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Abstract.  

Compound flood (CF) modeling enables the simulation of nonlinear water level dynamics in which 

concurrent or successive flood drivers synergize, producing larger impacts than those from individual 

drivers. CF modeling is yet subject to four main sources of uncertainty including (i) initial condition, 15 

(ii) forcing (or boundary) conditions, (iii) model parameters, and (iv) model structure. These sources 

of uncertainty, if not quantified and effectively reduced, cascade in series throughout the modeling 

chain and compromise the accuracy of CF hazard assessments. Here, we characterize cascading 

uncertainty using linked process-based and machine learning (PB-ML) models for a well-known CF 

event, namely Hurricane Harvey in Galveston Bay, TX. For this, we run a set of hydrodynamic model 20 

scenarios to quantify isolated and cascading uncertainty in terms of maximum water level residuals, 

and additionally, track the evolution of residuals during the onset, peak, and dissipation of Hurricane 

Harvey. We then develop multiple-linear regression (MLR) and PB-ML models to estimate the relative 

and cumulative contribution of the four sources of uncertainty to total uncertainty over time. Results 

from this study show that the proposed PB-ML model capture “hidden” nonlinear associations and 25 

interactions among the sources of uncertainty, thereby outperforming conventional MLR models. 
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Model structure and forcing conditions are the main sources of uncertainty in CF modeling and their 

corresponding model scenarios, or input features, contribute to (56%) 49% of variance reduction in 

the estimation of (maximum) water level residuals. Following these results, we conclude that PB-ML 

models are a feasible alternative for quantifying cascading uncertainty in CF modeling. 30 

1 Introduction 

 It is estimated that nearly half of the gross domestic product in the U.S., i.e., (46% of GPD), is 

generated in coastal shoreline counties that are frequently exposed to multiple flood hazards (NOAA 

Digital Coast, 2020). Similarly, nearly 129 million people in the U.S. (39% of its population) currently 

live in low-lying areas at risk of inland and coastal flooding (NOAA, 2022). In the past five years 35 

(2018 – 2023), the National Center for Environmental Information reported 489 fatalities and over 

$327 billion of total cost damages as a result of tropical cyclones; in which heavy rainfall and storm 

surge exacerbate coastal flood impacts (NCEI, 2023). Terrestrial and coastal flood drivers of (non-) 

extreme nature that either coincide or unfold in close succession trigger compound flood (CF) events 

such as those already evinced in the U.S. history, i.e., Hurricane Katrina (2005), Sandy (2012), Harvey 40 

(2017), Florence (2018), Ida (2021), Ian (2022), and Idalia (2023). CF events in low-lying areas are 

typically associated with tropical or extra-tropical cyclones for which rainfall-runoff, wind-driven 

storm surge, or both can be classified as dominant flood hazard drivers (Bevacqua et al., 2020; Bilskie 

and Hagen, 2018; Eilander et al., 2020; Ganguli and Merz, 2019a). In addition, the role of waves, tides, 

and nonlinear interactions on extreme water levels (WLs) can be crucial for the accurate simulation 45 

and/or prediction of CF events as reported in several studies (Ganguli and Merz, 2019b; Hsu et al., 

2023; Nasr et al., 2021; Serafin et al., 2017). 

CF modeling can be performed via multivariate statistical analysis (Bensi et al., 2020; Jalili 

Pirani and Najafi, 2023; Sadegh et al., 2018), process-based modeling (Bates et al., 2021; Sanders et 

al., 2023; Santiago-Collazo et al., 2019), and even “hybrid” methods that link statistical and process-50 
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based models to alleviate computational burden by focusing on the most likely pair-wise forcing 

conditions given the statistical dependence among flood drivers (Abbaszadeh et al., 2022; Gori et al., 

2020; Moftakhari et al., 2019; Serafin et al., 2019). Statistical analyses enable the prediction of future 

CF events, the reliability of which largely depends on the length of data records. This means that a 

detailed CF hazard assessment over a given spatial domain requires the availability of both data records 55 

and computational resources for handling large datasets (Eilander et al., 2023). For hindcasting 

purposes, CF events are simulated using process-based models as they can incorporate physical 

features in the underlying digital elevation model (DEM) including local hydrodynamic attributes and 

geomorphologic characteristics, i.e., tidal and riverine channels, artificial waterways, and flood 

infrastructure (Marsooli and Wang, 2020; Muñoz et al., 2020; Salehi, 2018). Another advantage of 60 

process-based modeling is the ability to simulate complex WL dynamics such as backwater effects, 

tidal propagation, and overtopping in estuarine environments and urban settings that are usually 

ignored in point-based statistical analyses (Gallien et al., 2018; Kumbier et al., 2018; Leijnse et al., 

2021). Also, process-based models can simulate complex CF dynamics in coastal to inland transition 

zones where hydrological and coastal processes determine flood extent, duration, and inundation depth 65 

(Bilskie et al., 2021; Jafarzadegan et al., 2023; Peña et al., 2022). Nevertheless, CF modeling is subject 

to uncertainties that interact and cascade in series throughout the modeling chain if they are not treated 

appropriately (Beven et al., 2005; Hasan Tanim and Goharian, 2021; Meresa et al., 2021).  

In general, uncertainties in process-based modeling can be classified into four main sources: 

(i) initial condition, (ii) forcing (or boundary) conditions, (iii) model parameters, and (iv) model 70 

structure (Beven et al., 2005; Moradkhani et al., 2018; Vrugt, 2016). Initial and forcing conditions are 

essentially model inputs to any process-based models, however, their isolated effects on WL dynamics 

are often analyzed separately as reported in diverse hydrological (Abbaszadeh et al., 2019; 

Jafarzadegan et al., 2021a; Kohanpur et al., 2023) and coastal studies (Bakhtyar et al., 2020; Marsooli 

and Wang, 2020; Muñoz et al., 2022a). On the other hand, model parameters and structure are intrinsic 75 

to the process-based models under consideration and they can differ depending on the physical process 
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and forcing drivers to be solved (e.g., hydrological or coastal models). The first source of uncertainty 

involves inaccuracies in the geometry of the system, which is spatially represented with light detection 

and ranging (LiDAR) elevation data. These inaccuracies also include bathymetric (Cea and French, 

2012; Neal et al., 2021; Parodi et al., 2020) and topographic errors such as those reported in tidal 80 

wetland regions (Alizad et al., 2018; Cooper et al., 2019; Rogers et al., 2018). Elevation errors in 

coastal wetlands can reach values up to 0.65 m and are usually estimated as the vertical difference 

between LiDAR-derived DEMs and ground-truth elevation collected during real-time kinematic 

surveys (Medeiros et al., 2015; Rogers et al., 2016).  

Uncertainty stemming from forcing or boundary conditions is linked with instrument and 85 

sensor’s characteristics that measure WL or streamflow such as analog-to-digital recorders and 

acoustic doppler current, respectively (NOAA, 2000; USGS, 2011). Notably, this uncertainty can also 

arise from a posteriori assumption (or generalizations) in operational hurricane-induced coastal flood 

forecasting. For example, the Coastal Emergency Risk Assessment (CERA) portal provides real-time 

storm-surge, wave, and flood guidance for the Gulf and Atlantic Coasts of the U.S. under the 90 

assumption that river flow and local rainfall contributions to flooding are relatively small as compared 

to that driven by storm surge (CERA, 2023). Although this assumption might be valid for non-estuarine 

regions, ignoring nonlinear interactions among flood drivers in freshwater-influenced stretches of the 

coast can lead to an underestimation of CF hazards especially in coastal to inland transition zones 

characterized by tidally-influenced rivers (Bakhtyar et al., 2020; Muñoz et al., 2022b; Yin et al., 2021). 95 

Nevertheless, we acknowledge the ongoing work of CERA to incorporating freshwater inflow in CF 

simulations and flood guidance as demonstrated in a pilot study in Louisiana.  

