
1 

A decomposition approach to evaluating the local performance of 

global streamflow reanalysis 

Tongtiegang Zhao1, Zexin Chen1, Yu Tian2, Bingyao Zhang3, Yu Li3, and Xiaohong Chen1 

1 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Key Laboratory for Water Security in the 

Guangdong-Hongkong-Macao Greater Bay Area, School of Civil Engineering, Sun Yat-Sen University, Guangzhou, China. 5 
2 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resource and 

Hydropower Research, Beijing China. 
3 School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China. 

Correspondence to: Tongtiegang Zhao (zhaottg@mail.sysu.edu.cn) and Zexin Chen (chenzx33@mail2.sysu.edu.cn) 

Abstract. While global streamflow reanalysis has been evaluated at different spatial scales to facilitate practical applications, 10 

its local performance in the time-frequency domain is yet to be investigated. This paper presents a novel decomposition 

approach to evaluating streamflow reanalysis by combining wavelet transform with machine learning. Specifically, the time 

series of streamflow reanalysis and observation are respectively decomposed and then the approximation components of 

reanalysis are evaluated against those of observed streamflow. Furthermore, the accumulated local effects are derived to 

showcase the influences of catchment attributes on the performance of streamflow reanalysis at different scales. For 15 

streamflow reanalysis generated by the Global Flood Awareness System, a case study is devised based on streamflow 

observations from the Catchment Attributes and Meteorology for Large-sample Studies. The results highlight that the 

reanalysis tends to be more effective in characterizing seasonal, annual and multi-annual features than daily, weekly and 

monthly features. The Kling-Gupta Efficiency (KGE) values of original time series and approximation components are 

primarily influenced by precipitation seasonality. High values of KGE tend to be observed in catchments where there is more 20 

precipitation in winter, which can be due to low evaporation that results in reasonable simulations of soil moisture and 

baseflow processes. The longitude, mean precipitation and mean slope also influence the local performance of 

approximation components. On the other hand, attributes on geology, soils and vegetation appear to play a relatively small 

part in the performance of approximation components. Overall, this paper provides useful information for practical 

applications of global streamflow reanalysis. 25 
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1 Introduction 

Global streamflow reanalysis provides valuable information for water resources management (Beck et al., 2017; 

Harrigan et al., 2020; Pokhrel et al., 2021). Generated by using climate reanalysis to drive global hydrological models 30 

(GHMs, Hersbach et al., 2020; Alfieri et al., 2020; Muñoz-Sabater et al., 2021), there exist multiple streamflow reanalysis 

datasets, e.g., the Global Flood Awareness System (GloFAS) within the European Centre for Medium-Range Weather 

Forecasts (ECMWF)’s latest global atmospheric reanalysis (GloFAS-ERA5, Harrigan et al., 2020), the Global Reach-Level 

A Priori Discharge Estimates for SWOT (GRADES, Lin et al., 2019) and the Global Reach-Level Flood Reanalysis (GRFR, 

Yang et al., 2021). In practice, streamflow reanalysis can bridge the data gaps for ungauged and poorly gauged catchments 35 

and provides estimates on a large spatial scale and with sufficient temporal resolution (Lin et al., 2019; Harrigan et al., 2020; 

Yang et al., 2021). For example, the recent GloFAS-ERA5 provides streamflow information at the daily time step and with a 

spatial resolution of 0.1º across the globe (Harrigan et al., 2020). 

The local performance plays a critical part in practical applications of global streamflow reanalysis (Veldkamp et al., 

2018; Munia et al., 2020; Feng et al., 2021). By evaluating global reanalysis against observed streamflow, diagnostic plots 40 

and verification metrics are generated to showcase its local performance (Xie et al., 2019; Gao et al., 2020; Huang et al., 

2022; Cantoni et al., 2022; Zhao et al., 2022a; Han et al., 2023; Liu et al., 2023). In the meantime, hydrological signatures 

derived from reanalysis are compared to those obtained from observed streamflow to facilitate insights into the effectiveness 

of hydrological models (Beck et al., 2017; Chen et al., 2022; Zhao et al., 2022b). For example, the performances of ten Inter-

Sectoral Impact Model Intercomparison Project (ISI-MIP) models are evaluated for low, mean and high flows using five 45 

streamflow percentile series (Chen et al., 2021). Considering limited observation data, streamflow reanalysis can serve as 

reference data to calibrate hydrological models and then the model outputs can be compared to observations to see whether 

practical applications are available (Senent-Aparicio et al., 2021). 

