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Abstract. While global streamflow reanalysis provides valuable information for water resources management, its local 

performance in the time-frequency domain is yet to be investigated. This paper presents a novel decomposition approach to 10 

evaluating streamflow reanalysis by combining wavelet transform with machine learning. Specifically, the time series of 

streamflow reanalysis and observation are respectively decomposed and then the approximation components of reanalysis 

are compared to those of observed streamflow. Furthermore, the accumulated local effects are derived to showcase the 

influences of catchment attributes on the performance of raw reanalysis at different scales. For streamflow reanalysis 

generated by the Global Flood Awareness System, a case study is devised based on streamflow observations from the 15 

Catchment Attributes and Meteorology for Large-sample Studies. The results highlight that the reanalysis tends to be more 

effective in characterizing seasonal, annual and multi-annual features than daily, weekly and monthly features. The Kling-

Gupta Efficiency (KGE) values of raw reanalysis and approximation components are primarily influenced by precipitation 

seasonality. That is, high values of KGE tend to be observed in catchments where there is more precipitation in winter, 

which can be due to low evaporation that results in reasonable simulations of soil moisture and baseflow processes. The 20 

longitude, mean precipitation and mean slope also influence the local performance of approximation components. On the 

other hand, attributes on geology, soils and vegetation appear to play a relatively small part in the performance of 

approximation components. Overall, this paper provides useful information for practical applications of global streamflow 

reanalysis. 
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1 Introduction 

Global streamflow reanalysis provides valuable information for water resources management (Beck et al., 2017; 

Harrigan et al., 2020; Pokhrel et al., 2021). Generated by using climate reanalysis to drive global hydrological models 

(GHMs, Hersbach et al., 2020; Alfieri et al., 2020; Muñoz-Sabater et al., 2021), there exist multiple streamflow reanalysis 30 

datasets, e.g., the Global Flood Awareness System (GloFAS) within the European Centre for Medium-Range Weather 

Forecasts (ECMWF)’s latest global atmospheric reanalysis (GloFAS-ERA5, Harrigan et al., 2020), the Global Reach-Level 

A Priori Discharge Estimates for SWOT (GRADES, Lin et al., 2019) and the Global Reach-Level Flood Reanalysis (GRFR, 

Yang et al., 2021). In practice, streamflow reanalysis can bridge the data gaps for ungauged and poorly gauged catchments 

and provides estimates on a large spatial scale and with sufficient temporal resolution (Lin et al., 2019; Harrigan et al., 2020; 35 

Yang et al., 2021). For example, the recent GloFAS-ERA5 provides streamflow information at the daily time step and with a 

spatial resolution of 0.1º across the globe (Harrigan et al., 2020). 

The local performance plays a critical part in practical applications of global streamflow reanalysis (Veldkamp et al., 

2018; Munia et al., 2020; Feng et al., 2021). By comparing global reanalysis to observed streamflow, diagnostic plots and 

verification metrics are generated to showcase its local performance (Xie et al., 2019; Harrigan et al., 2020; Gao et al., 2020; 40 

Cantoni et al., 2022; Han et al., 2023; Liu et al., 2023). In the meantime, hydrological signatures derived from reanalysis are 

compared to those obtained from observed streamflow to facilitate insights into the effectiveness of hydrological models 

(Beck et al., 2017; Chen et al., 2021; Zhao et al., 2022). For example, the performances of ten Inter-Sectoral Impact Model 

Intercomparison Project (ISI-MIP) models are evaluated for low, mean and high flows using five streamflow percentile 

series (Chen et al., 2021). Considering limited observation data, streamflow reanalysis can serve as reference data to 45 

calibrate hydrological models and then the model outputs can be compared to observations to see whether practical 

applications are available (Senent-Aparicio et al., 2021). 

