modelling of stream networks so allowing the 620 

extraction of more pertinent values from the Curve Number dataset. Alternatively, it is possible to transform a Digital 

Surface Model (DSM) to a Digital Terrain Model (DTM) by eliminating forest canopy height so making it more preferrable 

for hydrologic modelling performance. Such a procedure has been carried out on a Copernicus DEM with a land cover 

dataset (Potapov et al., 2021) creating a DTM dataset (Strahlendorff, 2024).   

 625 

The HRRTLE process uses gridded maps of curve numbers (Jaafar et al., 2019) the development of which was based on the 

USDA Soil Conservation Service (SCS) Runoff Curve Number (CN) method. Sujud and Jaafar (2022) conducted runoff 

computations using this dataset in conjunction with the SCS-CN method, revealing that model performance was influenced 

by factors such as climate, soil permeability, and bedrock permeability. A potential area for future investigation could 

examine of the influence of permeability, particularly bedrock permeability, on the accuracy of HRRTLE results.  630 

 

In arid and semi-arid regions, the primary source of groundwater recharge is often considered to be transmission losses in 

ephemeral river systems (Shanafield et al., 2021). Although HRRTLE does not explicitly distinguish between losses 
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attributed to evapotranspiration and those due to infiltration, in certain catchments, infiltration (representing groundwater 

recharge) can account for as much as 95% of all transmission losses (McMahon and Nathan, 2021). Therefore, while 635 

HRRTLE was developed to quantify runoff, there exists the potential for HRRTLE outputs to be utilised to estimate 

groundwater recharge.  

 

Model outputs for all catchments underwent verification against observed runoff data, yet acquiring this data from arid and 

semi-arid regions, crucial for validating runoff models, poses a considerable challenge. The scarcity of observed data stands 640 

out as a major issue for runoff modelling in arid regions (Pilgrim et al., 1988). While modelling can complement 

measurements, it cannot serve as a substitute for them (Silberstein, 2006). The limited availability of observed runoff data in 

arid and semi-arid regions, particularly in regions where water harvesting is practiced, impedes the development of rainfall-

runoff models, including the advancement of the HRRTLE process. Therefore, future efforts to enhance discharge 

measurement techniques, enabling the verification of models against actual flow data, would be valuable. 645 

 

5 Conclusion 

Relying on three global datasets in conjunction with satellite imagery, a rainfall-runoff modelling process has been 

developed to compute annual catchment runoff and provide a high spatial resolution runoff connectivity map at 250 m × 250 

m. The outcomes of this process, referred to as High Resolution Runoff and Transmission Loss Estimator (HRRTLE) tool, 650 

underwent validation against observed runoff data, achieving satisfactory results in some instances but not universally. 

HRRTLE integrates and tests the hypothesis that curve number values can be indicative of the hydraulic properties of surface 

flow. It is anticipated that HRRTLE could prove valuable for specialists engaged in water harvesting site selection, 

particularly those seeking to employ the SCS-CN method for runoff prediction but wish to account for transmission losses, a 

capability offered by the HRRTLE process. Further efforts are recommended to refine and enhance the HRRTLE process 655 

and deepen the understanding of which catchment characteristics are more likely to yield acceptable results. The scarcity of 

suitable observed discharge data poses a challenge in the development of rainfall-runoff modelling procedures like 

HRRTLE. 

Code availability 

The Matlab and ArcPy code to produce runoff connectivity maps is available at DOI: 10.17635/lancaster/researchdata/613.  660 
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Appendices 

 975 

Table A1. Classification of catchments based on catchment size, form factor, and Height Above Nearest Drainage (HAND). 

 Class 1 Class 2 Class 3 

catchment area (km2) <= 970 > 970–<= 6000 > 6000 

form factor (-) <= 0.105 > 0.105–<= 0.150 > 0.150 

HAND (m) <= 35 > 35–<= 80 > 80 

 

 

Table A2. Summary of catchments with classifications. 

catchment 

code 

extent 

code 

country 

code 

GRDC 

number 

record 

start (y) 

record 

end (y) 

monthly 

missing 

values 

(%) 

