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Abstract. This study presents a probabilistic model that partitions the precipitation phase based 

on hourly measurements from a network of radar-based disdrometers in eastern Canada. The 

network consists of 27 meteorological stations located in a boreal climate for the years 2020-

2023. Precipitation phase observations showed a 2-m air temperature interval between 0-4°C 

where probabilities of occurrence of solid, liquid, or mixed precipitation significantly 15 

overlapped. Single-phase precipitation was also found to occur more frequently than mixed-

phase precipitation. Probabilistic phase-guided partitioning (PGP) models of increasing 

complexity using random forest algorithms were developed. The PGP models classified the 

precipitation phase and partitioned the precipitation accordingly into solid and liquid amounts. 

PGP_basic is based on 2-m air temperature and site elevation, while PGP_hydromet integrates 20 

relative humidity. PGP_full includes all the above data plus atmospheric reanalysis data. The 

PGP models were compared to benchmark precipitation phase partitioning methods. These 

included a single temperature threshold model set at 1.5°C, a linear transition model with dual 

temperature thresholds of –0.38 and 5°C, and a psychrometric balance model. Among the 

benchmark models, the single temperature threshold had the best classification performance (F1 25 

score of 0.74) due to a low count of mixed-phase events. The other benchmark models tended to 

over-predict mixed-phase precipitation in order to decrease partitioning error. All PGP models 

showed significant phase classification improvement by reproducing the observed overlapping 

precipitation phases based on 2-m air temperature. PGP_hydromet and PGP_full displayed the 

best classification performance (F1 score of 0.84). In terms of partitioning error, PGP_full had 30 

the lowest RMSE (0.27 mm) and the least variability in performance. The RMSE of the single 

temperature threshold model was the highest (0.40 mm) and showed the greatest performance 

variability. An input variable importance analysis revealed that the additional data used in the 

more complex PGP models mainly improved mixed-phase precipitation prediction. The 

improvement of mixed-phase prediction remains a challenge. Relative humidity was deemed the 35 

least important input variable used, due to consistent near water vapor saturation conditions. 
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Additionally, the reanalysis atmospheric data proved to be an important factor to increase the 

robustness of the partitioning process. This study establishes a basis for integrating automated 

phase observations into a hydrometeorological observation network and developing probabilistic 

precipitation phase models.  40 

1 Introduction 

Precipitation phase is a critical component in hydrological modelling. Simply put, the 

hydrological effect following either a snowfall or rainfall event are drastically different; snowfall 

accumulates in winter and melts later in the spring or during winter melt events, while rain can 

either infiltrate or become runoff, potentially increasing streamflow in the short term. The 45 

precipitation phase also affects snowpack characteristics in different ways; a rain-on-snow event 

infiltrates the snowpack, increasing its liquid water content, and can create ice layers and change 

the snowpack internal characteristics (Singh et al., 1997; Wever et al., 2016), while snowfall 

increases the depth of the snowpack. During individual precipitation events, errors in snowpack 

water equivalent (SWE) and depth are mainly caused by errors in precipitation partitioning 50 

(Leroux et al., 2023). On a seasonal basis, the precipitation phase significantly affects the 

ablation of the snowpack, particularly due to its impact on the snow albedo (Essery et al., 2013; 

Günther et al., 2019). As such, the cumulative effects of misclassified precipitation have a 

significant impact on various seasonal values such as peak SWE, peak discharge date, and snow 

cover duration  (Harder and Pomeroy, 2014).  55 

As the climate warms, regions that typically experience winter snowfall are expected to face 

more rainfall in their winter precipitation, resulting in more rain-on-snow events (Jeong and 

Sushama, 2018; Ye et al., 2008; Musselman et al., 2018). Consequently, the proportion of runoff 

caused by rain-on-snow events during the winter is projected to increase in these regions (Jeong 

and Sushama, 2018; Musselman et al., 2018). Effective precipitation partitioning methods are 60 

more important than ever to anticipate potentially damaging events and to monitor water 

resources at the catchment scale. This need is also felt for field monitoring of precipitation 

quantities. Indeed, solid precipitation is much more sensitive to undercatch (underestimation due 

to the wind moving hydrometeors away from the gauge) than liquid precipitation (Rasmussen et 

al., 2012). Consequently, an inaccurate measurement of the phase necessarily translates into an 65 

erroneous estimation of the precipitation quantity. 

The modelling of the precipitation phase in operational hydrological models is often based on a 

single near-surface air temperature threshold (Harpold et al., 2017). While simple to implement, 

this method cannot predict mixed precipitation events, which tend to occur when falling 

hydrometeors of different sizes coexist and melt at different rates (Thériault and Stewart, 2010). 70 

As an alternative to the single-threshold approach, one can use a linear relationship to account 
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for mixed-phase precipitation events while occurring between those two thresholds. 

Furthermore, these type of methods can be refined into curvilinear functions, which would 

theoretically yield to a more accurate phase identification, but using more computation resources 

(Feiccabrino et al., 2013). In both cases, the classification error is reduced when compared to the 75 

single threshold approach (Feiccabrino et al., 2013; Wen et al., 2013). The advantage of using 

temperature threshold-based models comes mainly from a data availability and computational 

requirement standpoint. Variables other than air temperature are known to influence the 

precipitation phase, such as relative humidity and atmospheric pressure (Behrangi et al., 2018; 

Dai, 2008; Jennings et al., 2018). Thus, precipitation partitioning models can be improved by 80 

using dew point temperature (e.g. Marks et al., 2013; Ye et al., 2013) or wet bulb temperature 

(e.g. Ding et al., 2014; Wang et al., 2019; Behrangi et al., 2018) instead of relying solely on air 

temperature, increasing the spatial robustness of such models.  

Phase partitioning models tend to rely on near-surface hydrometeorological variables because 

this information is easily accessible. However, the hydrometeor’s initial phase as it leaves the 85 

cloud, the shape and size distribution of the droplets, and the properties of the atmosphere from 

the cloud to the ground all determine the precipitation phase (Feiccabrino et al., 2015). As it 

falls, the hydrometeor exchanges latent and sensible heat with its surroundings, linking its phase 

to the temperature and vapour deficit as they fall through the atmosphere. Additionally, both heat 

fluxes are also affected by the ventilation of the hydrometeor, which depends on its fall speed 90 

and the surrounding wind velocities (Stewart, 1992).  

Atmospheric temperature gradients can vary with time, so the thickness of the melting 

atmospheric layer is also a key variable to consider, as it affects the time the hydrometeor spends 

in conditions favourable to melting. Empirical models approximate this layer thickness by 

computing the height difference between two selected pressure levels (Feiccabrino et al., 2015). 95 

Precipitation rates can also increase the energy required to melt hydrometeors. Indeed, at high 

precipitation rates, there is a larger volume to melt, thus increasing the likelihood of solid 

precipitation at warmer temperatures (Froidurot et al., 2014; Thériault and Stewart, 2010). 

Therefore, by accounting for the characteristics of the atmospheric layer, microphysical models 

can determine the precipitation phase of falling hydrometeors (Thériault and Stewart, 2010). 100 

Other models are instead based on the statistical relationship between the hydrometeorological 

variables and the precipitation phase. Such models compute the probability of a precipitation 

phase occurring considering a set of environmental conditions.  

The methodology for calculating the probability of phase occurrence varies across studies and 

includes, for example, a curvilinear function (Dai, 2008), logistic regression (Behrangi et al., 105 

2018; Froidurot et al., 2014; Jennings et al., 2018), and machine learning algorithms (Shin et al., 

2022). Therefore, these methods output a precipitation type rather than a fraction of solid and 
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liquid precipitation, in the case of dual threshold models. However, the use of these methods is 

limited when dealing with mixed-phase precipitation, as they do not provide information on how 

the precipitation is partitioned. Fortunately, mixed-phase events are less common than single-110 

phase events (Dai, 2008) and are thus often omitted from studies using probabilistic methods. 