Time series analysis is one of the most important approaches to investigating the performance of hydrological models 

(Lane, 2007; Zuo et al., 2020; Saraiva et al., 2021). From the perspective of time series, hydrological simulations are a 

combination of the components of periodic motion, trend, seasonality and error (Apaydin et al., 2021). These components 50 

can be extracted by using some decomposition approaches (Nalley et al., 2012; Abebe et al., 2022; Xu et al., 2022). As one 

of the most important decomposition approaches, wavelet transform decomposes streamflow into time series of wavelet 

coefficients, of which each is linked to some frequencies (Manikanta and Vema, 2022). Owing to the time-frequency 

characterization, wavelet-based features of reanalysis and observed streamflow can be compared in order to zoom into 

detailed information for multiple time series segments (Manikanta and Vema, 2022). If there are errors in the reanalysis at 55 

specific timescales or during specific periods, the sources of these errors can be identified by the technique of time-

frequency characterization (Lane, 2007). 

While global streamflow reanalysis has been evaluated at different spatial scales (Harrigan et al., 2020; Senent-Aparicio 

et al., 2021; Chen et al., 2021), the time series characteristics of streamflow reanalysis in the time-frequency domain are yet 
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to be investigated. Meanwhile, it is difficult to interpret the local performance of global streamflow reanalysis across 60 

different locations (Sichangi et al., 2016; Ghiggi et al., 2019; Tu et al., 2024), let alone the additional interpretation of the 

local performance at different timescales. This paper bridges the gap by presenting a novel evaluation of global streamflow 

reanalysis by combining the discrete wavelet transform (DWT) with machine learning techniques. That is, the DWT is 

employed to exploit streamflow reanalysis in the time-frequency domain; and then the accumulated local effects (ALEs) are 

derived by the random forest model to showcase the performance of raw reanalysis and its decomposed components at 65 

different scales. As will be demonstrated in the methods and results, streamflow reanalysis does exhibit different local 

performances at different timescales and the influences of catchment attributes are illustrated. 

 

2 Methods 

2.1 Time series decomposition 70 

Both reanalysis and observed streamflow time series are decomposed into detail and approximation components using 

the wavelet transform (Chalise et al., 2023). Specifically, the utilization of wavelet transform involves the rigorous 

mathematical deconstruction of a signal into multiple lower resolution levels (Chong et al., 2019). This process is executed 

by controlling the scaling and shifting factors associated with a mother wavelet (Nalley et al., 2012). The DWT captures time 

series information at multiple scales in the time-frequency domain, with each scale corresponding to a specific period (Joo 75 

and Kim, 2015; Manikanta and Vema, 2022). Following Wei et al. (2012), the Daubechies wavelet of order 5 is used to 

decompose the streamflow time series. For a streamflow time series q(t), the discrete wavelet transform is (Talukder et al., 

2020): 

 ( ) ( ) ( ),, m n

t Z

W a b q t t


=  
(1) 

in which m and n are integers that respectively represent the amount of dilation and translation of the wavelet, t represents 

the discrete time and   represents the wavelet basis function (Nalley et al., 2012): 80 

 ( ) ( )2
, 2 2

m

m

m n t t n 
−

−= −  (2) 

The DWT decomposes a signal into approximation (low-frequency) and detail (high-frequency) coefficients, thereby 

separating its frequency components based on magnitude (Quilty and Adamowski, 2021). In the initial decomposition that 

utilizes high-pass and low-pass filters and inverse discrete wavelet transform, the original signal is decomposed into detail 

component (D1) and approximation component (A1). Subsequently, the approximation component (A1) resulting from this 

initial stage is furthermore decomposed into D2 and A2, and so on for successive levels. This process is conducted from 85 

high-pass and low-pass filters followed by a down-sampling operator: 
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(3) 

Therefore, streamflow time series is decomposed into the approximation components and detail components (Talukder et al., 

2020): 
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in which CAl[t] is approximation coefficient, CDl[t] is detail coefficient, l is decomposition level, L is low-pass filter and H is 

high-pass filter. The inverse discrete wavelet transform is used to obtain the detail components and approximation 90 

components (Guo et al., 2022): 
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(5) 

in which IDWT is the inverse discrete wavelet transform, Al is approximation component and Dl is detail component. 