Another important source of uncertainty in CF modeling is associated with model parameters 

such as the antecedent soil moisture condition (e.g., infiltration capacity) and the Manning’s roughness 

coefficient that is present in the bottom stress component of the momentum equation (see Section 2.3). 100 

Although soil moisture might influence CF dynamics especially at the onset of flood events, modelers 

often assume that soils are already saturated for practical purposes. In contrast, Manning’s roughness 
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help account for bed friction exerted by vegetation, seabed, riverbed, sinuosity, and irregularity of 

channel cross-sections (Attari and Hosseini, 2019; Bhola et al., 2019; Yen, 2002). Thus, hydrodynamic 

models rely on a rigorous static (or dynamic) calibration of  roughness coefficients to capture the onset, 105 

peak, and dissipation of WLs as well as CF dynamics (Jafarzadegan et al., 2021a; Liu et al., 2018; 

Mayo et al., 2014). However, conducting model calibration is a computationally intensive procedure 

that requires a suitable strategy to explore and exploit the parameter space such as Monte Carlo and 

Latin Hypercube Sampling techniques (Helton and Davis, 2003; Kuczera and Parent, 1998). For that 

reason, flood hazard assessments often assume stationarity of model parameters under the premise that 110 

calibrated roughness coefficients for a specific event are adequate for a range of unseen flood scenarios 

(Domeneghetti et al., 2013; Meresa et al., 2021).  

The fourth source of uncertainty refers to limitations or a priori (theoretical) assumptions that 

are necessary to simplify the representation of oceanic, hydrological, and meteorological processes in 

regard to flood generation and routing (Moradkhani et al., 2018; Nearing et al., 2016; Pappenberger et 115 

al., 2006). Moreover, uncertainty derived from model structure accounts for model coupling 

approaches such as one-way, two-way, tightly and fully coupled (Bilskie et al., 2021; Muñoz et al., 

2021; Santiago-Collazo et al., 2019) as well as model configuration and that refers toso inherent 

“reduced-physics” schemes to solve the conservation of mass and momentum equations (see Section 

2.3). For example, reduced-physics numerical schemes are devised to ignore local acceleration, 120 

pressure gradient, viscosity, and/or Coriolis terms (Brunner, 2016; Leijnse et al., 2021; Lesser et al., 

2004). Nonetheless, such schemes are designed to optimize the modeling procedure, i.e., reduce the 

computational cost or time required by high-fidelity process-based models while ensuring an 

acceptable accuracy in the simulation of WL and CF dynamics. 

Methods for uncertainty quantification vary in complexity and application and have been 125 

discussed in detail in recent review studies (Abbaszadeh et al., 2022; Beven et al., 2018; Xu et al., 

2023). Those methods include linear associations and first-order second moment approximations 

(Taylor et al., 2015; Thompson et al., 2008), generalized likelihood estimations (Aronica et al., 2002; 
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Domeneghetti et al., 2013), sensitivity analyses (Alipour et al., 2022; Hall et al., 2005; Savage et al., 

2016), multi-model ensemble methods (Duan et al., 2007; Kodra et al., 2020; Madadgar and 130 

Moradkhani, 2014; Najafi and Moradkhani, 2016), and data assimilation (Abbaszadeh et al., 2019; 

Moradkhani et al., 2018; Pathiraja et al., 2018).  

In recent years, researchers have explored linked process-based and machine learning (PB-ML) 

models for uncertainty analysis. Hu et al., (2019) developed an integrated framework consisting of ML 

and reduced order models for rapid flood prediction and uncertainty quantification. Specifically, they 135 

reported that forcing conditions (e.g., incoming waves) are the main source of uncertainty for 

predicting water surface elevation resulting from tsunamis. Moreover, they quantified such an 

uncertainty via prescriptive analytics in long short-term memory (LSTM) networks, i.e., inverse 

functions. Anaraki et al., (2021) proposed a hybrid modeling framework that combines hydrological 

models and ML for flood frequency analysis under climate change conditions. They indicated that the 140 

selection of hydrological models (e.g., model structure) is a critical source of uncertainty based on 

fuzzy and analysis of variance methods. Chaudhary et al., (2022) developed a deep learning ensemble 

model that is trained with hydrodynamic model outputs to predict urban flood hazards at high spatial 

resolution. They estimated total predictive uncertainty in terms of aleatory and epistemic uncertainty 

by focusing on model inputs and model parameters (e.g., deep learning model’s weights). Also, they 145 

reported that both sources of uncertainty follow the pattern of maximum water depth residuals and that 

aleatory and epistemic uncertainty are sharper and fuzzier for higher residual values, respectively. 

Nevertheless, there is a fundamental gap in terms of understanding the evolution of uncertainty 

sources in CF modeling as well as their cascading effects propagating in the modeling chain and 

ultimately leading to total uncertainty. Notably, there is a need of a robust and computationally 150 

efficient methodology that enables a proper characterization of spatiotemporal evolution of uncertainty 

throughout CF events. Here, we aim at characterizing the spatiotemporal evolution of uncertainty in a 

well-known CF event, namely Hurricane Harvey in Galveston Bay, TX. For this, we develop a PB-

ML model framework that combines two different hydrodynamic models as well as (non-) linear 



7 

 

regression methods in order to quantify isolated and cascading uncertainty in terms of maximum WL 155 

residuals. Also, we leverage the regression models to track the evolution of WL residuals during the 

onset, peak, and dissipation of Hurricane Harvey. Based on a rigorously trained PB-ML model, we are 

able to estimate the relative and cumulative contribution of the four sources of uncertainty to total 

uncertainty over time. The following sections describe the publicly available data used to develop two 

different hydrodynamic models for Galveston Bay, namely Delft3D-Flexible Mesh (FM) and the U.S. 160 

Army Corps of Engineers’ River Analysis System (HEC-RAS), as well as linear and nonlinear 

regression models. We then introduce the proposed PB-ML framework to characterize uncertainty in 

CF events, discuss the results, and provide key remarks in the conclusion section. 

2 Materials and methods 

2.1 Study area 165 

We select Galveston Bay (G-Bay) as the study area to leverage multiple spatiotemporal datasets 

and official reports that help calibrate and validate hydrodynamic models (East et al., 2008; Rego and 

Li, 2010; Sebastian et al., 2021; Valle-Levinson et al., 2020). G-Bay is the seventh largest estuary in 

the U.S. that connects Houston, TX with the Gulf of Mexico trough a complex system consisting of 

bayous, interior bays, and rivers (Figure 1a). G-Bay is a shallow estuary of 2 m depth, 56 km length, 170 

and 31 km width (on average) that comprises an area of 1600 km2, approximately. Annual average 

freshwater flow into the G-Bay comes from the Buffalo Bayou River and their tributaries (USGS 

08074000) and the San Jacinto River (Lake Houston’s dam) is 50 m3/s and 75 m3/s, respectively 

(Figure 1b and 1c). Tides reaching the G-Bay entrance (NOAA 8771341) are mixed and characterized 

by the lunar diurnal (K1) and principal lunar semidiurnal (M2) constituents with tidal amplitudes of 175 

0.15 m and 0.11 m, respectively.  