Time series analysis is one of the most important approaches to investigating the performance of hydrological models 

(Saraiva et al., 2021; Manikanta and Vema, 2022; Guo et al., 2022). From the perspective of time series, hydrological 50 

simulations are a combination of the components of periodic motion, trend, seasonality and error, which can be extracted by 

using decomposition approaches (Abebe et al., 2022; Manikanta and Vema, 2022; Xu et al., 2022). As one of the most 

important decomposition approaches, wavelet transform decomposes streamflow into time series of wavelet coefficients 

under certain frequencies (Manikanta and Vema, 2022). Therefore, it allows for multiresolution analysis compared to other 

decomposition approaches (Montoya et al., 2022). Owing to the time-frequency characterization, wavelet-based features of 55 

reanalysis and observed streamflow can be compared in order to zoom into detailed information for multiple time series 

segments (Manikanta and Vema, 2022). If there are errors in the reanalysis at specific timescales or during specific periods, 

the sources of these errors can be identified by the technique of time-frequency characterization (Lane, 2007). 

While global streamflow reanalysis has been evaluated at different spatial scales (Harrigan et al., 2020; Senent-Aparicio 

et al., 2021; Chen et al., 2021), the time series characteristics of streamflow reanalysis in the time-frequency domain are yet 60 
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to be investigated. Meanwhile, it is difficult to interpret the local performance of global streamflow reanalysis across 

different locations (Sichangi et al., 2016; Ghiggi et al., 2019; Tu et al., 2024), let alone the additional interpretation of the 

local performance at different timescales. This paper aims to bridge the gap by presenting a novel evaluation of global 

streamflow reanalysis by combining the discrete wavelet transform (DWT) with machine learning techniques. That is, the 

DWT is employed to exploit streamflow reanalysis in the time-frequency domain; and then the accumulated local effects 65 

(ALEs) are derived by the random forest model to showcase the performance of original time series of reanalysis and its 

decomposed components at different scales. As will be demonstrated in the methods and results, streamflow reanalysis does 

exhibit different local performances at different timescales and the influences of catchment attributes are illustrated. 

 

2 Methods 70 

2.1 Overview of the decomposition approach 

A novel decomposition approach that combines the wavelet transform with machine learning techniques is proposed to 

evaluate global streamflow reanalysis in the time-frequency domain. There are three steps: 

1) Decomposition of time series: the DWT is used to decompose the reanalysis and observed streamflow time series, 

resulting in approximation and detail components at different scales; 75 

2) Verification of decomposed series: the Kling-Gupta Efficiency (KGE), correlation, bias ratio and variability ratio are 

derived to indicate the local performance of original time series, approximation and detail components at various scales. In 

the meantime, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is used to remove 

outliers from the verification metrics; 

3) Influences of catchment attributes: the ALEs derived from the random forest model is employed to elaborate on the 80 

influences of catchment attributes and then identify the driving factors. 