 

2.2 Verification after decomposition 

The Kling-Gupta Efficiency (KGE) stands out as a widely utilized verification metric to evaluate the model 95 

performance (Frame et al., 2021; Huang and Zhao, 2022; Zhao et al., 2022). The KGE is utilized to indicate the performance 

of raw reanalysis, approximation and detail components. When evaluating the performance of raw reanalysis, the KGE is 

calculated as follows: 

 ( ) ( ) ( )
2 2 2

1 1 1 1KGE r  = − − + − + −  (6) 

As can be seen, the KGE is comprised of three components, namely, the Pearson correlation coefficient r, the bias ratio   

and the variability ratio  : 100 
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in which   is the mean streamflow and   is the streamflow standard deviation. The subscripts d and q respectively 

represent reanalysis and observed streamflow, respectively. The KGE ranges from −  to 1, with a perfect value of 1. 

To investigate the relationship between reanalysis and observations, it is necessary to extract the corresponding grid cell 

for each hydrometric station. The grid cell in which the hydrometric station is located may not overlap with the simulated 

river network in streamflow reanalysis due to the inaccuracy of the routing module in distributed hydrological model (Chen 105 

et al., 2021). There are three steps to identify the target cell: firstly, the initial cell is located according to the latitude and 

longitude of the hydrometric station; secondly, the KGE between reanalysis and observed streamflow is calculated for the 

initial cell and its eight surrounding cells; and finally, the cell with the largest KGE is used as the target cell (Zhao et al., 

2022). 

The hydrometric stations with outliers in terms of the KGE, correlation, bias ratio and variability ratio are excluded 110 

from the investigation. To facilitate the investigation of the influences of catchment attributes on performance, the Density-

Based Spatial Clustering of Applications with Noise (DBSCAN) is used to remove the outliers of KGE and its three 

components. The DBSCAN offers a distinctive advantage in detecting outliers by defining clusters as dense regions 

separated by sparser areas (Smiti, 2020). This characteristic makes the algorithm effective in distinguishing outliers from the 

main clusters and particularly suited for anomaly detection (Li et al., 2022). There are two key parameters in the DBSCAN, 115 

including the maximum cluster radius (  ) and the minimum number of points (MinPts). Points within a distance   are 

considered part of a dense region, while those with fewer than MinPts neighbors are treated as outliers. Following the study 

conducted by Brinkerhoff et al. (2020), the "elbow"-based approach is used to determine the   and the MinPts is set to 5. By 

setting these parameters, the DBSCAN effectively identifies and isolates anomalies, promoting accurate anomaly removal 

while preserving the integrity of the main cluster structures (Hauswirth et al., 2021). 120 

 

2.3 Influences of catchment attributes 

The ALEs are derived by the random forest model to showcase the influences of catchment attributes on the 

performance of raw reanalysis and its approximation components at different scales. The random forest model is employed 

to establish a predictive relationship between the performance and multiple catchment attributes. This model is well-suited to 125 

capture complex relationships within the dataset through its ensemble of decision trees, which renders it an effective tool for 

performance prediction (Wei et al., 2023). To implement the model, the data is split into training and testing sets under the 

ratio of 75:25 (Naghibi et al., 2017). That is, 75% of catchments are randomly allocated for training and the remaining 25% 

for testing. The random forest model is trained on the training set, with tuning of hyperparameters to optimize its predictive 

capabilities. Following training, the model is validated on the test set and coefficient of determination (R2) is calculated to 130 

assess its accuracy in predicting performance based on catchment attributes. 
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Taking the KGE as an example, the prediction of the performance of approximation components for reanalysis using 

the random forest model is expressed as: 

 ( )KGE RF X=  
(10) 

in which KGE  is the predicted KGE, ( )RF  is the random forest model and X is the catchment attributes. The R2 between 

the KGE  and the KGE is denoted by: 135 
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(11) 

in which   is the mean KGE ( KGE ) and   is the standard deviation of KGE ( KGE ). 