We simulate two CF events in G-Bay, namely Hurricane Ike and Hurricane Harvey, that hit 

the Gulf of Mexico in September 2008 and August 2017, respectively (Figure 1a). Those hurricanes 
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are selected because they were not only the most recent and relevant CF events in G-Bay but also 

driven by dominant coastal (storm surge) and terrestrial (rainfall-runoff) flood drivers, respectively.  180 

Hurricane Ike made landfall as Category 2 in the Saffir-Simpson scale in the eastern part of Galveston 

Island, TX on September 13, 2008. Ike produced storm surges up to 4 m near Sabine Pass and 480 mm 

of cumulative precipitation over southeastern TX that together led to maximum inundation depths up 

to 3 m above ground level in Galveston County (Berg, 2009; Rego and Li, 2010). Hurricane Harvey, 

on the other hand, reached Category 4 near Rockport, TX on August 24, 2017 and made a second 185 

landfall near Cameron, LA on August 29, 2017. Harvey generated total cumulative precipitations 

ranging from 0.64 m up to 1.52 m over southeastern Texas and subsequent pluvial flooding in the 

upper river reaches of the Buffalo Bayou with maximum inundation depths of 3 m above ground level 

(Blake and Zelinsky, 2018). In addition to heavy rainfall, wind-driven storm surge triggered compound 

coastal flooding over the region that lasted 3 to 8 days (Huang et al., 2021; Valle-Levinson et al., 190 

2020). 
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Figure 1. Model domain of Galveston Bay, TX. (a) Tide-gauge stations and land cover categories 

derived from the National Land Cover Database. Solid and dashed lines illustrate the best tracks of 195 

Hurricane Ike (Sep, 20089) and Harvey (Aug, 2017), respectively. Topography and bathymetry of the 

study area interpolated in the (b) Delft3D-FM and (c) 2D HEC-RAS gridmodels are almost identical 

suggesting that the underlying mesh can capture key morphological and hydrodynamic features. 

2.2 Data availability 

We use publicly available data to develop and calibrate hydrodynamics models of G-Bay 200 

(Figure 1b and 1c). To resemble physical conditions prior to Hurricane Ike, we consider the legacy 

Galveston Texas Coastal DEM obtained from the NOAA's National Geophysical Data Center 
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(https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ngdc.mgg.dem:403). 

This DEM includes topographic and bathymetric (topobathy) data of 2006 and is referenced to the 

vertical tidal datum of Mean High Water (MHW). Next, we resemble physical conditions prior to 205 

Hurricane Harvey by considering a legacy continuously updated digital elevation model (CUDEM) 

that includes topobathy data of 2017. The CUDEM is referenced to the North American Vertical 

Datum 1988 (NAVD88) and can be obtained from the NOAA’s Data Access Viewer 

(https://coast.noaa.gov/). To account for wetland elevation errors in the CUDEM, we consider a 

recently published coastal DEM that provides relative tidal marsh elevations over the Conterminous 210 

United States at 30 m spatial resolution and referenced to the MHW datum (Holmquist and Windham-

Myers, 2022). It is important to note that the coastal DEMs are referenced to the NAVD88 datum using 

the NOAA’s Vertical Datum tool (https://vdatum.noaa.gov/). Likewise, we consider land cover maps 

derived from the 2008 and 2016 National Land Cover Database (NLCD) as a proxy of spatially 

distributed roughness values for model calibration of Hurricane Ike and Harvey, respectively 215 

(https://www.mrlc.gov/data). The NLCD maps have a 30 m spatial resolution and 16 land cover classes 

over the continental U.S. that can be conveniently regrouped or aggregated into general categories to 

avoid unnecessary specificity during model calibration.  

Forcing or forcing boundary conditions (BCs) consist of time-series data of water level (WL) 

and river discharge that are obtained from the NOAA’s Tide & Currents portal 220 

(https://tidesandcurrents.noaa.gov/) and the USGS’ National Water Dashboard 

(https://dashboard.waterdata.usgs.gov/), respectively. In addition, we force the model at the ocean 

boundary using barotropic tides obtained from the TPXO 8.0 Global Inverse Tide Model 

(https://www.tpxo.net/global/tpxo8-atlas). To evaluate hydrodynamic model’s performance, we 

leverage survey data from a temporary monitoring network deployed for Hurricane Ike, i.e., water 225 

pressure sensors (East et al., 2008), and post-flood high-water marks from the USGS’s Flood Event 

Viewer (https://stn.wim.usgs.gov/fev/) for Hurricane Harvey (Figure 41a). Rainfall data are obtained 

from the rain-gauge network of the Harris County - Flood Warning System 

https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ngdc.mgg.dem:403
https://coast.noaa.gov/
https://vdatum.noaa.gov/
https://www.mrlc.gov/data
https://tidesandcurrents.noaa.gov/
https://dashboard.waterdata.usgs.gov/
https://www.tpxo.net/global/tpxo8-atlas
https://stn.wim.usgs.gov/fev/
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(https://www.harriscountyfws.org/). In addition, we use gridded data from ERA5 reanalysis dataset to 

account for hourly local wind, atmospheric pressure, and total precipitation at 30 km spatial resolution 230 

(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5).  

2.3 Hydrodynamic modeling 

We develop hydrodynamic models using two different model software in order to simulate 

compound coastal flooding. We then analyze the uncertainty stemming from model structural 

inadequacy reflected in model configuration and numerical scheme. Specifically, we setup two-235 

dimensional (2D) models in Delft3D- Flexible Mesh (FM) version 2021.3 and the U.S. Army Corps 

of Engineers’ River Analysis System (HEC-RAS) version 6.3. Both models are widely used in pluvial, 

fluvial, and coastal flood studies and have achieved satisfactory results (Bakhtyar et al., 2020; Liu et 

al., 2018; Muñoz et al., 2021; Shustikova et al., 2019). Delft3D-FM can be setup in 2D (depth-

averaged) mode to solve the continuity (Eq. (1)) and Reynolds-averaged Navier-Stokes equations (Eq. 240 

(2) and (3)) for incompressible fluids, uniform density, and vertical length scales that are significant 

smaller that the horizontal ones (Lesser et al., 2004; Roelvink and Van Banning, 1995). In a similar 

way, HEC-RAS solves 2D unsteady flow and recent model developments (e.g., version 6.3 onwards) 

include gridded wind and precipitation forcing input in the momentum conservation equations 

(USACE, 2023). 245 
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where ζ is water surface elevation (above still water), t is time, d is water depth (below horizontal 

datum or still water), u and v are 2D depth-averaged velocities in x and y directions, f is the Coriolis 

parameter, ρa is air density, Cd is the wind-drag coefficient, ρ is water density, U10 and V10 are wind 

velocities at 10 m height above still water in x and y directions, g is the gravitational acceleration, n is 

the Manning’s roughness coefficient, and vH is the horizontal viscosity parameter. Note that unlike 250 

Delft3D-FM, HEC-RAS does not account for the atmospheric pressure term in Eq. (1) and (2).       

2.3.1 Model setup 

The first hydrodynamic model is developed in Delft3D-FM using an unstructured finite volume 

grid that consists of triangular cells with spatially varying size. Unstructured grids help capture 

geomorphological and urban features with greater detail than conventional nested structured grids 255 

(Kumar et al., 2009; Muñoz et al., 2022a). Those features include the Galveston BayG-Bay entrance, 

artificial channels in Houston, intracoastal waterways, lateral floodplains, wetland regions, and 

bottleneck-like connections between G-Bay and both the Buffalo Bayou River and San Jacinto River 

(Figure 1c). Triangular cell sizes are set to increase from 3 km at the open ocean boundary in the Gulf 

of Mexico up to 5 m in Harris County. This ensures a detailed simulation that of CF dynamics are 260 

simulated with sufficient detail in both natural and urban environmentssettings. Similarly, the second 

hydrodynamic model is developed in in 2D HEC-RAS using an unstructured finite volume grid. The 

mesh consists of polygons of varying cell size and the numerical scheme to solve the shallow water 

equations is set to the Eulerian-Lagrangian (SWL-ELM) method. This in turn ensures the model solves 

for all terms in Eq. 1 to 3, except for atmospheric pressure due to the current model capabilities of 2D 265 

HEC-RAS. In addition, we force the mesh generation with a cell size and spatial distribution similar 

to that of Delft3D-FM model. Although there is no a straightforward procedure to transfer the mesh 
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properties and/or spatial characteristics between the two hydrodynamic models, we ensure that 

geomorphological and urban features are correctly delineated by conducting an extensive mesh 

refinement in critical locations as suggested in similar studies (Muñoz et al., 2021; Shustikova et al., 270 

2019). The time step is controlled by the Courant Friedrichs-Lewy condition with a maximum value 

of 0.7 for both models. Also, model outputs are generated with an hourly interval for calibration and 

validation purposes.  