 

2.2 Decomposition of time series 

Both reanalysis and observed streamflow time series are decomposed into approximation and detail components using 

the DWT (Chalise et al., 2023). It is executed by controlling the scaling and shifting factors associated with a mother wavelet 85 

(Nalley et al., 2012). Following Wei et al. (2012), the Daubechies wavelet of order 5 is used to decompose the streamflow 

time series (Talukder et al., 2020): 
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in which q(t) is the time series to be decomposed, m and n are integers that respectively represent the amount of dilation and 

translation of the wavelet, t represents the discrete time and   represents the wavelet basis function (Nalley et al., 2012): 



4 

    2
, 2 2

m

m

m n t t n 


   (2) 

The DWT decomposes a signal into approximation (low-frequency) and detail (high-frequency) coefficients, thereby 90 

separating its frequency components based on magnitude (Quilty and Adamowski, 2021). In the initial decomposition that 

utilizes high-pass and low-pass filters and inverse DWT, the original signal is decomposed into detail component (D1) and 

approximation component (A1). Subsequently, the approximation component (A1) resulting from this initial stage is 

furthermore decomposed into D2 and A2, and so on for successive levels. This process is conducted from high-pass and low-

pass filters followed by a down-sampling operator: 95 

     2 2q t q t   
(3) 

Therefore, streamflow time series is decomposed into the approximation coefficients and detail coefficients (Talukder et al., 

2020): 
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in which cAl[t] is the coefficient of approximation, cDl[t] is the coefficient of detail, the subscript l represents the 

decomposition level, L is the low-pass filter and H is the high-pass filter. The inverse DWT is used to obtain the 

approximation components and detail components (Guo et al., 2022): 100 
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in which IDWT is the inverse DWT, Al is approximation component and Dl is detail component in level l. 

For reanalysis and observed streamflow time series, the decomposition is denoted as: 
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in which dt is the reanalysis, qt is the observed streamflow and lm is the maximum decomposition level. The subscripts d and 

q respectively represent reanalysis and observed streamflow. 

The DWT captures time series information at multiple scales in the time-frequency domain, with each scale 105 

corresponding to a specific period (Joo and Kim, 2015; Manikanta and Vema, 2022). Specifically, the approximation and 

detail components at the decomposition level l correspond to the time scale of 2l days (Nalley et al., 2012). 
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2.3 Verification of decomposed series 

The KGE stands out as a widely used verification metric to evaluate the model performance (Frame et al., 2021; Huang 110 

and Zhao, 2022; Zhao et al., 2022b). It indicates the performance of original time series, approximation and detail 

components. When evaluating the performance of original time series, the KGE is calculated as follows: 

      
2 2 2

1 1 1 1o o o oKGE r          (7) 

As can be seen, the KGEo is comprised of three components, namely, the Pearson correlation coefficient ro, the bias ratio o  

and the variability ratio o : 
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in which   is the mean streamflow and   is the streamflow standard deviation. The subscripts d and q respectively 115 

represent reanalysis and observed streamflow. The KGE ranges from   to 1, with a perfect value of 1. 

To investigate the relationship between reanalysis and observations, it is necessary to extract the corresponding grid cell 

for each hydrometric station. The grid cell in which the hydrometric station is located may not overlap with the simulated 

river network in streamflow reanalysis due to the inaccuracy of the routing module in distributed hydrological model (Chen 

et al., 2021). There are three steps to identify the target cell: firstly, the initial cell is located according to the latitude and 120 

longitude of the hydrometric station; secondly, the KGE between reanalysis and observed streamflow is calculated for the 

initial cell and its eight surrounding cells; and finally, the cell with the largest KGE is used as the target cell (Zhao et al., 

2022b). 

Hydrometric stations with outliers in terms of the KGE, correlation, bias ratio and variability ratio are excluded from 

the investigation, as outliers can deteriorate the performance of machine learning techniques (Lee and Kam, 2023). The 125 

DBSCAN, which is used to remove the outliers of KGE and its three components, offers a distinctive advantage in detecting 

outliers by defining clusters as dense regions separated by sparser areas (Smiti, 2020). This characteristic makes the 

algorithm effective in distinguishing outliers from the main clusters (Li et al., 2022). There are two key parameters in the 

DBSCAN, including the maximum cluster radius (  ) and the minimum number of points (MinPts, Smiti, 2020). Points 

within a distance   are considered part of a dense region, while those with fewer than MinPts neighbors are treated as 130 

outliers (Li et al., 2022). Following the study conducted by Brinkerhoff et al. (2020), the "elbow"-based approach is used to 
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determine the   and the MinPts is set to 5. By setting these parameters, the DBSCAN effectively identifies and isolates 

outliers, preserving the integrity of the main cluster structures (Hauswirth et al., 2021). 