The ALE is used to describe how catchment attributes influence the performance of approximation components at 

various scales for reanalysis based on the random forest model. An advantage of the ALE is that it overcomes the 

confounding effects of correlated catchment attributes (Stein et al., 2021). The ALE curves reveal the relationship between 

the performance and a specific catchment attribute, indicating whether the association is linear, monotonic or exhibits a more 140 

complex pattern (Teng et al., 2022). The uncentered ALE ( ),

ˆ
j ALEf x  is formulated as follows: 

 ( )
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( )( ) ( )( )
( )( )

, , 1,

1 :

1ˆ
, ,

j

i
jj

k

i i

j ALE k j j k j j

k i x N kj

f x f z x f z x
n k

− − −

= 

 = −
    

(12) 

in which x is the value of the catchment attribute j, k is one of kj quantiles. By dividing the range of x, nj(k) is the number of x 

that in quantile Nj(k), zk,j is the boundary values of x within that quantile, f is the output of the random forest model and 
( )i

jx−  

is the values of catchment attribute i except for j. 

The ALE ( ),
ˆ

j ALEf x  is derived from uncentered ALE values by subtracting its mean across all quantiles (Konapala et al., 145 

2020): 

 ( ) ( ) ( ), , ,

1

1ˆ ˆˆ
jk

j ALE j ALE j ALE k

kj

f x f x f x
k =

= −   
(13) 

Furthermore, the Local Interpretable Model-agnostic Explanations (LIMEs) elucidate individual predictions made by a 

trained black-box machine learning model (Jiang, 2022). The LIME is used to identify the dominant catchment attribute on 

performance of approximation components at various scales for each catchment. 

A transformation is applied to the bias and variability ratios of raw reanalysis and its approximation components when 150 

investigating the influences of catchment attributes. The bias ratio and variability ratio are transformed as follows (Poncelet 

et al., 2017): 
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(14) 

in which *  represents the bias ratio after transformation, *  is the variability ratio after transformation. This operation is 

owing to that increases of the values of bias and variability ratios do not necessarily indicate improved performance. After 

the transformation, both *  and *  take the value of 1 to be maximum value that indicates the best performance. Notably, 155 

this transformation does not affect the ranking of performance among catchments. 

 

3 Case study 

3.1 Streamflow reanalysis 

The GloFAS-ERA5 streamflow reanalysis v2.1 provides valuable hydrological time series forced by the latest global 160 

atmospheric reanalysis ERA5 (Harrigan et al., 2020). Developed jointly by the Joint Research Centre (JRC) of the European 

Commission, the University of Reading and the ECMWF (Harrigan et al., 2020), this streamflow reanalysis is generated by 

coupling the Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (HTESSEL) land surface model with the 

LISFLOOD hydrological and channel routing model (Alfieri et al., 2020; Harrigan et al., 2020). Specifically, the daily 

surface and subsurface runoff generated by the HTESSEL model are routed using the LISFLOOD model (Harrigan et al., 165 

2020). The GloFAS-ERA5 provides a spatial resolution of 0.1º at a daily time step covering the time period from 1 January 

1979 to near real time (Harrigan et al., 2020). Harrigan et al. (2020) found the GloFAS-ERA5 streamflow reanalysis to 

exhibit skill in 86% of tested catchments, but noted considerable variability in skill across locations, including significant 

positive biases in regions such as the central United States and Africa. 