After the mesh generation process, we consider multiple USGS’s river discharge stations in the 

G-Bay model as upstream BCs including Whiteoak Bayou (USGS 08074500), Buffalo Bayou (USGS 275 

08073700), Brays Bayou (USGS 08075000), Sims Bayou (USGS 08075500), Berry Bayou (USGS 

08075605), Greens Bayou (USGS 08076000), Hunting Bayou (USGS 08075770), Vince Bayou 

(USGS 08075730), Clear Creek (USGS 08077600), Goose Creek (USGS 08067525), Cedar Creek 

(USGS 08067500), and the Trinity River (USGS 08067252). Also, river flow from the Lake Houston 

Dam to the San Jacinto River is estimated as the sum of upstream freshwater input to the lake due to 280 

the lack of available river-gauge stations located immediately downstream the dam (Figure 1). Such 

an estimation is realistic since the dam is not operating as a flood control structure anymore and it was 

overflowed by extreme river discharge as a result of Hurricane Harvey (Sebastian et al., 2021; Valle-

Levinson et al., 2020). Regarding the downstream BCs, we force the G-Bay model with storm tides 

using WL records from two tide-gauge stations, namely Freeport Harbor (NOAA 8772471) and 285 

Galveston Bay Entrance (NOAA 8771341). These stations are located offshore and are a good proxy 

for coastal WL propagating from the open ocean boundary. To account for WL variability arising from 

atmospheric variables, we include reanalysis data of 10 m wind velocity and atmospheric (sea level) 

pressure in the model simulations. Note that the latest versions of 2D HEC-RAS allow the user to 

simulate wind speeds even though the atmospheric pressure component is yet to be implemented in 290 

Eq. 2 and 3. 

Lastly, we retrieve rainfall data from a relative dense rain-gauge network of the Harris County 

– Flood Warning System. These data have been validated and further used to estimate flood damages 
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in G-Bay (Sebastian et al., 2021). In addition, we complement these data with “total precipitation” 

reanalysis datasets from ERA-5 in order to estimate rainfall patterns in coastal areas beyond the Harris 295 

County and over the Gulf of Mexico (Figure 1). Specifically, we use the “inverse distance weight” as 

the interpolation method in ArcGIS with an output cell size of 1 km (e.g., shortest Euclidean distance 

between existing rain gauges), search radius of 5 points, and a power function of 2. The interpolation 

method as well as the aforementioned values follow those suggested in other studies and are validated 

through sensitivity analysis (Ahrens, 2006; Otieno et al., 2014; Sebastian et al., 2021).  300 

2.3.2 Model calibration and validation 

G-Bay is influenced by multiple flood drivers including local rainfall, river discharge, and 

storm tides. At low river flow rates, tides propagate from the ocean boundary in landward direction 

where they attenuate and eventually vanish due to bottom friction (Bolla Pittaluga et al., 2015; Hoitink 

and Jay, 2016). We therefore ensure that the model setup (Section 2.3.1) is adequate to simulate tidal 305 

propagation across the model domain. Specifically, we simulate tidal dynamics in Delft3D-FM by 

setting barotropic tides from the TPXO 8.0 Global Inverse Tide Model as forcing data in the open 

ocean boundary (Egbert and Erofeeva, 2002). Then, we run 100 ensemble model realizations for a 1-

year simulation window without incorporating any additional forcing (e.g., only tides) and considering 

a range of plausible Manning’s roughness values (n) derived from pertinent literature and technical 310 

reports (Arcement and Schneider, 1989; Liu et al., 2018). Combination of plausible n-values are 

generated with the Latin Hypercube Sampling (LHS) technique (Helton and Davis, 2003) and 

evaluated via ensemble model simulations in a high-performance computing (HPC) system (Table 1). 

Then, we identify an optimal (calibrated) value for the “open water” category that achieves the lowest 

Root-Mean Square Error (RMSE) and Mean Absolute Error (MAE) as well as the highest Kling-Gupta 315 

Efficiency (KGE) and Nash-Sutcliffe Efficiency (NSE). These metrics and underlying equations have 

been presented in another study in G-Bay (Muñoz et al., 2022a).  
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Table 1. Manning’s roughness values tested for model calibration in Delft3D-FM / 2D HEC-RAS. 

Land cover 

category 

Open 

water 

Navigation 

channel 

Riverine 

water 

Coastal 

wetlands 

Urban 

areas 

Lower limit 0.005 0.005 0.01 0.025 0.020 

Upper limit 0.035 0.150 0.150 0.150 0.070 

Optimal (only tides) 

0.015 

- - - - 

Optimal (Ike) 0.019/0.017 0.019/0.018 0.029/0.019 0.032/0.041 

Optimal (Harvey) 0.011/0.015 0.037/0.019 0.051/0.030 0.030/0.049 

 320 

Furthermore, we conduct harmonic analyses and retrieve tidal amplitudes and phases for the 

main tidal constituents in G-Bay including K2, S2, M2, N2, K1, S1, P1, O1, and Q1 (NOAA, 2000). 

Then, we compare observed and simulated tidal characteristics at each tide-gauge station using a 1:1 

line assessment as well as concentric circles. In general, the evaluation metrics suggest that the model 

setup is adequate to simulate tidal propagation in G-Bay. Also, the optimal n-value for open water 325 

helps minimize both RMSE and MAE and achieve high NSE and KGE scores (Figure 2a). The 1:1 

line shows a satisfactory agreement between observed and simulated tidal amplitudes with a maximum 

MAE of 1.53 cm (Figure 2b). Likewise, observed and simulated tidal phases are in good agreement 

for the majority of tidal constituents and stations in G-Bay. The closer the colored (simulated) and gray 

(observed) markers in each concentric circle, the more accurate the simulated phase. Note that we only 330 

evaluate tidal propagation using Delft3D-FM model as this software is installed in our HPC system 

whereas 2D HEC-RAS is run in a desktop computer. Moreover, the former model can run in parallel 

while recent 2D HEC-RAS versions in Linux run in series within the HPC system. This in turn would 

take significantly more computational resources and time to accomplish 100 ensemble model 

realizations for a 1-year simulation window. Nevertheless, we expect similar score metrics regarding 335 

tidal propagation for a 1-year simulation window since the model setup of 2D HEC-RAS is similar to 

that of Delft3D-FM, i.e., mesh extent, refinement regions, and cell size grid. Also, we support this 
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claim based on calibration and validation results of CF events as explained later on, i.e., Hurricane Ike 

and Harvey.  