In addition to selecting the appropriate variables to include in a phase partitioning model, the 

quality and availability of the validation dataset is a critical aspect to consider. Indeed, the 

scarcity of validation data was cited by Harpold et al. (2017) as a major factor hindering the 

development of phase partitioning models. Direct manual phase observations collected from 115 

trained observers have been used to validate precipitation partitioning models (e.g. Behrangi et 

al., 2018; Dai, 2008; Froidurot et al., 2014; Jennings et al., 2018). Jennings et al. (2023) have 

also shown the possibility of using crowd-sourced precipitation phase data. While such datasets 

are extensive in time and space, they do not provide quantitative information on the snow and 

rain fractions in mixed-phase events, thus limiting the possible predicted precipitation phases to 120 

either solid or liquid.  

High-frequency automatic measurements do not suffer from limitations caused by mixed-phase 

precipitation (Froidurot et al., 2014; Harpold et al., 2017). One possible validation approach 

based on automatic data is to use precipitation measurements collocated with snow cover height 

measurements  (Harder and Pomeroy, 2013; Marks et al., 2013). A more direct automatic 125 

approach is to use a disdrometer, which identifies the phase of the hydrometeor according to its 

size and falling speed. For instance, Wayand et al. (2016) utilized a disdrometer to associate 

precipitation phase with precipitation amounts, which helped evaluate multiple phase models. 

This combination of observations not only allows for the validation of a phase model, but also 

addresses a major limitation of previous studies, namely the partitioning of precipitation in the 130 

case of mixed-phase events. Another important factor to consider is the time step of the 

validation data. While many conceptual hydrological models employ daily timesteps to 

determine precipitation phase, sub-daily time steps greatly enhance the accuracy of modelled 

phase (Feiccabrino, 2020; Harder and Pomeroy, 2013). Therefore, it is necessary to use sub-daily 

time steps, such as 15 minutes or hourly, as a significant portion of the phase model’s 135 

performance depends on the time step of interest. 

There are many ways to improve the representation of the precipitation phase for hydrological 

purposes. As pointed out in Harpold et al. (2017), the often too simple phase models need more 

hydrometeorological observations for a successful partitioning of the precipitation phase. Such 

observations include the relative humidity, as well as atmospheric information, like the 140 

temperature and humidity lapse rate. Additionally, an important research limitation comes from 

the lack of validation data. Direct observations, while commonly utilized, have limited 

application for mixed phase precipitation due to their qualitative nature. A preferable solution 
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involves automated phase observations, as they enable the coupling with precipitation rate 

measurements. Additionally, direct phase observations datasets indicate the existence of a 145 

temperature transition zone, where both snow and rain are possible. This highlights the 

limitations of simplistic phase models that fail to capture the complex nature of phase 

determination. 

This study leverages a unique regional-scale radar disdrometer network coupled with 

precipitation observations to develop a probabilistic phase partitioning model. The probabilistic 150 

model follows a phase-guided partitioning (PGP) in the form of a chain of random forest models. 

The precipitation phase is classified before partitioning to accurately replicate its intricate 

behavior and to take advantage of the significant amount of validation data available through 

such a network. Additionally, multiple PGP models with lower data requirements are developed 

to evaluate the possibility of utilizing such models in practical operations. This study begins with 155 

a description of the precipitation dataset and hydrometeorological variables used, followed by 

the methodology used to develop the PGP models. Finally, the results section presents an 

analysis of the dataset and evaluates the model’s phase classification and partitioning 

performance, comparing it to benchmark models of differing levels of complexity. 

2 Data 160 

2.1 Surface hydrometeorological measurements 

The disdrometer network used for this study was deployed on the north shore of the St. Lawrence 

River in the province of Quebec, Canada (Figure 1). It is part of a larger hydrometeorological 

observation network operated by Hydro-Quebec, a public utility responsible for the generation 

and distribution of electricity in Quebec. The network lies between latitudes 47.23 and 52.13 °N, 165 

and longitudes 63.17 to 75.29° W, spanning an area of roughly 1,138,00 km2. The 27 stations 

have been in operation for varying periods of time between the years 2019 and 2023, totaling 80 

site-years. The sites’ elevation ranges from 315 to 641 m above sea level (ASL), for an average 

of 469 m ASL. The names, coordinates, and operational timeframes for each station are 

presented in the Appendix A.  170 

The sites have a mean annual 2-m air temperature of 0.2°C and a mean annual cumulative 

precipitation of 902 mm, calculated from 160 site-years of daily observations. Figure 2 illustrates 

the distribution of annual mean daily 2-m air temperature and precipitation, as well as the 

elevation of the sites. The annual precipitation decreases with latitude, as the northern sites (>51° 

N) experience an annual mean of 813 mm. The southernmost sites (<48° N) see significantly 175 

more precipitation, with an annual mean of 1002 mm. The sites follow a mostly normal 

distribution in the 400 m range between sites, with elevations generally increasing northward. 

Following Köppen climate classification, the sites are nearly evenly split between humid 
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continental (Dfb) and humid subarctic (Dfc) climates. The study period spans from October 1 to 

June 1 of the following year, as the chances of snowfall are practically non-existent outside of 180 

these dates for the domain of interest. 

 

Figure 1: Location of the study sites in eastern Canada. The black square in the top left inset corresponds to 

the map domain. 

Each site is equipped with a radar-based disdrometer (model WS100, Lufft), providing 15-min 185 

phase observations. The WS100 is a K-band (24 GHz) Doppler radar that classifies droplets into 

11 size classes between 0.3 and 5.0 mm. The disdrometer assigns World Meteorological 

Organization (SYNOP WaWa code) weather codes for no precipitation (code 0), rain (code 60), 

freezing rain (code 67), mix of snow and rain or drizzle (code 69), and snowfall (code 70). The 

precipitation phase is identified according to the hydrometeor diameter-fall velocity 190 

relationships for water droplets outlined in Gunn and Kinzer (1949), as well as in Locatelli and 

Hobbs (1974) for solid-phase precipitation particles. Rain and snow falling velocity as a function 

of measured reflectivity from K-band Doppler radar was investigated in Atlas et al. (1973) and 

remains an area of active research (e.g. Garcia-Benadi et al., 2020; Kneifel et al., 2011; Löffler-

Mang et al., 1999; Sarkar et al., 2015). In addition, each site also provides measurements of SWE 195 

using a passive gamma ray monitoring system (model CS725, Campbell Scientific) and snow 

depth using an ultrasonic sensor (SD, model SR50A, Campbell Scientific).   
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Figure 2: Distributions of the (a) annual mean temperature, (b) annual mean precipitation and (c) elevation at 

the study sites. 200 

The meteorological observations in this study are from weather stations near the disdrometer 

stations, operated by Hydro-Quebec and SOPFEU, the province’s wildfire prevention 

organisation. The weather stations provide 15-min accumulated precipitation (model Pluvio2 by 

OTT, equipped with a single-Alter shield), allowing the coupling of precipitation with 

concurrent disdrometer phase identification. The weather stations measure hourly air 205 

temperature (model CS109, Campbell Scientific) and relative humidity (model HMP155a, 

Campbell Scientific) sensors mounted at 2 m above ground level. Additionally, wind speed and 

direction are monitored at a 15-min interval with a ground propeller anemometer (model 05103, 

Young) mounted 2 m and 10 m above the ground surface.  