 170 

3.2 Observed streamflow 

The observed streamflow is sourced from the Catchment Attributes and Meteorology for Large-sample Studies 

(CAMELS) dataset (Newman et al., 2015; Addor et al., 2017). An advantage of this dataset is its sufficient streamflow time 

series from 1980 to 2015, which provides valuable reference data for the evaluation of streamflow reanalysis (Addor et al., 

2017). This dataset provides streamflow data for 671 catchments across the continental United States (CONUS), which 175 

exhibit diverse hydro-meteorological characteristics. Notably, these catchments are primarily located at headwaters, resulting 

in minimal influence from human activities (Stein et al., 2021). In the meantime, the CAMELS provides information on six 

categories of catchment attributes, including climate, geology, topography, soil, vegetation and streamflow indices (Addor et 

al., 2017; Stein et al., 2021). Categorical attributes are not used in the investigation of the influences on model performance 
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(Stein et al., 2021). The influences of catchment attributes on performance of streamflow time series characteristics are 180 

investigated using 38 attributes across five categories: climate, geology, topography, soil and vegetation. 

To facilitate the evaluation of streamflow reanalysis, the stations whose data length meets the requirement for 

decomposition into 10 levels are selected (Nalley et al., 2012). The maximum decomposition level lm is denoted by: 

 
( )

log
2 1

=
log 2

m

N

v
l

 
 

−   (15) 

in which v represents the number of vanishing moments of the Daubechies wavelet, set to 5, N is the number of data points. 

Specifically, 661 stations with a data length exceeding 9216 days are selected for the investigation. 185 

 

4 Results 

4.1 Approximation and detail components 

The time series of streamflow reanalysis and observation along with their approximation components are presented in 

Figure 1. The plots are for the station 6224000 in which raw reanalysis tends to exhibit the highest KGE value of 0.82. For 190 

the approximation components between reanalysis and observation, the KGE values are evaluated and illustrated by heatmap. 

It can be observed that raw reanalysis generally captures the primary features of the streamflow time series. Under the 

stepwise decomposition of the streamflow time series, the KGE increases from 0.48 for A1 to 0.89 for A6. This result 

indicates that streamflow reanalysis tends to capture seasonal and annual information more effectively than daily, weekly 

and monthly information. At higher decomposition levels, the series of approximation components becomes smoother. As 195 

the decomposition level increases, the reanalysis becomes more able to capture the information in observation. That is, 

reanalysis can provide more valuable information for seasonal and annual features. The KGE values between approximation 

components of reanalysis and observation are higher when the scales match, suggesting streamflow reanalysis can be 

evaluated by the wavelet transform. 

 200 
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Figure 1: Time series plots of raw reanalysis and its approximation components and heatmap of the KGE between 

approximation components of reanalysis and observations for the station 6224000. 

 

The performance of raw reanalysis and its detail components for the station 6224000 are illustrated in Figure 2 through 205 

eleven time series plots and one heatmap. As the decomposition level increases, it can be observed that the series of detail 

components becomes smoother. In the meantime, there is an increasing trend in KGE from D1 to D10, indicating improved 

performance with increasing timescales. The comparison of Figure 2 with Figure 1 suggests that the performance of 

approximation components is generally better than that of detail components. In other words, the detail components are more 

difficult to be characterized than the approximation components. Focusing on the heatmap, it can be observed that the KGE 210 

along the diagonal is relatively high, suggesting reasonable agreement. That is, the detail components of observation that do 

not correspond in scale cannot be accurately matched by streamflow reanalysis. 
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Figure 2: As for Figure 1 but for the detail components. 215 

 

4.2 Performance across the CONUS 

The KGE values of raw reanalysis and its approximation components after removing the outliers using the DBSCAN 

are presented in Figure 3. In total, there are 11 spatial plots for raw reanalysis and its components after decomposition. 