 340 

Figure 2. Evaluation of tidal propagation in Galveston Bay. (a) Ensemble and optimal model 

simulation of tides for a 1-year window and a zoom-in section (vertical lines) showing the observed 

tidal levels. Results of harmonic analysis show (b) tidal amplitudes (1:1 line), and (c) tidal phase for 

selected tidal constituents (concentric circles). Each colored marker represents a tide-gauge station 

with the underlying tidal constituents whereas gray markers represent observed tidal phases.  345 

 

 Next, we calibrate n-values of the navigation channel, riverine water, coastal wetlands, and 

urban areas for Hurricane Ike and Harvey (Table 1). We follow an identical process to identify optimal 
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n-values for both Delft3D-FM and 2D HEC-RAS models, i.e., LHS technique with 100 ensemble 

members, but this time we keep invariant the calibrated n-value for the “open water” category to ensure 350 

an accurate tidal propagation. It is worth noting that both models are independently calibrated in order 

to ensure a reliable assessment of model parameters and model structure errors, especially in riverine 

areas in Houston. The roughness coefficient of open water is common for both models as it simulates 

tidal propagation from the ocean boundary. Also, we set a 1-month warm-up period for the model to 

reach equilibrium and consider a 1-week simulation window (centered on the peak WL) to assess the 355 

accuracy of model simulations (Figure 3 and Supplementary figures S1 – S2). In general, both 

hydrodynamic models perform satisfactorily especially at downstream tide-gauge stations where 

RMSE is below 0.30 cm. However, RMSE progressively increases at upstream tide-gauge stations due 

to a relatively large riverine influence and underlying nonlinear interactions with storm tides (Figure 

3d and 3h). The latter is more evident in model simulations of Hurricane Harvey as the peak river 360 

discharge in the Buffalo Bayou station (USGS 08073700), located upstream the Manchester tide-

station (NOAA 8770777), is 3.5 times higher than that of Hurricane Ike. Also, inaccuracies of 

topobathy data along the Buffalo Bayou and river tributaries might have reduced model’s performance 

in the upstream part of G-Bay as reported in flood hazard and damage studies (Jafarzadegan et al., 

2021a; Valle-Levinson et al., 2020; Wing et al., 2019). 365 
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Figure 3. Model calibration at selected tide-gauge stations in Galveston Bay. Model performance is 

evaluated in terms of RMSE, NSE, and KGE for (a-d) Hurricane Ike, and (e-h) Hurricane Harvey. 370 

Color code indicate score metrics for Delft3D-FM (black) and 2D HEC-RAS (blue). 
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2.3.3 Model validation 

 

To validate the hydrodynamic models, we generate composite maps representing maximum 

WLs within the simulation period of Hurricane Ike and Harvey and compare those maps against 375 

USGS’ high-water marks collected in the aftermath of both hurricanes (Fig. 4a). We evaluate the 

accuracy of the composite maps using a 1:1 fit line that represents a perfect match betweenby 

comparing observed and simulated maximum WLs (Figure 4b). Data points that fall along the 1:1 

(diagonal) line represent a perfect match between those maximum WLs. The validation process 

indicate that Delft3D-FM and 2D HEC-RAS produce maximum WLs in close agreement with 380 

available high-water marks in G-Bay, and additionally, both RMSE and MAE agree well with the 

corresponding metrics reported in similar CF studies (Huang et al., 2021; Lee et al., 2023; Sebastian 

et al., 2021; Wing et al., 2019). In addition, we validate peak WLs at selected tide-gauge stations 

(Figure 3 and Supplementary figures S1 – S2) with respect to CF hazard maps generated in Delft3D-

FM for Hurricane Ike and Harvey (Figure 4c and 4d, respectively). Note that we mask out values below 385 

0.10 m in order to enhance visualization of water depths above ground. As expected, the peak WL of 

Hurricane Ike (~3 m) triggers a relatively large flood extent and water depth in the lower part of G-

Bay whereas the peak WL of Hurricane Harvey (~1.25 m) produces moderate coastal flooding over 

the same area. However, flood extent and water depth in Harris County are relatively large as compared 

to those triggered by Hurricane Ike due to the compounding effects of heavy rainfall, extreme river 390 

discharge, and storm tides. Such compounding effects are evident at Manchester tide-gage station 

where freshwater input controls WL dynamics starting on Aug/27 (Figure 3 h). Also, note that 

Delft3D-FM constantly outperforms 2D HEC-RAS based on the evaluation metrics and 1:1 line 

assessment (Figure 3 and 4). Following this, we hereinafter consider Delft3D-FM as the best 

hydrodynamic model to analyze cascading uncertainty in G-Bay with respect to 2D HEC-RAS. 395 
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2.3.4 Model scenarios 

We propose 5 scenarios to analyze the effects of isolated and total uncertainty on CF hazard 

assessment for Hurricane Harvey (Table 2). The first scenario focuses on the initial condition of the 

system including topographic and bathymetric data in coastal DEMs. Recently, Holmquist and 

Windham-Myers (2022) produced a DEM of relative tidal marsh elevation for the Conterminous 400 

United States using land cover classes derived from the 2010 Coastal Change Analysis Program (C-

CAP). Since this DEM accounts for elevation errors within coastal wetlands, we conveniently evaluate 

uncertainty from the initial condition of the system using the aforementioned DEM and the NOAA’s 

CUDEM in hydrodynamic simulations (see Section 2.2). The second scenario represents uncertainty 

derived from forcing conditions that are often neglected in real-time hurricane-induced flood forecasts 405 

and advisories (CERA, 2023). Specifically, such flood forecasts assume that riverine flow and local 

rainfall contributions to flooding are relatively small as compared to that driven by storm surge. 

Following this reasoning, we will analyze the impact of local rainfall and riverine flow in CF dynamics 

by turning off those two forcing conditions in hydrodynamic simulations.  

The third scenario analyzes uncertainty stemming from model parameters including bed 410 

channel and floodplain roughness coefficients associated with land cover classes from the NLCD 

(Figure 1a and Table 1). Here, we simulate compound coastal flooding triggered by Hurricane Harvey 

using two sets of optimal (calibrated) n-values. The first set consists of n-values calibrated for 

Hurricane Ike (Sep, 2008) whereas the second set comes from the actual model calibration of Hurricane 

Harvey (Aug, 2017). The reasoning is that a realistic estimation (or proxy) of calibrated n-values for 415 

future flood scenarios consists in those already calibrated for past flood events (Domeneghetti et al., 

2013; Meresa et al., 2021). In this regard, Hurricane Ike is the closest and most relevant CF event that 

impacted G-Bay prior to Hurricane Harvey. The fourth scenario represents uncertainty derived from 

model structure including model setup and configuration necessary to simulate flood extent and 

inundation depth. We therefore analyze this source of uncertainty by comparing model outputs of 420 
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Delft3D-FM and 2D HEC-RAS (see Section 2.3). Lastly, the fifth scenario is named “total uncertainty” 

as it involves all sources of uncertainty including their cascading effect on CF hazard assessment. 
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Figure 4. Validation of Delft3D-FM and 2D HEC-RAS models in Galveston Bay. (a) Spatial 425 

distribution of high-water marks collected in the aftermath of CF events by the U.S. Geological Survey 
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(USGS). (b) Validation of composite maps with respect to USGS’ high-water marks. Score metrics 

are calculated for 2D HEC-RAS and Delft3D-FM (in parentheses). CF hazard maps represent 

maximum water depths computed with Delft3D-FM and associated withcorresponding to (c) 

Hurricane Ike and (d) Hurricane Harvey. 430 

 

 Table 2. Model scenarios for simulating isolated and total uncertainty in Galveston BayG-Bay*. 

Model description 

Scenarios 

Initial 

condition 

(S1) 

Forcing 

conditions 

(S2) 

Model 

parameters 

(S3) 

Model 

structure 

(S4) 

Total 

uncertainty 

(S5) 

Hydrodynamic model Delft3D-FM Delft3D-FM Delft3D-FM 2D HEC-RAS 2D HEC-RAS 

Calibrated n-values Harvey Harvey Ike Harvey Ike 

Coastal DEM CUDEM Tidal marsh Tidal marsh Tidal marsh CUDEM 

River flow and rainfall Turn on Turn off Turn on Turn on Turn off 

*Text in italic denotes changes with respect to the best model setup for simulating Hurricane Harvey. 