 

2.4 Influences of catchment attributes 135 

The ALEs are derived by the random forest model to showcase the influences of catchment attributes on the 

performance of original time series and its approximation components at different scales. The random forest model is 

employed to establish a predictive relationship between the performance and multiple catchment attributes. This model is 

well-suited to capture complex relationships within the dataset through its ensemble of decision trees, which renders it an 

effective tool for performance prediction (Wei et al., 2023). To implement the model, the data is split into training and 140 

testing sets under the ratio of 75:25 (Naghibi et al., 2017). That is, 75% of catchments are randomly allocated for training 

and the remaining 25% for testing. The random forest model is set up by the training set with the hyperparameters tuned to 

optimize its prediction accuracy (Wei et al., 2023). Afterwards, the model is validated by the testing set and the coefficient of 

determination (R2) is calculated to evaluate its prediction accuracy based on catchment attributes. 

Taking the KGE of original time series as an example, the prediction of the performance of approximation components 145 

for reanalysis using the random forest model is denoted as: 

  pKGE RF X  
(11) 

in which pKGE  is the predicted KGE using the random forest model,  RF  is the random forest model and X is the 

catchment attributes. The R2 between the predicted pKGE  and the calculated KGEo is denoted by: 
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in which   is the mean KGE. The KGEp and KGEo represent the predicted KGE of the random forest model and the 

calculated KGE between reanalysis and observed streamflow, respectively. 150 

The ALEs are used to describe how catchment attributes influence the performance of approximation components at 

various scales for reanalysis based on the random forest model. They illustrate how changes in one input variable impact 

model predictions by analysing the differences within small quantile-based intervals (Stein et al., 2021). An advantage of the 

ALEs is the overcome of the confounding effects of correlated catchment attributes (Stein et al., 2021). The ALE curves 
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reveal whether the association is linear or exhibits more complex patterns (Teng et al., 2022). The uncentered ALE 155 
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in which x is the value of the catchment attribute j, k is one of kj quantiles. By dividing the range of x, nj(k) is the number of x 

that in quantile Nj(k), zk,j is the boundary values of x within that quantile, f is the output of the random forest model and 
 i

jx  

is the values of catchment attribute i except for j. 

The ALE  ,
ˆ

j ALEf x  is derived from uncentered ALE values by subtracting its mean across all quantiles (Konapala et al., 160 

2020): 
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Furthermore, the Local Interpretable Model-agnostic Explanations (LIMEs) elucidate individual predictions made by a 

trained black-box machine learning model (Xiang et al., 2023). The LIMEs are used to identify the dominant catchment 

attribute on performance of approximation components at various scales for each catchment. 

A transformation is applied to the bias and variability ratios of original time series and its approximation components 165 

when investigating the influences of catchment attributes. The bias ratio and variability ratio are transformed as follows 

(Poncelet et al., 2017): 
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in which *  represents the bias ratio after transformation, *  is the variability ratio after transformation. This operation is 

owing to that increases of the values of bias and variability ratios do not necessarily indicate improved performance. After 

the transformation, both 
*  and 

*  take the value of 1 to be maximum value that indicates the best performance. Notably, 170 

this transformation does not affect the ranking of performance among catchments. 