Positive KGE values are marked in red and negative values in blue. It can be observed that raw reanalysis exhibits the 220 

highest KGE in the western United States, with comparatively poorer performance in the central United States. These 

findings are consistent with those of Addor et al. (2017), indicating poor performances in the high plains and desert 

southwest. Similarly, the approximation components from A1 to A10 exhibit the highest KGE in the western United States 

and the relatively lower KGE in the central United States. This finding indicates that the KGE values of approximation 

components are related to the KGE values of raw reanalysis. Moreover, as the scale increases from A1 to A10, the 225 

performance of approximation components tends to improve. The KGEs in the central United States change from negative 
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values in A1 to positive values in A10. That is, seasonal, annual and multi-annual features tend to be better represented by 

streamflow reanalysis than daily, weekly and monthly features. 

 

 230 

Figure 3: Spatial distribution of the KGE values of raw reanalysis and its approximation components from A1 to A10. 

 

The performances of raw reanalysis and its approximation components across 554 catchments in the CONUS are shown 

in Figure 4. For the KGE between streamflow reanalysis and observations, it can be observed that the local performance of 

streamflow reanalysis generally improves from A1 to A7 and then remains promising from A8 to A10. Specifically, the 235 

median value of KGE is 0.02 for A1, 0.09 for A2, 0.19 for A3, 0.24 for A4, 0.29 for A5, 0.36 for A6, 0.47 for A7, 0.43 for 

A8, 0.42 for A9 and 0.40 for A10. This trend is due to the correlation and variability ratio tend towards 1 from A1 to A7. 

Meanwhile, the performance of A7 is better than that of raw reanalysis, suggesting that errors in raw reanalysis primarily 

stem from daily, weekly and monthly components. Focusing on the correlation, the medians of correlation for approximation 
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components exceed 0.2, implying valuable information in multiple timescales approximations. Furthermore, the bias ratio 240 

remains nearly constant at each scale for approximation components. That is, the mean values of approximation components 

are generally similar to the mean values of the raw reanalysis. 

 

 

Figure 4: Boxplots of the KGE and its three components for raw reanalysis and its approximation components across 554 245 

catchments in the CONUS. The lines within the boxes mark the median values. The boxes illustrate the interquartile range 

(IQR), where the lower and upper boundaries of the boxes respectively indicate the lower quartile (Q1) and upper quartile 

(Q3). The lower and upper whiskers show the smallest and largest values within the range of Q1-1.5IQR to Q3+1.5IQR. 

Dark grey diamonds represent outliers that lie beyond the whiskers. 

 250 

4.3 Influences of catchment attributes on performance 

The influences of catchment attributes on the KGE and its three components are measured by the mean absolute ALE 

and illustrated in Figure 5. From the first row, it can be observed that the KGE values of raw reanalysis and its 

approximation components are primarily influenced by precipitation seasonality. Positive (negative) values of precipitation 

seasonality indicate that precipitation peaks in summer (winter). That is, the season with more precipitation has a significant 255 

impact on the KGE. Longitude and mean slope also have a significant impact on the KGE across raw reanalysis and daily, 
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weekly and monthly features (from A1 to A5). In the meantime, the correlations of annual and multi-annual features (from 

A7 to A10) are mainly affected by the precipitation seasonality, while daily, weekly and monthly features are influenced by 

longitude and mean slope of catchment. This result suggests that the influences of catchment attributes on correlation of 

annual and multi-annual features are different from daily, weekly and monthly features. Furthermore, the bias ratio is 260 

primarily influenced by mean precipitation and the variability ratio is mainly affected by catchment area and depth to 

bedrock. The geology, soils and vegetation appear to have minor impacts on the local performance of global streamflow 

forecasts. 
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 265 

Figure 5: The ALE of the catchment attributes on the KGE, correlation, bias ratio and variability ratio. The color denotes the 

mean absolute values for each ALE curve, which is normalized for each raw reanalysis (approximation component). The 

sizes of point represent prediction accuracy indicated by R2 for the random forest model using testing set. The “Raw” 

represents “raw reanalysis”. 

 270 

To further illustrate how catchment attributes affect the performances of raw reanalysis and its approximation 

components, the ALE curves are presented for three influential attributes, namely, precipitation seasonality, mean 

precipitation and mean slope of catchment. The influences of precipitation seasonality on the KGE and its three components 

https://doi.org/10.5194/hess-2024-83
Preprint. Discussion started: 20 March 2024
c© Author(s) 2024. CC BY 4.0 License.