2.4 Regression models 

The proposed model scenarios are further modified to quantify their relative contribution to 435 

total uncertainty using regression models. Here, we report uncertainties in terms of WL residuals 

computed between each scenario and the best model setup for simulating Hurricane Harvey. Such 

model setup consists in the calibrated Delft3D-FM model that accounts for elevation errors within 

coastal wetlands and additionally incorporates the effects or river flow and local rainfall in CF 

modeling (Figure 3 and 4). Since 2D HEC-RAS generates raster-based flood maps, we extract WLs at 440 

each grid node of Delft3D-FM to compute the corresponding WL residuals. This in turn helps ensure 

consistency in uncertainty analysis over the model domain. Also, note that WL residuals evolve in 

time and space and their magnitude attributed to the sources of uncertainty is represented by the four 
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model scenarios. Therefore, we first compute the maximum WL residual across the model domain for 

the entire simulation period (e.g., 10-day window) as well as time-evolving residuals with an interval 445 

of 6 hours. This time interval is set to comply with the timing of hurricane advisories of the National 

Hurricane Center and so enable the construction of 40 datasets within the 10-day simulation window, 

i.e., WL forecasts and advisories every 6 hours.  

2.4.1 Multiple-linear regression 

WL residuals obtained from physically-based model simulations are used as input features for 450 

multiple-linear regression (MLR) and nonlinear models (Figure 5). First, we fit the input features using 

a MLR model and considered it as a benchmark model to further evaluate the benefits of nonlinear 

models including physics-informed machine learning (PB-ML). The goal of the MLR model is to 

estimate total uncertainty as the target variable in terms of WL residuals. Since we are dealing with 

WL residuals in meters that have a comparable order of magnitude, we do not scale or normalize the 455 

input features prior to the fitting process. This is also convenient for evaluation purposes of the fitted 

model as well as relative importance quantification of each source of uncertainty based on fitted 

regression weights. We do, however, identify and remove outliers in the input features especially those 

arising at the edges of the mesh and those close toaround the BCs. We use the ‘statsmodel API’ 

package in Python to conduct a robust fitting of input features 460 

(https://www.statsmodels.org/stable/api.html) and report regression coefficients with the underlying 

statistical significance and confidence intervals (see Section 3.2).  

https://www.statsmodels.org/stable/api.html
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Figure 5. Schematic of multiple linear regression and process-based machine learning models to 

quantify cascading uncertainty. Input features and target variable are reported in terms of water level 465 

residuals derived from hydrodynamic simulations of Hurricane Harvey. The target variable contains 

all sources of uncertainty and their implicit cascading effects. 

2.4.2 Linked process-based and machine learning models 

We conducted a preliminary analysis to identify the best nonlinear ML model that predicts total 

uncertainty (not shown here for brevity). Among those models, we notice that a random forest 470 

regressor model outperforms support vector machine and artificial neural networks (e.g., multiple-

layer perceptron model)s and the latter is also reported inagrees with results of multiple flood studies 

(Chen et al., 2020; Mosavi et al., 2018; Schoppa et al., 2020). Random forest (RF) is a non-parametric 

ensemble algorithm that builds multiple decision trees based on random bootstrapped samples through 

replacement (Breiman, 2001). The advantage of RF over other nonlinear regression models relies on 475 

its simplicity and easy implementation for efficient regression and classification tasks. Also, RF 

connects input and target features having complex and nonlinear associations and provides estimates 
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of feature importance to predict the target variable (Alipour et al., 2020; Wang et al., 2015). We 

develop a RF regressor model and conduct a thorough model evaluation in Python using the ‘scikit-

learn tool’ package. WL residuals from each scenario are set as input (S1 to S4) and target features 480 

(S5) and our analysis is focused on both time-evolving and maximum residuals across the model 

domain. We split input features into training (80%) and validation datasets (20%) using the total 

number of data points after outlier removal. In the context of hydrodynamic modeling, outliers are 

unrealistic WLs emerging around upstream and downstream BC lines as well as the edges of the model 

domain. Such values are extreme values, either positive or negative, that do not reflect WL dynamics 485 

within the model domain. Therefore, we masked out such values using a buffer polygon in ArcGIS 

and proceed with the training and validation dataset using realistic WLs (e.g., 1’093,501 data points). 

Those data points represent the number of grid nodes generated in Delft3D-FM (see Section 2.3.1). 

Next, we conduct hyperparameter tuning to build decision trees and estimate optimal (calibrated) 

values for each parameter using an HPC system (Table 3).  490 

 

Table 3. Hyperparameter grid and optimal (calibrated) parameter values for the RF regressor model. 

Hyperparameter 
Range of 

values 

Total values to be 

tested 

Optimal 

value 

Number of estimators 

(trees) 
500 – 1000 11 700 

Maximum features 2 – 4 3 3 

Maximum depth 10 – 100 10 60 

Minimum sample split 2 – 10 9 2 

Minimum sample leaf 2 – 10 9 2 

Bootstrap True 1 True 
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We use the scikit-learn tool package to find optimal values and also account for overfitting 

issues through a cross-validation (CV) process. For this, we generate an initial grid of parameter values 495 

within a specified range using the LHS technique (Helton and Davis, 2003). Then, we use a ‘k-fold’ 

approach to conduct CV using the training dataset. The number of k-folds is set to 5 and the parameter 

grid is generated with a fixed seed value to ensure reproducibility. We then use the grid in the 

‘Randomized Search CV’ function to randomly sample a set of hyperparameter values and conduct a 

k-fold CV for each combination of values. The number of combinations to be tested is defined by the 500 

‘n_iter’ parameter that is here set to 100. We repeat the splitting and sampling process for time-

evolving WL residuals and conduct hyperparameter tuning for the resulting 40 datasets using the HPC 

system. Nevertheless, we notice that the optimal values associated with each dataset and those reported 

in Table 3 lead to similar score metrics in the validation dataset (e.g., R2, R, KGE and RMSE). Also, 

the main differences in the score metrics are observed in the third or fourth decimal place (see Section 505 

3.2). 

3 Results and discussion 

3.1 Effects of isolated and total uncertainty 

Scenarios S1 to S4 are designed to analyze the effect of each source of uncertainty on CF 

hazard assessment (Figure 6 and Supplementary figure S3). We conveniently display maximum WL 510 

residuals across the model domain where positive or negative values indicate an overestimation or 

underestimation of WLs, respectively. Scenario S1 accounts for elevation errors in LiDAR-derived 

DEMs that lead to a complex heterogenous pattern with both over- and underestimation of maximum 

WL residuals (Figure 6a and 6b). This scenario displays an overestimation of WLs in the tributaries of 

the Buffalo Bayou River, the Houston and Galveston navigation channels, and intracoastal waterways 515 

in the lower part of G-Bay. Such an overestimation can be explained by inconsistencies in bathymetric 

data between the tidal marsh DEM and the NOAA’s CUDEM. In addition, this scenario shows an 
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underestimation of WLs in the upper part of G-Bay including the head of the Buffalo Bayou’s River 

tributaries and the San Jacinto River that is surrounded by coastal wetlands (Figure 1a). Wetlands are 

natural buffers that dissipate extreme WLs and attenuate storm surge with a rate of 1.7 to 25 cm/km 520 

depending on marsh height, biomass, and storms characteristics (Alizad et al., 2018; Kumbier et al., 

2022; Leonardi et al., 2018). As expected, there is a consistent underestimation of WLs due to vertical 

adjustments that lower wetland elevation in the tidal marsh DEM (e.g., with respect to that of 

CUDEM), reduce wetlands’ buffer capacity, and so increase WLs.  