Most of the study sites and weather stations are located in close proximity to each other. 210 

Specifically, 67% of the study sites are within 3 km of or collocated with the nearest weather 

station. The remaining stations are between a median distance of 7 km and a maximum distance 

of 12 km. The only exception is the AUXLOUPS station and the nearest weather station, which 

are separated by 28 km. To account for the elevation differences between the study sites and 

weather stations, the air temperature measurements were adjusted using international standard 215 

atmosphere methods. The discussion section will address the uncertainty related to the distance 
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between the study site and the weather station. The temporal resolution and detailed 

specifications about the study sites’ instruments are provided in  

 

Table 1.  220 

 

Table 1: Study site instruments details. 

Model, 

manufacturer 

Temporal 

resolution 

Observation Specifications 

WS100, Lufft 15 min Precipitation 

phase 

See section 3.1 and Appendix B. 

Pluvio2, OTT 15 min Precipitation rate Resolution: 0.1 mm 

Accuracy: ±0.05 mm 

CS109, Campbell 

Scientific 

60 min Near-surface air 

temperature 

Accuracy: ±0.2°C (from 0°C to 

70°C), increasing to ±0.5°C at 

−50°C 

HMP155a, 

Campbell 

Scientific 

60 min Near-surface 

relative humidity 

Accuracy: ±(1.0 + 0.008 × 

reading) % RH (from −20°C to 

40°C) 

05103, R.M. 

Young 

15 min Wind speed 2 m 

above ground 

Wind speed threshold: 1.0 m s–1 

Accuracy: ±0.3 m s−1 

SR50A, Campbell 

Scientific 

60 min Snowpack depth Resolution: 0.25 mm 

Accuracy: ±1 cm or 0.4% of 

distance to target 

CS725, Campbell 

Scientific 

6 h Snowpack SWE Resolution: 1 mm 

Accuracy: ±15 mm (from 0 mm 

to 300 mm) 

 

2.2 Reanalysis products 

Hourly atmospheric data from the ECMWF-ERA5 reanalysis (Hersbach, 2023) are added to this 225 

study’s dataset, to account for the energy transfer to falling hydrometeors in the atmosphere 

closest to the surface. Furthermore, this will help assessing the potential performance gain of 

incorporating gridded data, despite the spatial scale discrepancy with local observational data. 

The added data include temperature profiles for pressure levels of 1000 and 850 hPa. The 

corresponding geopotential height of these levels is also added to the dataset. The values from 230 

the nearest 0.25° × 0.25° grid cell, roughly 28 km × 18 km at the study sites’ latitude, are assigned 
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to every study site. Additionally, the hourly surface atmospheric pressure from ERA5-Land 

(Muñoz Sabater, 2019) is added to the dataset, as it was not measured at the weather stations 

used in this study. The atmospheric pressure from the nearest 9 km × 9 km grid space is assigned 

to every study site. From this data, the thickness Δ𝑧 between the 1000 and 850 hPa layers (m) is 235 

calculated with: 

Δ𝑧 =
𝑧 − 𝑧

𝑔
(1) 

Where 𝑧  and 𝑧  correspond to the geopotential heights (m2 s−2) at the top and bottom of 

the layer, and 𝑔 is the gravitational acceleration (9.81 m s−2). The layer thickness between the 

two pressure levels is correlated with the mean temperature of the layer and indicates the travel 240 

time of the hydrometeor in the air column. It is also a commonly used variable in operational 

meteorological models (Feiccabrino et al., 2015). The pressure levels were selected based on 

their successful use in the classification of the precipitation phase at the surface in prior studies 

(e.g. Bourgouin, 2000; Shin et al., 2022). The temperature lapse rate 𝛤  (°C km−1) is also 

calculated: 245 

𝛤 = −
Δ𝑇

Δ𝑧
× 1000 (2) 

Where Δ𝑇 correspond to the temperature difference between the 850 and 100 hPa layers (°C).  

3 Methodology 

3.1 Precipitation data processing 

The observed 15-min precipitation amounts were compiled at the hourly timestep. Each 15 min 250 

precipitation data segment was coupled with a disdrometer phase identification. Both valid, non-

zero values were required for the data segment to be included in the analysis. A first filter was 

applied, where hourly precipitations rates < 0.2 mm h–1 were considered erroneous trace 

amounts, following Environment and Climate Change Canada methodology (ECCC, 2024; 

Chartrand et al., 2023; Marinier et al., 2023). A second filter was also applied where 255 

precipitations rates > 110 mm h–1 were considered erroneous (Smith et al., 2022). A neutral 

aggregating filter (Ross et al., 2020) was then applied to eliminate noise and diurnal oscillations 

to the precipitation data. Additionally, hourly precipitation exceeding 30 mm h−1 was visually 

inspected. Any data not consistent with nearby stations was considered invalid. 

The disdrometers used in this study can identify freezing rain and a mix of rain and snow in 260 

addition to snow and rain. However, as most hydrological models only interpret the effect of 

snow and rain, this study focuses on the prediction of solid and liquid precipitation. Therefore, 

the disdrometer identifications of freezing rain and of mix of snow and rain/drizzle were 
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aggregated with snow and rain events, respectively. The selected phase aggregation aims to 

group the phases that are most similar in terms of hydrological influence and average occurring 265 

temperature. These assumptions are supported by an analysis of the effect of each precipitation 

phase on the snowpack properties (height and snow water equivalent), as detailed in Appendix 

B.  

When solid precipitation was identified, the universal transfer functions of Kochendorfer et al. 

(2017) were applied to adjust for wind-induced gauge undercatch. To do so, local hourly wind 270 

speed and temperature measurements at gauge height were used, which were shown to provide 

appropriate corrections for sites in boreal climates (Pierre et al., 2019). The solid and liquid 15-

min precipitation were then compiled at hourly time steps and partitioned into liquid and solid 

precipitation fractions, totaling 44,790 data points. The resulting phase partitioning was used to 

classify the phase of each precipitation event as solid, liquid, or mixed, with respective dataset 275 

proportions of 71%, 22% and 7%. 

 

Figure 3: Hourly event counts of (a) the main precipitation phase identified by the disdrometers and (b) the 

aggregated precipitation phases according to the 2-m air temperature. 

Figure 3 shows that the aggregation mainly affects mixed and liquid precipitation, and that the 280 

aggregation of very few freezing rain events with snow events results in solid precipitation 

counts being similar to snowfall counts. The aggregation of the mix of snow and rain/drizzle 

with rain results in an increase in liquid precipitation in the 0-5°C range. Mixed-phase 

precipitation occurs in the same air temperature range as that of mix of snow and rain/drizzle, 

suggesting that this phase is often present in mixed-phase precipitation, thus validating the 285 

aggregation. A cursory analysis of the mixed-phase precipitation events revealed that events 
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with a phase transition between snow and mix of snow and rain/drizzle account for roughly 75% 

of the mixed-phase events. Transitions from rain to snow are infrequent and represent roughly 

15% of the mixed-phase precipitation events, while the remainder includes other phase 

combinations. 290 

3.2 Model performance evaluation 

The models presented in this study are evaluated for their ability to correctly predict the 

precipitation phase using a variety of performance metrics. First, the metrics used to quantify 

the predictive ability of the models are the precision (PRE) and the recall (REC), as well as the 

F1 score. The combination of precision and recall is commonly used to evaluate model 295 

classification performance, as the metrics indicate different information. The precision indicates 

the proportion of correct predictions for a given phase, while the recall indicates the hit rate for 

a given phase. Consequently, model precision and recall are inversely proportional. Therefore, 

a model that achieves good performance in both metrics is desirable.  