15 

are presented in Figure 6. It can be observed that the relationships between the KGE and precipitation seasonality are 

generally nonlinear. The KGE gradually decreases with the increasing precipitation seasonality. That is, the KGE values are 275 

notably low when precipitation tends to concentrate in summer and turn out to be high when precipitation tends to 

concentrate in winter. The ALE curves of the daily, weekly and monthly features (from A1 to A5) are similar to raw 

reanalysis, sharply decreasing around -0.5. The seasonal, annual and multi-annual features (from A6 to A10) sharply 

decrease around 0. In the meantime, the influences of precipitation seasonality on the correlation, bias and variability ratios 

are similar to that on the KGE. These results can be due to low evaporation in winter that results in reasonable simulations of 280 

soil moisture and baseflow processes (Poncelet et al., 2017). 

 

 

Figure 6: The ALE curves of precipitation seasonality on the KGE, correlation, bias ratio and variability ratio for raw 

reanalysis and its approximation components. 285 

 

The influences of mean precipitation on the KGE, correlation, bias ratio and variability ratio across different scales are 

illustrated in Figure 7. The mean precipitation has a positive effect on the KGE of raw reanalysis and its approximation 

components, with a nonlinear increase of the KGE with rising mean precipitation, particularly for the annual and multi-

annual features. In the meantime, it affects the correlation, bias ratio and variability ratio of raw reanalysis positively. This 290 

result suggests that mean precipitation has a consistent influence on the KGE, correlation, bias and variability ratios for 
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approximation components, leading to differences in the KGE values across various catchments. These results can be due to 

the fact that rainfall-runoff processes are more linear in humid catchments than in arid catchments, leading to less variability 

in hydrologic states and facilitating more accurate simulations (Parajka et al., 2013). 

 295 

 

Figure 7: As for Figure 6 but for mean precipitation. 

 

The influences of mean slope on the KGE and its three components across different scales are shown in Figure 8. It can 

be observed that there is a nonlinear relationship between the KGE and mean slope of catchment. As the mean slope 300 

increases, the KGE of raw reanalysis and its approximation components tend to increases. This result may be due to the 

mean slope of catchment affecting the simulation of runoff generation and infiltration (Massmann, 2020; Stein et al., 2021). 

It is noted that the KGE values of approximation components gradually increase when the mean slope of catchment 

surpasses 150. In particular, the correlation and variability ratio of raw reanalysis generally increase with the increase in the 

KGE. That is, the mean slope of catchment has a similar effect on the KGE, correlation and variability ratio. On the other 305 

hand, bias ratio decreases initially and then increases with the increase in mean slope of catchment. In other words, the 

relationship between bias ratio and mean slope of catchment is nonmonotonic. 
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Figure 8: As for Figure 6 but for mean slope. 310 

 

4.4 Driving factors of each catchment 

The most important attribute that influences the KGE is identified for each catchment by the LIME method and then 

illustrated by spatial plots in Figure 9. It can be observed that the most important attributes influencing the KGE exhibit 

regional clustering. The KGE of raw reanalysis is primarily influenced by precipitation seasonality in the western and central 315 

United States while by depth to bedrock in the eastern United States (Pfister et al., 2017; Addor et al., 2017). That is, the 

substantial differences in precipitation seasonality between the western and central United States result in significant 

differences in the KGE (Figure 3). On the other hand, the most important attribute controlling the KGE of approximation 

components is different from that of raw reanalysis. It can be observed that the KGE values of approximation components 

from A6 to A8 are primarily controlled by precipitation seasonality in the eastern United States, while raw reanalysis is 320 

controlled by depth to bedrock. The higher depth to bedrock may exhibit larger storage values, consequently leading to 

higher baseflow (Pfister et al., 2017). In the meantime, the number of catchments controlled by precipitation seasonality 

tends to increase from A1 to A8, with a high proportion observed in A6, A7 and A8. That is, the performance of the annual 

variability of streamflow reanalysis is influenced by precipitation seasonality. 