Scenario S2 focuses on uncertainty derived from forcing conditions including river flow and 525 

local rainfall. This scenario leads to an underestimation of WLs across the model domain 

(Supplementary figures S3a and S3b). The effect of neglecting forcing conditions on CF hazard 

assessment is more evident in the northwest side of G-Bay where CF was driven by heavy rainfall and 

extreme river flow triggering urban flooding in Harris County. In fact, Hurricane Harvey caused urban 

flooding in Houston city due to an unprecedent rainfall depth greater than 1.5 m as well as an extreme 530 

river flow conveyed by the Buffalo Bayou and San Jacinto River (Blake and Zelinsky, 2018; Sebastian 

et al., 2021; Valle-Levinson et al., 2020). Scenario S3 analyzes the influence of model parameters that 

are conventionally calibrated for historical flood events (e.g., Hurricane Ike) and used as a proxy for 

simulating future flood events (Domeneghetti et al., 2013; Meresa et al., 2021). This scenario exhibits 

an overestimation of WLs that is particularly evident in the northwest side of G-Bay (Supplementary 535 

figures S3c and S3d). Such an overestimation can be related to the peak WL of Hurricane Ike (~3 m) 

and Hurricane Harvey (~1.25 m) as well the corresponding calibrated (optimal) n-values (Table 1). In 

general, the n-values calibrated for Ike are lower in magnitude than those for Harvey and so they are 

more effective in reducing bed friction and tidal damping (Bhola et al., 2019; Liu et al., 2018; Mayo 

et al., 2014; Pappenberger et al., 2005). Consequently, considering low n-values calibrated for Ike to 540 

simulate Harvey leads to an overestimation of the storm tide that propagates from the open ocean 

boundary to the upper part of G-Bay. Note that the peak WL of Ike is 2.4 times larger than that of 
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Harvey and its effect is observed on the maximum WL residuals in the Buffalo Bayou’s River 

tributaries. 
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Figure 6. Effect of isolated and total uncertainty on compound flood hazard assessment in Galveston 

Bay. Maximum water level residuals represent model scenarios with uncertainty stemming from (a, b) 

initial condition, and (gc, hd) model structure, and (e, f) total uncertainty. Water level residuals are 

calculated with respect to the best hydrodynamic model calibrated for Hurricane Harvey. Positive and 550 

negative residuals indicate overestimation and underestimation across the model domain, respectively. 

Right panel shows a zoom-in window over block census groups in Harris County at the northwest side 

of Galveston Bay. 

  

Scenario S4 accounts for uncertainty derived from model structure and capabilities of 2D HEC-555 

RAS when compared to those of Delft3D-FM. This scenario leads to a complex heterogenous pattern 

with both over- and underestimation of maximum WL residuals across the model domain (Figure 6c 

and 6d). Specifically, this scenario displays an overestimation of WLs in the San Jacinto River, Moses 

and Anahuac lakes, and Freeport whereas an underestimation in Harris County, the Buffalo Bayou 

River and its tributaries, the Houston and Galveston navigation channels, and intracoastal waterways 560 

in the lower part of G-Bay. This complex pattern highlights the capability (or inability) of the 

hydrodynamic models to account for atmospheric pressure in the conservation of momentum (Eq. 2 

and 3) and to capture coastal geomorphological and urban features in the mesh generation process, i.e., 

structured vs. unstructured grids (Bates, 2023, 2022). 

Lastly, scenario S5 is named total uncertainty since it accounts for isolated and cascading 565 

effects of the sources of uncertainty on spatiotemporal CF hazard assessment (Supplementary 

figuresFigure 6e S3e and S3fand 6f). This scenario displays an overall underestimation of maximum 

WL residuals in the northwest side of G-Bay which is similar to the pattern observed in scenario S2 

(e.g., forcing conditions). Likewise, it displays both over- and underestimation of WL residuals in the 

lower part of G-Bay that resembles the patterns of scenarios S4 and S1, respectively (e.g., model 570 

structure and input data). In contrast, the overestimation pattern of scenario S3 is not visually reflected 

in scenario S5. This discrepancy is explained in the following section. 
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3.2 Relative contribution of isolated and cascading uncertainty  

3.2.1 Compound flood hazard assessment 

 We fit and train MLR and ML models using maximum WL residuals as an indicative of CF 575 

hazard in G-Bay (Table 4). Regression weights are statistically significant for all four scenarios (p-

value < 0.05); including S3 in spite of the negative correlation. Also, the Pearson’s and Kendall’ 

correlation coefficients reveal a statistically significant linear correlation between total uncertainty and 

isolated uncertainty (Figure 7). Note that the rank of such correlations, in descending order, agrees 

well with the maximum WL residuals and underlying patterns resulting from the model scenarios 580 

(Figure 6). Among them, uncertainty stemming from model parameters has a negative linear 

correlation with total uncertainty that partially explains the discrepancy of residual patterns already 

mentioned in the previous section. Particularly, a negative correlation suggests that an increase of WL 

residuals from scenario S3 results in a decrease of those from scenario S5. Note that the MLR model 

estimate total uncertainty with a relatively high accuracy as corroborated by the score metrics, i.e., R2 585 

= 0.76, R = 0.87, RMSE = 0.42 m, and KGE = 0.82 (Figure 7c).  

  

Table 4. Multiple-linear regression fitting on maximum water level residuals. 

Scenario 

(Water level 

residuals) 

Input features 
Regression 

weight 

Confidence interval 

[5%, 95%] 

Intercept -0.115 [-0.116, -0.114] 

S1 Initial condition 0.175 [0.173, 0.176] 

S2 Forcing conditions 1.017 [1.015, 1.019] 

S3 Model parameters -0.050 [-0.054, -0.046] 

S4 Model structure 0.681 [0.679, 0.683] 

Confidence intervals are obtained from the ‘statsmodel API’ package available in Python. 
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Figure 7. Isolated and total uncertainty reported in terms of water level residuals [m]. (a, b, d, e) Linear 

associations with the corresponding Pearson’s and Kendall’s correlation coefficients; the latter in 

parentheses. (c, f) Total and predicted uncertainty obtained from multiple-linear regression and RF 

regressor models. (g, h, i) Relative contribution of initial condition, forcing conditions, model 595 

parameters, and model structure to total uncertainty in terms of regression weights, feature and 

permutation importance. 

Overall, the absolute magnitude of regression weights agrees well with the rank derived 

fromresulting from either Pearson’s or Kendall’s correlation coefficients. This suggests that 

uncertainty stemming from forcing conditions and model structure are crucial for estimating total 600 

uncertainty in CF hazard assessment (Figure 7g). Other flood studies have shown similar results and 

demonstrated that uncertainty stemming from forcing conditions is even more important than that of 

the remaining sources, especially for flood prediction and inundation mapping in riverine systems  

(Alipour et al., 2020; Jafarzadegan et al., 2023; Pappenberger et al., 2008; Savage et al., 2016). Initial 

condition of the system and model parameters are also relevant sources of uncertainty but they show 605 

a relatively low regression weight. Note that if WL residuals of scenarios S1, S3, and S4 are kept 

invariant, any perturbations of scenario S2 will result in a nearly identical response of scenario S5 plus 

a negative offset of 12 cm. Although MLR models help analyze the influence of each input feature to 

estimating total uncertainty, they do not capture ‘hidden’ associations and/or interactions among the 

input features. This in turn reduces the effectiveness of MLR models to characterize cascading effects 610 

on total uncertainty.  

To overcome this limitation, we determine whether or not the proposed PB-ML model (e.g., 

RF regressor) outperforms the MLR model based on the aforementioned evaluation metrics. In this 

regard, the score metrics evince a substantial improvement by the PB-ML model since RMSE 

decreases to 0.28 m whereas R2, R, and KGE increase up to 0.90, 0.95, and 0.92, respectively (Figure 615 

7f). Next, we conduct a rank analysis focused on the contribution of each input feature to model’s 

variance reduction and overall performance for total uncertainty estimation (Figure 7h and 7i, 
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respectively). In the proposed RF regressor model, feature importance measures the mean decrease of 

variance within each selected decision tree whereas permutation importance measures the decrease in 

a pre-defined score metric when individual input features are randomly shuffled (Breiman, 2001). 620 

Specifically, the four input features are shuffled multiple times and the RF regressor model is refitted 

to estimate their importance in the model’s performance. Here, we shuffle the input features 100 times 

and set RMSE as the evaluation metric to be consistent with the ensemble members and score metrics 

used in the calibration and validation process (see Section 2.3.2). Notably, the rank of feature 

importance agrees well with that of the regression weights which in turn indicates that forcing 625 

conditions is not only the main contributor to total uncertainty in CF hazard assessment (56%) but also 

a key feature for variance reduction (Figure 7h). It is noted that model structure, input conditions, and 

model parameters contribute to variance reduction to 20%, 18%, and 6%, respectively. 