𝑃𝑅𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3) 300 

 

𝑅𝐸𝐶 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4) 

 

Where 𝑇𝑃, 𝐹𝑁, 𝐹𝑃 are the true positive, false negative and false positive counts respectively for 

a given phase. The F1 score, being the harmonic mean of the precision and recall, is a useful 305 

metric to quantify the general performance of the model, as it harshly penalizes a poor score in 

either metric.  

 

𝐹1 = 2
𝑃𝑅𝐸 × 𝑅𝐸𝐶

𝑃𝑅𝐸 + 𝑅𝐸𝐶
(5) 

 310 

These metrics are computed for each precipitation phase separately. A general score is also 

computed by weighing each phase’s score according to its proportion in the dataset. As such, the 

weighted F1 score is used as a general classification performance metric, as it combines both 

precision and recall, and harshly penalizes a poor score in either of them while also considering 

the dataset imbalance. 315 

 

Second, the model partitioning performance model are evaluated based on the predicted solid 

and liquid precipitation amounts. The metrics used are the coefficient of determination R2 and 

the RMSE. Due to the slightly asymmetric phase distribution and overlap between the phases 

shown in Figure 3, different R2 are calculated for the solid and liquid precipitation. Thereby, the 320 
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metrics are calculated on the phase-separated precipitation rather than on the precipitation 

fraction, as the precipitation phase could be solid, liquid or mixed for a given temperature. 

However, the RMSE is only calculated for the solid precipitation, as the score would be equal 

for both solid and liquid precipitation. In other words, the RMSE amounts to the root mean 

squared misclassified precipitation. 325 

Finally, the partitioning performance metrics are performed on different subsets of the dataset 

using a K-fold method. The K-fold validation method is commonly used to assess the variability 

of model performance with machine learning methods. By using different subsets of the dataset 

to train and validate the model K times, a more general performance can be assessed.  Because 

of the fewer liquid and mixed precipitation events compared to solid precipitation events, the K-330 

Fold is also stratified to maintain phase proportions between training and validation sets from 

fold to fold. As such, in the case of the partitioning validation, the variability of the precipitation 

amounts from fold to fold must be considered. The performance metrics are repeated until the 

variance of the partitioning performance metrics stabilizes. In this case, the validation was 

performed with 5-fold validation and was repeated six times for a total of 30 validation folds.  335 

3.3 Phase-guided probabilistic precipitation phase model 

Machine learning algorithms are powerful tools for building classification and regression 

models. Random forests (Breiman, 2001) are commonly utilized in the environmental sciences 

due to their simple implementation and lower susceptibility to overfitting compared to other 

models. The model is based on decision trees, where variables are randomly chosen at each node 340 

to create a prediction. Therefore, the decision trees, each unique due to randomness, provide 

predictions that are ultimately aggregated to generate a final well-informed prediction.  

Given the overlapping phases of the data set, a Random Forest (RF) classifier is used to predict 

the precipitation phase with a probabilistic approach. The procedure to develop the RF model is 

illustrated in Figure 4. To address the phase type imbalance, the data were adjusted by 345 

undersampling the solid phase and increasing the weight of both liquid and mixed precipitation 

phases in the dataset. To achieve this, only data points with air temperatures between –4 and 8°C 

were kept in the analysis. The phase proportions resulting from the undersampling are 60% solid, 

26% liquid and 14% mixed. The data were then split using an 80/20 ratio between the training 

and validation sets respectively, resulting in 13,339 data points for training and 3,335 for 350 

validation. Because solid precipitation events make up most of the samples, the training and 

validation sets were stratified to maintain the same phase distribution between the two subsets. 

Hyperparameters were optimized on the training set to increase the model performance and 

reduce the chance of overfitting by using a stratified 5-fold cross validation and maximizing for 
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a weighted F1 score. The RF classifier was then retrained on the entire training data set and was 355 

ready for use on the validation set.  

Phase-stratified separation of dataset and solid phase 
undersampling

Study site data:
- Precipitation phase
- Phase fraction

Training set (80% of dataset)

Hyperparameter 
optimization

Train model with 
optimized 

parameters

Validation set (20% of dataset)

Model validation

Study site data:
- Temperature
- Relative humidity
- Precipitation 
- Elevation

Reanalysis data:
- Atmospheric pressure
- Temperature lapse rate
- 1000-850 hPa layer

Input variables Output variables

 

Figure 4: Development and validation methodology for the Phase-Guided-Partitioning model. 

While the precipitation partitioning is straightforward when the predicted phase is either solid 

or liquid phase, it is less so for predicted mixed phase, where a solid and liquid precipitation 360 

fraction must be assigned. Thus, in the case of a predicted mixed phase, an RF regression model 

is developed following the same steps described above. The loss function used to optimize the 

regression model parameters is the mean-squared error (MSE), to increase the penalty on larger 

errors. The Phase-Guided-Partitioning model predicts a precipitation phase, as well as a solid 

and liquid precipitation partitioning according to the predicted phase, with the complete process 365 

illustrated in Figure 5. 
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Figure 5: Phase-Guided-Partitioning model structure. 

Multiple PGP models using a combination of atmospheric variables were developed. The subsets 

of input variables of the PGP models accommodate different levels of data availability, ranging 370 

from the strictest minimum data requirements (e.g., in an operational context) to atmospheric 

variables, with each subset fully incorporating the previous subsets (see Table 2). This approach 

will help to quantify the impact of some atmospheric variables that are not measured at surface 

weather stations. The simplest model, PGP_basic, includes only 2-m air temperature and site 

elevation. Next, PGP_hydromet includes all related near-surface hydrometeorological data, such 375 

as relative humidity, atmospheric pressure, and precipitation rate. Finally, the PGP_full model, 

as discussed in the previous sections, incorporates atmospheric data from reanalysis, specifically 

the thickness of the 1000-850 hPa layer and temperature lapse rate. 

Table 2: Listing of the input variables used in the tested PGP models. 

PGP model Input variables 

PGP_basic 2-m air temperature, elevation 

PGP_hydromet 2-m air temperature, elevation, relative humidity, atmospheric pressure, 

precipitation rate 

PGP_full 2-m air temperature, elevation, relative humidity, atmospheric pressure, 

precipitation rate, 1000-850 hPa layer thickness, temperature lapse rate 

 380 
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3.4 Benchmark phase partitioning models 

The benchmark models used for this study are common methods of increasing complexity found 

in hydrological models. First, a single 2-m air temperature threshold (ST) model is used as a 

baseline comparison. This model separates precipitation into solid and liquid phases based on a 

calibrated air-temperature threshold. While this type of model is widely used, it is generally 385 

associated with larger partitioning errors on a seasonal basis (Harpold et al., 2017). Second, a 

linear transition (LT) model is used. It allows for mixed-phase precipitation, while still being of 

low complexity. LT partitions the solid and liquid precipitation according to a linear relationship 

between a snow and rain temperature threshold. Finally, the psychrometric energy balance (PB) 

model is used, which is a physically based phase partitioning method that integrates the relative 390 

humidity to estimate the hydrometeor temperature (Harder and Pomeroy, 2013). The estimated 

hydrometeor temperature is then used as an input in a two-parameter curvilinear relationship. 

All three benchmark models are calibrated individually with the least squares method, 

minimizing the error with the observed solid-phase fractions. The models and their calibrated 

values are given in Appendix C. The precipitation phase can then be inferred from the predicted 395 

fractions. Probabilistic models from previous studies (e.g. Behrangi et al., 2018; Jennings et al., 

2018), were not included as benchmark models as the omission of mixed-phase events in such 

studies makes it difficult to compare the results. 