 325 
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Figure 9: Spatial patterns of the controlling catchment attribute on the KGE of raw reanalysis and approximation 

components for each catchment. For each spatial distribution map, if there are more than five catchment attributes, only the 

top five attributes are presented, while the rest are labelled as others. 

 330 

5 Discussion 

Global streamflow reanalysis provides valuable information for water resources management (Alfieri et al., 2020; 

Harrigan et al., 2020; Yang et al., 2021). Building upon previous studies evaluating the performance of hydrological 

signatures derived from reanalysis and observed streamflow (Beck et al., 2017; Chen et al., 2021; Tu et al., 2024), this paper 

presents a novel evaluation by combining the wavelet transform with machine learning. Specifically, streamflow reanalysis 335 
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and observation are respectively decomposed by the DWT into detail and approximation components at different scales. As a 

result, streamflow characteristics in the time-frequency domain are unravelled by extracting features and removing noise 

from the original signal (Manikanta and Vema, 2022). This approach provides a new perspective by paying attention to the 

difference between global streamflow reanalysis and observed streamflow in the time-frequency domain. The KGE generally 

indicates that streamflow reanalysis exhibits a robust capability to capture the information of seasonal, annual and multi-340 

annual variability, particularly the annual fluctuations. This result suggests that hydrological simulations at daily or even 

hourly timescales are more challenging. 

Hydrological models generally exhibit different performance across different catchments (Newman et al., 2015; O’Neill 

et al., 2021; Tu et al., 2024). The differences can be related to heterogeneous streamflow patterns under unique combinations 

of climate and catchment attributes (Jehn et al., 2020; Stein et al., 2021). Previous studies have found that model 345 

performance is related to aridity index, with generally better performance in wetter catchments compared to drier ones 

(Poncelet et al., 2017). In addition to aridity index, other factors are also linked to the model performance, such as impact of 

snow (Newman et al., 2015), catchment area (Harrigan et al., 2020), precipitation intermittency (Newman et al., 2015) and 

human activities (Veldkamp et al., 2018). In this paper, it is found that the KGE values of raw reanalysis and approximation 

components are primarily influenced by precipitation seasonality. This outcome can be due to lower evaporation in winter, 350 

when the soil moisture is higher and baseflow can be better simulated (Poncelet et al., 2017). On the other hand, the 

relationships between KGE and catchment attributes are nonlinear. The results highlight that the wavelet transform can 

facilitate the evaluation of the local performance of global streamflow reanalysis to provide more effective information. 

 

6 Conclusions 355 

This paper has presented a novel evaluation of global streamflow reanalysis by combining the widely used wavelet 

transform and machine learning. Specifically, the raw reanalysis and observed streamflow are decomposed by the DWT and 

then they are used to indicate the local performance of the time series characteristics in the time-frequency domain. 

Furthermore, the influences of catchment attributes on the performance of raw reanalysis and its approximation components 

at various scales are investigated using the ALE. A large-sample test is conducted for the CAMELS dataset so as to evaluate 360 

the effectiveness of GloFAS streamflow reanalysis. The results show that the streamflow reanalysis tends to characterize 

seasonal, annual and multi-annual variabilities better than daily, weekly and monthly variabilities. Precipitation seasonality 

is identified to be the most important attribute influencing the KGE of raw reanalysis and its approximation components 

using the ALE. The longitude, mean precipitation and mean slope also influence the performance of approximation 

components. On the other hand, the attributes on geology, soils and vegetation seem to have a relatively minor influence on 365 

the performance of approximation components. Overall, global streamflow reanalysis can be evaluated at different 

timescales using decomposition approaches to facilitate its practical applications. 
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