 

3 Case study 

3.1 Streamflow reanalysis 

The GloFAS-ERA5 streamflow reanalysis v2.1 provides valuable hydrological time series forced by the latest global 175 

atmospheric reanalysis ERA5 (Harrigan et al., 2020). Developed jointly by the Joint Research Centre (JRC) of the European 
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Commission, the University of Reading and the ECMWF (Harrigan et al., 2020), this streamflow reanalysis is generated by 

coupling the Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (HTESSEL) land surface model with the 

LISFLOOD hydrological and channel routing model (Alfieri et al., 2020; Harrigan et al., 2020). Specifically, the daily 

surface and subsurface runoff generated by the HTESSEL model are routed using the LISFLOOD model (Harrigan et al., 180 

2020). The GloFAS-ERA5 provides a spatial resolution of 0.1º at a daily time step covering the time period from 1 January 

1979 to near real time (Harrigan et al., 2020). Harrigan et al. (2020) found that the GloFAS-ERA5 streamflow reanalysis 

tends to be skilful across 86% of tested catchments and also noted that there exists considerable variability in the skill, e.g., 

significant positive biases in central United States and Africa. 

 185 

3.2 Observed streamflow 

The observed streamflow is sourced from the Catchment Attributes and Meteorology for Large-sample Studies 

(CAMELS) dataset (Newman et al., 2015; Addor et al., 2017). An advantage of this dataset is the presentation of time series 

from 1980 to 2015 (Addor et al., 2017). There are 671 catchments across the continental United States (CONUS), which 

exhibit diverse hydro-meteorological characteristics. Notably, these catchments are primarily located at headwaters, resulting 190 

in minimal influence from human activities (Stein et al., 2021). In the meantime, the CAMELS provides information on six 

categories of catchment attributes, including climate, geology, topography, soil, vegetation and streamflow indices (Addor et 

al., 2017; Stein et al., 2021). Categorical attributes are not used in the investigation of the influences on model performance 

(Stein et al., 2021). The influences of catchment attributes on performance of streamflow time series characteristics are 

investigated using 38 attributes across five categories: climate, geology, topography, soil and vegetation. 195 

To facilitate the evaluation of streamflow reanalysis, the stations whose data length meets the requirement for the 

decomposition into 10 levels are selected (Nalley et al., 2012). The maximum decomposition level lm is denoted by: 
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in which v represents the number of vanishing moments of the Daubechies wavelet, set to 5, N is the number of data points. 

Specifically, 661 stations with a data length exceeding 9216 days are selected for the investigation. 

 200 

4 Results 

4.1 Approximation and detail components 

The time series of streamflow reanalysis and observation along with their approximation and detail components are 

presented in Figure 1. The plots are for the station 6224000 in which streamflow reanalysis tends to exhibit the highest KGE 
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value of 0.82. The approximation and detail components at the level l correspond to the time scale of 2l days. For example, 205 

A1 and A8 correspond to the periods of 2 and 256 days, respectively. It can be observed that the original time series of 

reanalysis generally captures the primary features of the observed streamflow. Under the stepwise decomposition of the 

streamflow time series, the KGE tends to increase from 0.48 for A1 to 0.62 for A8 and increase from -4.57 for D1 to 0.48 for 

D8. This result indicates that streamflow reanalysis tends to capture seasonal and annual information more effectively than 

daily, weekly and monthly information. At higher decomposition levels, the series of approximation and detail components 210 

becomes smoother owing to the filtering of short-term noises. As the decomposition level increases, the reanalysis becomes 

abler to capture the information in the observation. 
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Figure 1: Time series plots of original time series and its approximation and detail components for the station 6224000. 215 
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The KGEs of approximation and detail components across the CONUS are illustrated in Figure 2. There are 

respectively 554 and 417 catchments for the approximation and detail components after removing the outliers. It can be 

observed that the KGEs of the approximation components tend to increase from A1 to A10 and that by contrast, the KGEs of 

the detail components exhibit considerable fluctuations from D1 to D10. The comparison between the left and right parts of 220 

Figure 2 highlights that the detail components are more difficult to be characterized than the approximation components. 

This outcome is attributable to the presence of environmental noises in the original time series (Freire et al., 2019). Given 

that the KGEs of the detail components can drop below -2.5 in some catchments, the attention is paid to the approximation 

components in the subsequent analysis. 

 225 

 

Figure 2: The KGEs of approximation and detail components across the CONUS. 