3.5 Input variable importance analysis 

A common way to interpret input variable importance for a machine learning model is to use 400 

permutation importance, which helps decreasing the black-box aspect of machine learning 

algorithms (Mcgovern et al., 2019). The performance of the model is computed according to a 

chosen scoring scheme. Each variable of the model is then shuffled individually. The goal of this 

step is to break the relationship between a variable and the desired prediction. After each shuffle, 

a performance score is calculated to show the decrease in model performance. This process is 405 

then repeated several times to account for data variability. Thus, the relative importance of each 

input variable to the model can be quantified with the resulting performance decrease. 

Permutation importance analysis provides only the importance of an input variable to the model, 

not the inherent information provided by that variable. However, when shuffling a variable that 

is highly correlated to another, the model can still find the shuffled variable’s information when 410 

performing permutation importance analysis. In practice, this is an important consideration as it 

means the importance of either, or both, input variables can be lower. This analysis offers insight 

into the crucial variables for the PGP models and how they can be further improved. 
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4 Results 

4.1 Dataset analysis 415 

The distribution of the hydrometeorological variables categorized by precipitation phase are 

displayed in Figure 6. The temperature distributions show a significant overlap between all three 

phases from 1.5 to 3.6°C, similar to that reported in Jennings et al. (2023). Mixed precipitation 

probability peaks at approximately 2.4°C. The distribution of relative humidity reveals that 

precipitation is associated with near liquid water vapor saturation conditions, with a median 420 

value of 97%, regardless of the precipitation phase. The mean precipitation rate is generally low, 

at 0.9 mm h–1. The median precipitation rate for mixed-phase events is generally the highest at 

0.8 mm h–1, followed by liquid-phase events at 0.7 mm h–1 and solid-phase events at 0.6 mm h−1. 

Atmospheric pressure distributions are similar for both liquid and mixed-phase precipitation 

events. The mean air pressure during the solid precipitation events is comparable to that of the 425 

other phases, but there are more events between 90 and 92 kPa. The distribution for the thickness 

of the 1000-850 hPa layer closely mirrors that of air temperature, given their general correlation. 

The temperature lapse rate averages 4.9°C km–1 and distributions, especially solid precipitation, 

show a bias toward the standard atmospheric lapse rate of 6.5°C km–1. 

The overlap of the phase distributions for each input variable, most notably the air temperature, 430 

indicates that a probabilistic approach is appropriate for predicting the precipitation phase. 

Indeed, between approximately 0 and 4°C, solid and liquid precipitation may occur separately 

or coexist. According to findings in previous studies, precipitation over land is more likely to 

occur in a single phase than in mixed phase precipitation (Dai, 2008; Froidurot et al., 2014), as 

is the case in this study, where only 13% of the precipitation data points are mixed phase. There 435 

is, however, a narrow 2-m air temperature range, between 2 and 2.5°C, where mixed-phase 

probability exceeds the probability of single-phase precipitation. An appropriate phase 

partitioning model must thus accurately predict the phase in the temperature interval where solid, 

liquid, and mixed precipitation occurrences overlap while also providing accurate partitioning 

when needed. 440 
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Figure 6: Input distributions separated by phase of (a) 2-m air temperature, (b) relative humidity, (c) 

atmospheric pressure, (d) precipitation rate, (e) 1000-850 hPa layer thickness, (f) air temperature lapse rate. 

4.2 Phase classification 

Figure 7 shows the phase density distribution of the benchmark models and the PGP models. 445 

The phase density distributions show the limitations of benchmark phase partitioning models, 

namely that the mixed phase is absent or overrepresented compared to the observations. Due to 

the relationships used to create the benchmark models, the overlap between all three phases is 

not accurately represented. By including relative humidity, PB can model phase overlap, but this 

does not improve the modelled phase distributions density with respect to the observations. The 450 

PGP models reproduce the observed phase overlap well, but slightly overpredict the mixed 

phase, affecting both the solid and liquid-phase predictions. PGP_basic overpredicts the most 

the mixed phase, while the difference between PGP_hydromet and PGP_full is marginal. This 

result suggests possible improvements to PGP models, particularly for mixed-phase 

precipitation.  455 
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Figure 7: Modelled phase distributions according to 2-m temperature of the (a) single threshold, (b) PGP_basic, 

(c) linear transition, (d) PGP_hydromet, (e) psychometric balance and (f) PGP_full. PGP model details are 

summarized in Table 2. 460 

The classification scores of the various models in Table 3 were weighted to reflect the 

precipitation phase proportions in the dataset and reveal insightful performance patterns. ST 

performs well in all three metrics due to the low likelihood of mixed phase occurrence. When 

evaluating the overall classification performance using the F1 score, LT follows ST because of 

a disparity between precision and recall that affects its F1 score. The lower recall score for LT 465 

can be attributed to its overprediction of the less frequent mixed phase, which, in turn, negatively 

affects the recall of other phases. This enhances the model’s weighted precision by decreasing 

the number of false positives in non-mixed-phase prediction. The same reasoning can be more 

extensively applied to PB’s weighted scores. The mixed phase’s overlap with other phases 

significantly decreases the model’s overall recall. Finally, the weighted F1 score for the PGP 470 

models shows that they have a more robust general performance, as they have high weighted 

precision and recall scores, while having a small disparity between both scores. 
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Table 3: Weighted classification scores for Single Threshold (ST), Linear Transition (LT), Psychrometric 

Balance (PB) and Phase-Guided Partitioning PGP models. PGP model details are summarized in Table 2. 475 

Model F1 Precision Recall 

ST 0.74 0.71 0.79 

LT 0.71 0.88 0.66 

PB 0.31 0.88 0.30 

PGP_basic 0.82 0.86 0.80 

PGP_hydromet 0.84 0.85 0.83 

PGP_full 0.84 0.84 0.84 

 

The phase-separated classification metrics provide further insight into the performance of the 

models, shown in Figure 8. The F1 score provides an overall performance for each phase 

prediction. PGP_full has the best F1 scores for both the solid and liquid phases, while 

PGP_hydromet has a higher F1 for the mixed phase. PGP_basic is generally the third best 480 

performing model in terms of F1 score, except for the solid phase, where ST outperforms it. 

While it is not able to predict the mixed phase, ST has the highest scores for the liquid and solid 

precipitation phases out of the benchmark models. This is probably because mixed-phase 

precipitation events are only roughly 13% of the samples, this low proportion does not 

significantly decrease the model’s performance. LT performs slightly worse than ST for both 485 

solid and liquid phases F1 scores but has the highest mixed-phase F1 score out of the benchmark 

models.  

 

Figure 8: Model phase classification metrics separated by (a) the solid, (b) the mixed and (c) the liquid phase. 

PGP models. PGP model details are summarized in Table 2. 490 
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PB’s poor F1 scores are explained by the overlaps between the phases shown in Figure 7. The 

model allows the predicted mixed phase to overlap with the predicted solid and liquid phases, 

which is the opposite behavior of the observed phase density, where mixed-phase precipitation 

mostly exist in the solid and liquid phase overlap. Given the modelled phase density and the 

resulting classification scores, the phase prediction ability of both LT and PB suffers from 495 

overprediction of the mixed phase. This is evidenced by the significant disparity between the 

precision and recall scores of LT and PB for the mixed phase. A high recall score signifies that 

the model minimizes the number of false negatives, which negatively affects the model’s 

precision. Thus, overpredicting the mixed phase greatly reduces the models’ precision for the 

mixed phase, while greatly increasing their recall for the mixed phase. Conversely, the 500 

conservative prediction of the liquid and solid phases increases the precision of the model but 

decreases the recall for both phases. 