The advantage of permutation over feature importance analysis is that the former method 

circumvents any overfitting issues by focusing the analysis on validation data (~219k data points). 630 

Also, permutation importance is not biased towards input features with a large number of unique values 

as compared to feature importance, i.e., high-cardinality. Nevertheless, note that we address potential 

issues of overfitting and high-cardinality through a 5-fold CV process in the training process (see 

Section 2.5.2). Similarly, the rank of permutation importance agrees well with both the ranks of 

regression weights (or slope terms) and those derived from feature importance (Figure 7i). 635 

Nevertheless, note that the permutation importance of forcing conditions (61%) is higher than that of 

feature importance which can be partially explained by the number of data points used in the 

computation of the corresponding importance as well as the objective function, i.e., training vs. test 

datasets and mean variance decrease vs. RMSE. Note that model structure, input, and parameters 

contribute to the overall models’ performance in 24%, 9%, and 6%, respectively. Following these 640 

results, we recommend that any efforts for improving CF modeling and hazard assessment should 

focus on accounting for all relevant forcing (boundary) conditions and implementing a suitable 

hydrodynamic model to simulate complex compound coastal flood dynamics. For example, recent 
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studies have shown that estimating water deficits between upstream and downstream flows and 

distributing such deficits using lateral flows and vertical fluxes (as additional forcing conditions) 645 

improve the performance of flood modeling during extreme events (Jafarzadegan et al., 2021b; Oruc 

Baci et al., 2023). 

3.2.2 Compound flood modeling 

We track the trajectory of the four sources of uncertainty during the onset, peak, and dissipation 

of Hurricane Harvey using a 6-hour interval for the entire simulation period (Figure 8a). For this, we 650 

fit MLR and train PB-ML models for each of the 40 datasets containing WL residuals and report 

relative and cumulative contributions as well as models’ performance in terms of R2, R, KGE and 

RMSE. Model structure and the initial condition of the system are the main sources of total uncertainty 

at the onset of Hurricane Harvey with a contribution of 60% and 20%, respectively (Figure 8b). 

However, their relative contribution drops around the peak WL since forcing conditions becomes a 655 

more relevant source of uncertainty until the dissipation of WLs, i.e., drastic increase from 10% to 

50%. The contribution of model parameters is estimated at 10% and remains almost invariant during 

the onset, peak, and dissipation of Harvey. Furthermore, the cumulative contribution of each source of 

uncertainty helps visualize their overall importance for total uncertainty estimation in the simulation 

period (Figure 8d). In contrast to the rank of contributions established for maximum WL residuals (see 660 

Section 3.2.1), note that the model scenario and/or input feature derived from model structure is the 

main contributor to variance reduction of the RF regressor model (49%) followed by that of forcing 

conditions (23%), initial condition (20%), and model parameters (8%).  

These results are somehow similar to other studies that analyzed how the influence of forcing 

(boundary) conditions and model parameters change during flood events (Alipour et al., 2022; 665 

Jafarzadegan et al., 2021b; Savage et al., 2016). Although those studies identify forcing conditions as 

the most influential factor for flood inundation mapping, uncertainty stemming from model structure 

is not explicitly analyzed yet recognized as a determinant factor of the results. Lastly, the evaluation 
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metrics computed for the 40 datasets indicate that RF regressor models (dashed line) outperform the 

benchmark MLR models (solid line) in the simulation period (Figure 8c). Note that R2, R, and KGE 670 

display a sudden drop around the peak WL suggesting that MLR models cannot fully characterize total 

uncertainty whereas the same evaluation metrics of RF regressor models remain almost invariant due 

to the ability of nonlinear models to capture any complex interactions as well as cascading effects 

arising from the four sources of uncertainty. Likewise, note that RMSE drops to ~11 cm when 

characterizing cascading uncertainty with RF regressor models. Also, there is a rather constant RMSE 675 

of ~25 cm when estimating total uncertainty in terms of WL residuals in the simulation period. 
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Figure 8. Evolution of water level residuals as a proxy of total uncertainty during the onset, peak, and 

dissipation of Hurricane Harvey. (a) Observed water levels in Morgans Point station located in the 680 

middle of G-Bay. (b) Relative contribution of initial condition, forcing conditions, model parameters, 

and model structure to variance reduction in total uncertainty estimation. (c) Evolution of R2, R, KGE, 

and RMSE in the simulation window with solid and dashed lines representing multiple-linear 

regression and RF regressor models, respectively. (d) Cumulative contribution of the four main sources 

of uncertainty. The area under de curves represent the average contribution to variance reduction for 685 

the entire CF event. 
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4 Conclusions 

In the present study, we characterize isolated and cascading uncertainty during the onset, peak, 

and dissipation of Hurricane Harvey in Galveston Bay, TX. For this, we develop two hydrodynamic 

models (e.g., Delft3D-FM and 2D HEC-RAS) to simulate compound coastal flooding and conduct 690 

compound flood (CF) hazard assessment. The calibrated and validated models help simulate a set of 

scenarios that reflect uncertainties stemming from initial condition, forcing conditions, model 

parameters, and model structure. We then train a physics-informed machine learning model (PB-ML) 

to estimate total uncertainty in terms of water level (WL) residuals and evaluate the model’s 

performance with respect to a benchmark multiple-linear regression (MLR) model. The effects of 695 

isolated uncertainty on CF hazard assessment match the spatial patterns observed in the total 

uncertainty scenario across the model domain; especially for the scenarios that reflect uncertainty from 

the initial condition of the system, forcing conditions, and model structure. Conversely, the scenarios 

representing total uncertainty and that from model parameters exhibit a negative correlation resulting 

in a discrepancy of spatial patterns across the model domain. Nevertheless, we estimate that forcing 700 

conditions, model structure, initial condition, and model parameters contribute to variance reduction 

of the PB-ML model in 56%, 20%, 18%, and 6%, respectively. The latter agrees well with the rank of 

regression weights estimated with the MLR regression model which help support the conclusion that 

forcing (boundary) condition is the main contributor to total uncertainty in CF hazard assessment.  

Regarding CF modeling, we observe an interplay of relative importance where model structure 705 

and the initial condition of the system are the main sources of total uncertainty at the onset of Hurricane 

Harvey. Yet, their relative importance drops around the peak WL since forcing conditions becomes a 

more relevant source of uncertainty until the dissipation of WLs. Also, the importance of model 

parameters remains almost invariant during the onset, peak, and dissipation of Harvey. Nonetheless, 

model structure is the main contributor to variance reduction (49%) followed by forcing conditions 710 

(23%), initial condition (20%), and model parameters (8%). Lastly, MLR models are not suitable to 

characterize total uncertainty since their performance is sensitive to the peak WL as evinced in the 
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evaluation metrics (e.g., RMSE, R2, R, and KGE). Conversely, PB-ML are less sensitive to changes in 

WL dynamics due to their ability to capture “hidden” interactions and cascading effects arising from 

the four sources of uncertainty. Following these results, we conclude that PB-ML models are a feasible 715 

alternative to conventional statistical methods for characterizing cascading uncertainty in compound 

coastal flood modeling and CF hazard assessment. The relative importance of the sources of 

uncertainty may also vary depending on catchment properties, storm characteristics, and dominant 

flood drivers, i.e., coastal to inland transition zones. Ongoing work is being conducted to effectively 

reduce uncertainty using residual learning techniques. Also, Ffuture work should focus on quantifying 720 

and reducing cascading and total uncertainty at large-scale and analyzing the effects of the four sources 

of uncertainty in flood risk assessment (e.g., damage cost).  
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