 

4.2 Performance across the CONUS 

The KGE values of original time series and its approximation components for the 554 catchments after removing the 230 

outliers are presented in Figure 3. In total, there are 11 spatial plots for original time series and its components after 

decomposition. It can be observed that the original time series tends to exhibit relatively high KGEs in the western United 

States and relatively low KGEs in the central United States. This observation is consistent with those of Addor et al. (2017), 

which found poor performances in the high plains and desert southwest. In the meantime, the approximation components 

from A1 to A10 tend to exhibit high KGEs in the western United States and low KGEs in the central United States. This 235 

finding indicates that the KGE values of approximation components are related to the KGE values of original time series. 

Moreover, as the scale increases from A1 to A10, the performance of approximation components tends to improve. The 

KGEs in the central United States change from negative values in A1 to positive values in A10. That is, seasonal, annual and 

multi-annual features tend to be better represented by streamflow reanalysis than daily, weekly and monthly features. 

 240 
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Figure 3: Spatial distribution of the KGE values of original time series and its approximation components from A1 to A10. 

 

The KGE and its three components for the 554 catchments are illustrated by boxplots in Figure 4. For the KGEs 

between streamflow reanalysis and observations, it can be observed that the local performance of streamflow reanalysis 245 

generally improves from A1 to A7 and then remains promising from A8 to A10. Specifically, the median value of KGE is 

0.02 for A1, 0.09 for A2, 0.19 for A3, 0.24 for A4, 0.29 for A5, 0.36 for A6, 0.47 for A7, 0.43 for A8, 0.42 for A9  and 0.40 

for A10. This trend is due to the correlation ratio tends towards 1 from A1 to A7. In the meantime, it is noted that A7 

exhibits higher KGE than the original time series. This result implies that errors in the original time series primarily stem 

from daily, weekly and monthly components. Focusing on the correlation, the medians of correlation for approximation 250 

components exceed 0.2, implying valuable information in multiple timescales approximations. The bias ratio remains nearly 
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constant at each scale for approximation components. That is, the mean values of approximation components are generally 

similar to the mean values of the original time series. 

 

 255 

 

Figure 4: Boxplots of the KGE and its three components for the original time series and its approximation components 

across 554 catchments in the CONUS. The lines within the boxes mark the median values. The boxes illustrate the 

interquartile range (IQR), where the lower and upper boundaries of the boxes respectively indicate the lower quartile (Q1) 

and upper quartile (Q3). The lower and upper whiskers show the smallest and largest values within the range of Q1-1.5IQR 260 

to Q3+1.5IQR. Dark grey diamonds represent outliers that lie beyond the whiskers. 

 

4.3 Influences of catchment attributes 

The influences of catchment attributes on the KGE and its three components are measured by the mean absolute ALEs 

and illustrated in Figure 5. From the first row, it can be observed that the KGE values of original time series and its 265 

approximation components are primarily influenced by precipitation seasonality. Positive (negative) values of precipitation 

seasonality indicate that precipitation peaks in summer (winter). That is, the season with more precipitation has a significant 
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impact on the KGE. Longitude and mean slope also have a significant impact on the KGE across original time series and 

daily, weekly and monthly features (from A1 to A5). In the meantime, the correlations of annual and multi-annual features 

(from A7 to A10) are mainly affected by the precipitation seasonality, while daily, weekly and monthly features are 270 

influenced by longitude and mean slope of catchment. This result suggests that the influences of catchment attributes on 

correlation of annual and multi-annual features are different from daily, weekly and monthly features. Furthermore, the bias 

ratio is primarily influenced by mean precipitation and the variability ratio is mainly affected by catchment area and depth to 

bedrock. The geology, soils and vegetation appear to have minor impacts on the local performance of global streamflow 

reanalysis. 275 
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Figure 5: The ALEs of the catchment attributes on the KGE, correlation, bias ratio and variability ratio. The color denotes 

the mean absolute values for each ALE curve, which is normalized for each original time series (approximation component). 