Although they are not always the best models in terms of either precision or recall, the PGP 

models have the best general performance, making them more reliable for phase prediction. 

Thus, PGP models significantly reduces phase identification error by showing high precision 505 

and recall, with small disparities for solid and liquid phase prediction. However, PGP’s main 

distinguishing feature is its general ability to predict mixed-phase precipitation. Furthermore, 

the disparity between the precision and recall scores for the mixed phase is much smaller than 

for the other models studied, indicating that the overprediction of the mixed phase is much less 

severe for PGP.  510 

4.3 Precipitation partitioning 

The average regression metrics in  

Figure 9 displays how the regression metrics vary across validation folds. The precipitation rate 

variability has a significant impact on ST’s performance, making its ability to partition 

precipitation highly variable from winter to winter. In contrast, LT and PB exhibit better 515 

performance than ST due to their ability to partition the solid and liquid phases, with much less 

variability in performance. The variability of R2 for liquid precipitation is lower for LT and PB 

than for solid precipitation, because fewer of these events occur. For all regression metrics, LT 

and PB have similar performance. This is most likely due to the very humid environment, which 

decreases the difference between the 2-m air temperature and the hydrometeor temperature 520 

computed for PB. 

Table 4 show the partitioning performance of the various models. All models have a high R2 for 

solid precipitation, likely due to the abundance of solid precipitation. However, model 

performance decreases for liquid precipitation R2, with ST being significantly lower than other 

models. This trend is also observed for the RMSE. While ST is the worst performing model, LT, 525 
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PB and PGP_basic perform similarly in all regression metrics. The inclusion of 

hydrometeorological data in PGP_hydromet leads to a slight increase in performance. Lastly, 

the inclusion of atmospheric data in PGP_full improves performance compared to the other 

models. 

Figure 9 displays how the regression metrics vary across validation folds. The precipitation rate 530 

variability has a significant impact on ST’s performance, making its ability to partition 

precipitation highly variable from winter to winter. In contrast, LT and PB exhibit better 

performance than ST due to their ability to partition the solid and liquid phases, with much less 

variability in performance. The variability of R2 for liquid precipitation is lower for LT and PB 

than for solid precipitation, because fewer of these events occur. For all regression metrics, LT 535 

and PB have similar performance. This is most likely due to the very humid environment, which 

decreases the difference between the 2-m air temperature and the hydrometeor temperature 

computed for PB. 

Table 4: Average regression scores for Single Threshold (ST), Linear Transition (LT), Psychrometric Balance 

(PB) and Phase-Guided Partitioning (PGP) models. PGP model details are summarized in Table 2. 540 

Model R2 solid R2 liquid RMSE (mm) 

ST 0.76 0.65 0.40 

LT 0.86 0.80 0.31 

PB 0.86 0.80 0.31 

PGP_basic 0.87 0.81 0.30 

PGP_hydromet 0.88 0.83 0.29 

PGP_full 0.89 0.85 0.27 

 

Generally, the performance of PGP_basic is similar to that of LT and PB, with slight differences. 

PGP_basic is more variable in its performance for solid precipitation R2 and RMSE. This 

variability can be attributed to the misclassification of precipitation events due to its limited 

input variables.  The R2 scores for PGP_hydromet are less variable than for PGP_basic, while its 545 

RMSE is the most variable out of the PGP models. PGP_full exhibits the lowest variability for 

both R2 and is the only PGP model with RMSE variability similar to benchmark models LT and 

PB. 

The broader RMSE score range of the PGP models highlights the impact of misidentified phases. 

Misidentification can be more costly than for a benchmark model that systematically separates 550 

precipitation into solid and liquid phases for temperatures where mixed-phase events are 

possible. Furthermore, models such as LT and PB achieve partial accuracy in phase partitioning 

by forcing mixed-phase precipitation, but if a PGP model misclassifies the phase, the entire 
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precipitation event may be incorrectly partitioned. However, PGP models do show that phase 

identification prior to phase partitioning can reduce the overall error of a model for both solid 555 

and liquid precipitation. This suggests that improved phase identification, specifically with 

mixed-phase prediction, could greatly enhance the accuracy of precipitation partitioning from 

PGP model. 

 

 560 

Figure 9: Model regression performance in (a) R2 for solid precipitation, (b) R2 for liquid precipitation and (c) 

RMSE. PGP model details are summarized in Table 2. 

4.4 Input variable importance 

Figure 10 shows the correlation matrix of PGP_full input variables. While the correlation of 

most input variable combinations is low, the 2-m air temperature and 1000-850 hPa layer 565 

thickness are highly correlated. The layer thickness is affected by environmental temperatures, 

as the air density is inversely proportional to its temperature, which increases the distance 

between two pressure levels. There is a moderate negative correlation between elevation and air 

pressure, probably because of the small range of study site elevations. The temperature lapse 

rate has a small correlation with almost all features.  570 

Improving PGP models’ ability to accurately predict the mixed phase is manifold. First, the PGP 

models tend to overpredict the mixed phase, which also negatively impact their ability to predict 

the other phases. In turn, this also affects the models’ partitioning error. For these reasons, the 

chosen scoring scheme for the permutation importance is the weighted F1 score, to consider the 

imbalanced proportions of the phase data. 575 
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Figure 10: Correlation matrix of PGP_full input variables pairs. 

Figure 11 shows the permutation importance of PGP_full input variables and the resulting 

decrease in the weighted F1 score on the validation set. The 2-m air temperature is the most 580 

important variable, with its permutation decreasing the score by more than 0.2. The second most 

important variable is the 1000-850 hPa layer thickness, a result shared by Shin et al. (2022). 

Because of its high correlation with the 2-m air temperature, it is difficult to interpret the real 

importance of this variable. In terms of classification performance, the addition of this variable 

seems to provide small improvements, as shown by the differences in classification metrics 585 

between PGP_hydromet and PGP_full.  

For the remaining variables, the importance decreases sharply. However, while the individual 

importance of the variables is low, they improve the phase classification when combined. This 

suggests that the additional variables used in PGP_full likely improve mostly mixed-phase 

prediction, which is supported by the model’s performance in section 4.2. The elevation is used 590 

to approximate the atmospheric pressure of a site and can improve phase partitioning (e.g. Ding 

et al., 2014; Behrangi et al., 2018). Furthermore, atmospheric pressure is often cited as an 

important variable for phase partitioning (e.g. Behrangi et al., 2018; Dai, 2008; Jennings et al., 

2018). The thinner air in low-pressure environment allows snow to reach the ground faster. The 

temperature lapse rate provides key information regarding the amount of energy the 595 

hydrometeors absorb before reaching the ground. 
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Figure 11: Permutation importance of PGP_full input variable, showing the decrease in the model’s weighted 

F1 score. 

The precipitation rate has a minor impact on the performance of the model. Nevertheless, it may 600 

hold significance for the prediction of the mixed phase. The precipitation rate is linked to the 

precipitation phase as it increases the energy required to completely melt falling precipitation 

(Froidurot et al., 2014; Thériault et al., 2010). However, its effect is minimal, most likely due to 

the small proportion of mixed-phase events. Finally, the model ranks relative humidity as the 

least important feature. This outcome is unexpected because relative humidity was shown to 605 

have a significant effect on phase partitioning (e.g. Behrangi et al., 2018; Jennings et al., 2018). 

One explanation could be the high percentage of data points near water vapor saturation, 

resulting in the variable being less regionally significant than more heterogeneous regions such 

as mountain ranges. Besides, this could account for the PB model’s underwhelming 

classification accuracy since it utilizes relative humidity to determine the precipitation phase 610 

and the fact that it was developed for the drier climate near the Canadian Rockies. 