mean 

Aridity 

Index 

catchment 

area class 

form 

factor 

class 

HAND 

class 

AUMS AUS-3 AU 5109175 1968 2019 0.0 0.37 1 1 1 

ZAO SA-3 ZA 1160660 1972 2021 0.0 0.48 1 1 2 

ZAUL SA-3 ZA 1160704 1981 2022 2.7 0.58 1 1 3 

ZAKK SA-1 ZA 1160120 1964 2022 2.6 0.31 1 2 1 

ZAMK SA-2 ZA 1196570 1955 2022 2.3 0.33 1 2 2 

ZABT SA-3 ZA 1160530 1980 2022 2.0 0.30 1 2 3 

AULT AUS-1 AU 5606097 1978 2019 0.0 0.18 1 3 1 

ZAMB SA-1 ZA 1160250 1965 2022 0.9 0.28 1 3 2 

ZAOS SA-2 ZA 1196561 1966 2021 1.7 0.33 1 3 3 

AUMF AUS-1 AU 5606042 1952 2019 0.0 0.34 2 1 1 

BRPR AS-1 BR 3650620 1973 2020 2.8 0.52 2 1 2 

ZADK SA-3 ZA 1160527 1980 2022 0.6 0.25 2 1 3 

AUSJ AUS-1 AU 5606040 1956 2019 0.0 0.47 2 2 1 

ZAHH SA-1 ZA 1159110 1927 2022 1.2 0.11 2 2 2 

ZAW SA-2 ZA 1197505 1968 2021 0.0 0.49 2 2 3 

AUFR AUS-2 AU 5607080 1967 2021 11.1 0.14 2 3 1 

ZAHE SA-2 ZA 1196300 1962 2022 2.4 0.28 2 3 2 

ILOB ME-1 IL 6594050 1970 2019 0.0 0.39 2 3 3 

ZAT SA-2 ZA 1159400 1923 2022 3.8 0.26 3 1 1 

USMH AN-1 CA 4213250 1911 2021 2.6 0.46 3 1 2 

ZAAN SA-3 ZA 1159650 1914 2022 1.4 0.46 3 1 3 

AUNP AUS-2 AU 5607520 1967 2019 0.0 0.11 3 2 1 

ZADE SA-4 ZA 1159305 1980 2022 1.6 0.18 3 2 1 

USNP AN-2 US 4151514 1938 2022 0.0 0.22 3 2 2 

ZASD SA-1 ZA 1160305 1966 2022 2.5 0.28 3 2 3 
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AUGD AUS-3 AU 5109110 1969 2021 0.0 0.18 3 3 1 

BRMN AS-1 BR 3650634 1973 2020 2.9 0.42 3 3 2 

USSC AN-1 US 4115220 1929 2021 0.0 0.35 3 3 3 

 980 

Table A3. Extent references, with name of region, and boundary limits (degrees) for each cardinal direction. 

Reference Region West (°) East (°) South (°) North (°) 

AN-1 Americas–North -122.0 -109.0 43.0 53.0 

AN-2 Americas–North -107.0 -103.0 34.0 37.0 

AS-1 Americas–South -41.0 -37.0 -9.0 -3.0 

ME-1 Middle East 34.0 37.0 32.0 35.0 

SA-1 Southern Africa 18.0 22.0 -35.0 -31.0 

SA-2 Southern Africa 24.0 32.0 -29.0 -23.0 

SA-3 Southern Africa 24.0 32.0 -34.0 -28.0 

SA-4 Southern Africa 22.0 27.0 -33.0 -28.0 

AUS-1 Australasia 116.0 119.0 -36.0 -32.0 

AUS-2 Australasia 117.0 121.0 -24.0 -20.0 

AUS-3 Australasia 137.0 146.0 -21.0 -17.0 

 

 

 

Table A4. Predominate land cover type for catchments to a minimum of 70 % total coverage. 985 

catchment 

code 
land cover class name with percentage of coverage 

AUFR Closed shrublands 92 % 

AUGD Grasslands with sparse shrubs 77 % 

AULT Croplands 96 %  

AUMF Croplands 56 %; Closed shrublands 14%  

AUMS Closed shrublands 80 % 

AUNP Open Shrublands 50 %; Grasslands with sparse shrubs 45 %   

AUSJ Open forest (Eucalyptus) 42 %; Closed shrublands 24 %; Croplands 14 %  

BRMN Mosaic agriculture / degraded vegetation 34 %; Open deciduous forest 27 %; Montane forests 

500-1000m - open deciduous 15 % 

BRPR Open shrublands 32 %; Montane forests 500-1000m - open deciduous 18 %; Montane forests 

500-1000 - open semi-humid 10 %; Mosaic agriculture / degraded vegetation 9 %; Agriculture – 

intensive 8 % 

ILOB Cropland 53 %; Herbaceous, single layer 26 % 

USSC Temperate or subpolar needleleaved evergreen forest—closed canopy 58 %; Temperate or 
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subpolar mixed broadleaved and needleleaved dwarf-shrubland— open canopy 40 % 

USMH Temperate or subpolar needleleaved evergreen forest—closed canopy 41 %; Temperate or 

subpolar grassland 40 % 

USNP Temperate or subpolar needleleaved evergreen forest—closed canopy 40 %; Temperate or 

subpolar mixed broadleaved and needleleaved dwarf-shrubland— open canopy 39 % 

ZAAN Open deciduous shrubland 45 %; Open grassland with sparse shrubs 29 %  

ZABT Open deciduous shrubland 49 %; Deciduous woodland 44 % 

ZADE Open grassland with sparse shrubs 85 %  

ZADK Open deciduous shrubland 67 %; Deciduous woodland 19 % 

ZAHE Deciduous woodland 69 %; Croplands (>50%) 26 %   

ZAHH Open grassland 47 %; Open grassland with sparse shrubs 38 %  

ZAKK Croplands (>50 %) 58 %; Deciduous shrubland with sparse trees 42 % 

ZAMB Croplands (>50 %) 63 %; Deciduous shrubland with sparse trees 28 % 

ZAMK Croplands (>50 %) 74 %  

ZAO Croplands (>50 %) 40 %; Deciduous woodland 26 %; Closed deciduous forest 25 %  

ZAOS Croplands (>50 %) 45 %; Deciduous woodland 25 %  

ZASD Open deciduous shrubland 30 %; Open grassland with sparse shrubs 30 %; Deciduous woodland 

16 %  

ZAT Open grassland with sparse shrubs 63 %; Closed grassland 34 %  

ZAUL Deciduous woodland 40 %; Croplands (>50 %) 32 %  

ZAW Closed deciduous forest 54 %; Deciduous woodland 24 % 
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