The sizes of point represent prediction accuracy indicated by R2 for the random forest model using testing set. The “Original” 280 

represents “original time series”. 

 

To further illustrate how catchment attributes affect the performances of original time series and its approximation 

components, the ALE curves are presented for the three influential attributes of precipitation seasonality, mean precipitation 
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and mean slope of catchment. The influences of precipitation seasonality on the KGE and its three components are presented 285 

in Figure 6. It can be observed that the relationships between the KGE and precipitation seasonality are generally nonlinear. 

The KGE gradually decreases with the increasing precipitation seasonality. That is, the KGE values are notably low when 

precipitation tends to concentrate in summer and turn out to be high when precipitation tends to concentrate in winter. The 

ALE curves of the daily, weekly and monthly features (from A1 to A5) are similar to original time series, reducing towards -

0.5. The seasonal, annual and multi-annual features (from A6 to A10) decrease around 0. In the meantime, the influences of 290 

precipitation seasonality on the correlation, bias and variability ratios are similar to that on the KGE. These results can be 

due to low evaporation in winter that results in reasonable simulations of soil moisture and baseflow processes (Poncelet et 

al., 2017). 

 

  295 

Figure 6: The ALE curves of the relationship between precipitation seasonality and the KGE, correlation, bias ratio and 

variability ratio for original time series and its approximation components. 

 

The influences of mean precipitation on the KGE, correlation, bias ratio and variability ratio across different scales are 

illustrated in Figure 7. The mean precipitation has a positive effect on the KGE of original time series and its approximation 300 

components, with a nonlinear increase of the KGE with rising mean precipitation, particularly for the annual and multi-

annual features. In the meantime, it affects the correlation, bias ratio and variability ratio of original time series positively. 
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This result suggests that mean precipitation tends to have a consistent influences on the KGE, correlation, bias and 

variability ratios for the approximation components. This result can be due to the fact that rainfall-runoff processes are more 

linear in humid catchments than in arid catchments, leading to less variability in hydrologic states and facilitating more 305 

accurate simulations (Parajka et al., 2013). 

 

  

Figure 7: As for Figure 6 but for mean precipitation. 

 310 

The influences of mean slope on the KGE and its three components across different scales are shown in Figure 8. It can 

be observed that there is a nonlinear relationship between the KGE and mean slope of catchment. As the mean slope 

increases, the KGE of original time series and its approximation components tend to increases. This result may be due to the 

mean slope of catchment affecting the simulation of runoff generation and infiltration (Massmann, 2020; Stein et al., 2021). 

It is noted that the KGE values of approximation components gradually increase when the mean slope of catchment 315 

surpasses 150. In particular, the correlation and variability ratio of original time series generally increase with the increase in 

the KGE. That is, the mean slope of catchment has a similar effect on the KGE, correlation and variability ratio. On the other 

hand, bias ratio initially decreases and then increases with the increase of mean slope. In other words, the relationship 

between bias ratio and mean slope of catchment is non-monotonic. 

 320 
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Figure 8: As for Figure 6 but for mean slope. 

 

4.4 Driving factors of each catchment 

The most important attribute that influences the KGE is identified for each catchment by the LIMEs method and then 325 

illustrated by spatial plots in Figure 9. It can be observed that the most important attributes influencing the KGE exhibit 

regional clustering. The KGE of original time series is primarily influenced by precipitation seasonality in the western and 

central United States and by depth to bedrock in the eastern United States (Pfister et al., 2017; Addor et al., 2017). The 

substantial differences in precipitation seasonality between the western and central United States result in significant 

differences in the KGE. On the other hand, the most important attribute controlling the KGE of approximation components is 330 

different from that of original time series. It can be observed that the KGE values of approximation components from A6 to 

A8 are primarily controlled by precipitation seasonality in the eastern United States, while original time series is controlled 

by depth to bedrock. The higher depth to bedrock may exhibit larger storage values, consequently leading to higher baseflow 

(Pfister et al., 2017). In the meantime, the number of catchments controlled by precipitation seasonality tends to increase 

from A1 to A8, with a high proportion observed in A6, A7 and A8. That is, the performance of the annual variability of 335 

streamflow reanalysis is influenced by precipitation seasonality. 
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Figure 9: Spatial patterns of the controlling catchment attribute on the KGE of original time series and approximation 

components for each catchment. For each spatial distribution map, if there are more than five catchment attributes, only the 340 

top five attributes are presented, while the rest are labelled as others. 