5 Discussion 

5.1 Model performance and input variable importance 

The classification and regression metrics of the PGP models show that phase classification prior 

to phase partitioning reduces the partitioning error of solid and liquid precipitation, while also 615 

providing a more reliable phase prediction than benchmark models. The use of radar-based 

disdrometer measurements enabled the partitioning step of the model by providing precipitation 

fractions for mixed-phase events, a flaw mentioned in other studies (Froidurot et al., 2014; 

Jennings et al., 2018). Out of the benchmark models, ST displayed the best classification 
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performance, despite not allowing for mixed-phase precipitation. The tendency of 620 

overpredicting mixed-phase precipitation of both LT and PB reduced their overall classification 

performance. This general behavior was also observed in Leroux et al. (2023), where simpler 

methods outperformed methods based on a precipitation phase fraction. However, ST showed 

significantly worse partitioning performance compared to LT and PB. The limitations of 

precipitation fraction-based models are highlighted by the fact that LT and PB were the worst 625 

performing phase classification benchmark models, despite being the best partitioning 

benchmark models. These models were calibrated to minimize partitioning error, but in doing 

so, they are biased toward predicting mixed-phase precipitation. As such, there is a trade-off 

between classification and partitioning error for precipitation fraction-based models such as LT 

and PB.  630 

PGP_basic, while showing an improvement in phase classification, did not significantly 

outperform the partitioning of benchmark models LT and PB. PGP_hydromet showed improved 

phase classification, notably for mixed phase, and partitioning. PGP_full showed further 

increase in overall performance, while also reducing the partitioning error variability. However, 

all PGP models tended to over predict the mixed phase. Reducing the overprediction of mixed 635 

phase is a persistent challenge in improving precipitation phase modeling, as noted in previous 

studies (Casellas et al., 2021; Leroux et al., 2023). 

The permutation importance analysis showed that most input variables used, apart from the 2-m 

air temperature, are of low importance. However, the classification performance improvement 

of PGP_hydromet and PGP_full show the cumulative importance of the additional variables 640 

used, most notably for mixed-phase prediction. Despite many studies demonstrating its impact 

on precipitation phase, relative humidity was found to be the least important factor. This is likely 

due to the regional homogeneity, with most observations occurring near liquid water vapor 

saturation. The site elevation was considered important for phase classification, even though it 

is a constant variable. This suggests that an atmospheric pressure estimated by the elevation 645 

could provide enough information relevant to improve phase classification. Still, out of the 

hydrometeorological variables, the atmospheric pressure had the most impact on phase 

classification performance. This is in line with other studies that found it has a significant impact 

on precipitation phase (e.g. Behrangi et al., 2018; Dai, 2008; Jennings et al., 2018), although 

generally to a lesser extent than relative humidity, when considering the regional variability. 650 

The precipitation rate’s low importance is most likely because it affects mixed-phase prediction, 

thus has low impact for overall performance. According to Thériault et al. (2010), higher 

precipitation rates raise the likelihood of larger hydrometeors, which require more energy to 

melt. Consequently, there is an increased likelihood of mixed-phase precipitation occurring in 

the form of partially melted hydrometeors. As noted by Feiccabrino et al. (2015), higher 655 
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precipitation rates can lead to snowfall happening at warmer temperatures due to the presence 

of unstable air below the isothermal layer. 

The permutation importance 1000-850 hPa layer thickness is second to the 2-m air temperature. 

However, because of the high correlation of the pair of variables combined with the moderate 

classification improvement of PGP_full, the real importance of the 1000-850 hPa layer is most 660 

likely low. While the importance of the temperature lapse rate is low, the partitioning results 

demonstrated that incorporating gridded atmospheric variables alongside local observations led 

to a reduction in the variance of the regression performance. This finding is noteworthy because 

few studies, as pointed out by Harpold et al. (2017), have explored the impact of incorporating 

atmospheric reanalysis data into phase modeling. Froidurot et al. (2014) indicated that models 665 

using atmospheric data did not greatly improve the phase prediction, as is the case in this study's 

classification performance. Furthermore, Dai (2008) emphasizes the terrain-dependent nature of 

lapse rates. Thus, even though the study sites in the region are relatively similar in terms of 

terrain, the importance of lapse rates in the modeling process was still significant, contrary to 

the fairly homogenous relative humidity measurements. 670 

5.2 Coupled precipitation data uncertainty 

There are uncertainties regarding the results due to the dataset and assumptions employed. 

Hydrological models commonly limit the precipitation phases to solid or liquid. Nonetheless, 

this dataset includes a considerable quantity of mixed snow and rain/drizzle events, and it is 

uncertain how hydrological models should handle this precipitation phase. The phase 675 

aggregation step considered the behavior of the snowpack following the different phases 

detected by the disdrometers. However, phase identification errors have the potential to 

introduce uncertainties in the results. To measure this uncertainty, it is recommended that studies 

be conducted using collocated WS-100 disdrometers and other well-documented options such 

laser disdrometers, to assess the differences between ground-truth providing instruments 680 

(Harpold et al., 2017).  

Another source of uncertainty arises from the coupling of precipitation amounts and phase 

observations. Fehlmann et al. (2020) demonstrated that laser disdrometers have low missed 

event and false alarm rates for sub-daily integration times compared to precipitometers, but no 

such study was conducted with the radar-based disdrometers of this study. Additionally, the 685 

study from Fehlmann et al. (2020) was carried out in a sheltered site from the wind, implying 

that the wind-induced gauge undercatch could not be studied. In turn, the wind could influence 

the missed event and false alarm rates of this study’s instruments. In this study, data segments 

where either the precipitation gauge or disdrometer did not detect any precipitation were 

discarded. Figure 12 displays the hit-rate of both the instruments at the initial 15-min intervals 690 

and shows that the instruments’ hit-rates are generally in agreement. The instrument hits were 
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normalized over the precipitation gauge observations to compute relevant agreement metrics. 

The precipitation gauge is considered as ground-truth as it would be used in conjunction with a 

precipitation phase model and phase observations are rare in operational context. 

 695 

Figure 12: Confusion matrix of the precipitometers and disdrometers 15-min precipitation hit-rate, normalized 

over the precipitometer observations. The upper-left metric is the probability of detection, upper-right metric 

is the miss rate, and the lower-left metric is the false alarm rate. 

Precipitation data segments of 0.1 mm coincide with 38% of the disdrometer misses. Assuming 

that a significant portion of this precipitation data would be labeled as trace amounts when 700 

resampled at the hourly interval (< 0.2 mm), the probability of missed events is likely lower in 

reality. Multiple factors could account for disagreements between the instruments, including the 

effect of wind, which likely varies from instrument to instrument, and the fact that certain 

stations are not collocated or nearby. However, the environmental effects of disdrometer 

performance lacks previous studies and requires more detailed investigation as outlined in 705 

Harpold et al. (2017).  

Figure 13 shows the variation of the instrument agreement according to the distance between 

stations. The station pairs are divided into four distance categories: less than 3, 4 to 7, 7 to 12 

and more than 12 km. Generally, the stations separated by less than 3 km show better agreement, 

with a few outliers. However, the instrument agreement does not seem to decrease with distance, 710 

as the 4 to 7 km category exhibits the poorest agreement. Notably, the AUXLOUPS station, 

separated by 28 km with the nearest weather station, has a probability of detection of 0.79, a 

false alarm rate of 0.14 and a miss rate of 0.21. These instrument agreement metrics are only 

slightly worse than the metrics of the 15-min dataset in Figure 12. This suggests that instrument 

agreement is linked to site specific conditions rather than distance between stations. However, 715 

by discarding data points where the instruments do not agree, we ensure that precipitation events 

are consistent across study sites and weather stations. In addition, the coupling of instruments 
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from nearby station brings the spatial scale of the observational data closer to the scale of the 

reanalysis data.  