 

5 Discussion 

Global streamflow reanalysis provides valuable information for water resources management (Alfieri et al., 2020; 

Harrigan et al., 2020; Yang et al., 2021). Building upon previous studies evaluating the performance of hydrological 345 

signatures derived from reanalysis and observed streamflow (Beck et al., 2017; Chen et al., 2021; Tu et al., 2024), this paper 
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presents a novel evaluation by combining the wavelet transform with machine learning. Specifically, streamflow reanalysis 

and observation are respectively decomposed by the DWT into detail and approximation components at different scales. As a 

result, streamflow characteristics in the time-frequency domain are unravelled by extracting features and removing noise 

from the original signal (Manikanta and Vema, 2022). This approach provides a new perspective by paying attention to the 350 

difference between global streamflow reanalysis and observed streamflow in the time-frequency domain. The KGE generally 

indicates that streamflow reanalysis exhibits a robust capability to capture the information of seasonal, annual and multi-

annual variability, particularly the annual fluctuations. This result suggests that hydrological simulations at daily or even 

hourly timescales are more challenging. 

Hydrological models generally exhibit different performance across different catchments (Newman et al., 2015; O’Neill 355 

et al., 2021; Tu et al., 2024). The differences can be related to heterogeneous streamflow patterns under unique combinations 

of climate and catchment attributes (Stein et al., 2021). Previous studies have found that model performance is related to 

aridity index, with generally better performance in wetter catchments compared to drier ones (Poncelet et al., 2017). In 

addition to aridity index, other factors are also linked to the model performance, such as impact of snow (Newman et al., 

2015), catchment area (Harrigan et al., 2020), precipitation intermittency (Newman et al., 2015) and human activities 360 

(Veldkamp et al., 2018). In this paper, it is found that the KGE values of original time series and approximation components 

are primarily influenced by precipitation seasonality. This outcome can be due to lower evaporation in winter, when the soil 

moisture is higher and baseflow can be better simulated (Poncelet et al., 2017). On the other hand, the relationships between 

KGE and catchment attributes are nonlinear. The results highlight that the wavelet transform can facilitate the evaluation of 

the local performance of global streamflow reanalysis to provide more effective information. 365 

 

6 Conclusions 

This paper has presented a novel decomposition approach to evaluating global streamflow reanalysis by combining the 

widely used wavelet transform and machine learning techniques. Specifically, the reanalysis and observed streamflow are 

decomposed by the DWT and then they are used to indicate the local performance of the time series characteristics in the 370 

time-frequency domain. Furthermore, the influences of catchment attributes on the performance of original time series and 

its approximation components at various scales are investigated using the ALEs. A large-sample test is conducted for the 

CAMELS dataset so as to evaluate the effectiveness of GloFAS streamflow reanalysis. The results show that the streamflow 

reanalysis tends to characterize seasonal, annual and multi-annual variabilities more efficiently than daily, weekly and 

monthly variabilities. Precipitation seasonality is identified to be the most important attribute influencing the KGE of 375 

original time series and its approximation components using the ALEs. The longitude, mean precipitation and mean slope 

also influence the performance of approximation components. On the other hand, the attributes on geology, soils and 

vegetation seem to have a relatively minor influence on the performance of approximation components. Overall, the 
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evaluation of global streamflow reanalysis at different timescales using decomposition approaches provides useful 

information for practical applications of global streamflow reanalysis. 380 
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