 720 

Figure 13: Comparison of the (a) Probability of detection, (b) false alarm rate, and (c) miss rate according to 

the distance between the study site and paired weather station. The dashed grey line corresponds to the metric 

computed on the full dataset in Figure 12. 

5.3 Data validation across studies 

The phase observations from this study can be compared to other studies that use different 725 

validation data, such as direct observations (e.g. Behrangi et al., 2018; Dai, 2008; Jennings et 

al., 2018). However, it can be difficult to compare the phase occurrence according to the 2-m air 

temperature, as the datasets in such studies often exclude mixed-phase precipitation. 

Consequently, the mixed phase is usually not analyzed in detail. One method to simply compare 

phase partitioning models is the critical threshold air temperature value 𝐶𝑇 , which is defined as 730 

the critical temperature threshold where both solid and liquid phase have 50% chance of 

occurrence. In the case of this study, we define a different critical threshold for solid 𝐶𝑇  and 

liquid phase 𝐶𝑇 , as well as a temperature where the probability for mixed phase is highest 𝑃 . 

Figure 14 shows the probability of occurrence of the phases at the study sites separated in 0.2°C 

bins. The resulting thresholds are 𝐶𝑇  of 1.3°C, 𝐶𝑇  of 3.8°C and 𝑃  of 2.4°C for a mixed-phase 735 

probability of 0.44. It is also noteworthy that 𝑃  is roughly where the probability of solid and 

liquid precipitation is equal. Because of this study’s aggregation step, 𝐶𝑇  should be similar to 

𝐶𝑇  values from other studies, as the aggregation mostly affected the probability of mixed and 

liquid precipitation, and 𝐶𝑇  will be much warmer than 𝐶𝑇 . 
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 740 

Figure 14: Observed probability of occurrence for the solid, liquid, and mixed phase. 

In Behrangi et al. (2018), the average hourly 𝐶𝑇  of 1.58°C aligns with the study's 𝐶𝑇  and the 

calibrated 2-m air temperature threshold of benchmark ST. One of the main conclusions from 

the study was that the wet-bulb temperature model is more robust than the dry-bulb temperature 

model, as the 𝐶𝑇  can vary significantly from site to site. The study's 𝐶𝑇  has an upper limit of 745 

2.16°C, which closely matches the 𝑃  of this study. This finding lends credibility to the 

disdrometer phase identifications and the phase aggregation step, as it indicates the temperature 

range in which both solid and liquid phases are possible. 

In Dai (2008), the overland 3-hourly 𝐶𝑇  of 1.2°C is comparable to this study’s 𝐶𝑇 , despite the 

different time step. The chance for mixed phase in this study is much higher and more likely at 750 

warmer temperatures than that of Dai (2008), where they report a peak 14.3% chance of mixed 

rain and snow at 1.4°C overland.  However, Ding et al. (2014) have shown that the probability 

of mixed-phase precipitation at the daily timestep greatly increases in humid conditions, 

particularly near saturation. Such an analysis would, however, be required at the hourly time 

step to confirm this behavior. The reasoning for the increase in mixed-phase precipitation 755 

probability is that the increase in relative humidity decreases evaporative cooling and favors a 

transition from snow to rain. In contrast, the temperature difference between the hydrometeors 

and the air decreases as humidity rises, which decreases sensible heat transfer and hinders the 

transition from snow to rain. The relatively homogenous conditions of the study sites could 

explain the differences in mixed-phase precipitation probability, while the analysis in Dai (2008) 760 

lumped together a large amount stations.  

The findings in Jennings et al. (2018) report a much lower 3-hourly 𝐶𝑇  of 0.7°C for 

precipitation in 90-100% relative humidity and 0.9°C for precipitation occurring in 90-105 kPa, 

humidity and pressure conditions where the majority of this study’s precipitation occur. The 

source of the validation data, direct manual observations versus automated observations, could 765 

https://doi.org/10.5194/hess-2024-78
Preprint. Discussion started: 29 April 2024
c© Author(s) 2024. CC BY 4.0 License.



30/40 

account for the difference. The longer time step may lead to a lower critical threshold because 

the energy needed to melt the precipitation can be supplied over a longer period.  

Overall, the radar-based disdrometer measurements are similar to the findings of previous 

studies, but more research is needed to properly quantify the uncertainties associated with this 

type of disdrometer. In addition, models based on automated phase observations may differ from 770 

those based on direct observations, especially as the time step can vary from study to study. This 

also highlights the importance of the verification step performed after aggregating mixed snow 

and rain/drizzle with rainfall, as their effect was deemed closer to that of rainfall. 

6 Conclusion 

The study used phase measurements from radar-based disdrometers to train probabilistic models 775 

to classify and partition precipitation data for a network of study sites in eastern Canada. The 

study sites were located in predominantly boreal climates and at similar elevations, ranging from 

315 to 641 meters above sea level. The mean annual 2-meter air temperature was around 0.2°C, 

and the cumulative annual precipitation was significant at 902 mm. The humidity conditions for 

the data points used in the study were generally close to water vapor saturation. The utilization 780 

of automated measurements enabled partitioning of precipitation for mixed-phase events, which 

were previously limited with direct phase observations. The studied PGP models showed an 

improvement in phase partitioning with prior phase classification compared to benchmark 

models of varying complexity. PGP provides more accurate phase classification, which can 

benefit hydrological modeling at both local and watershed scales. It successfully reproduced the 785 

phase overlap between 1.5 and 3.5°C, where mixed phase probability was the highest.  

The classification performances show a substantial enhancement in phase classification as 

opposed to benchmark models, which were designed to minimize errors in phase partitioning. 

Additionally, the PGP models reduced partitioning error, especially PGP_hydromet and 

PGP_full.  However, due to prior classification, partitioning performance is highly dependent on 790 

classification performance. As a result, the less complex PGP_basic had increased error 

variability. According to the input variable importance analysis, atmospheric pressure was the 

second most important hydrometeorological variable for phase classification. The reanalysis 

atmospheric data reduced the partitioning error variability of PGP_full in comparison to the other 

PGP models. As for relative humidity, it was deemed to be the least important 795 

hydrometeorological feature for phase classification due to the regional homogeneity of the study 

sites. Overall, these findings demonstrate that automated phase observations enhance PGP 

method development and significantly improve precipitation phase classification, even with 

limited hydrometeorological information. The incorporation of reanalysis atmospheric data 
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further enhances the accuracy of local observations, pointing towards potential operational 800 

applications for such methods.  

The presented methodology could be applied to other environments, including drier conditions 

or a broader spectrum of environments. Further research should include a comprehensive 

comparison of the radar-based disdrometers used in this study with other phase validation 

techniques to assess potential limitations. Research is also needed to improve the prediction of 805 

the mixed phase. Other variables such as wind speed could be considered, as high wind speed 

can have a cooling effect on precipitation. Additionally, the impact of using a model that 

combines both phase classification and partitioning on snowpack accumulation and basin mass 

and energy dynamics should be investigated.  
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Appendix A. Study sites details 810 
 

Table A1: List of study site coordinates, elevation, and timeframe where the station has been in operation. 

Station name Longitude  

(° W) 

Latitude  

(° N) 

Elevation  

(m ASL) 

Operational timeframe 

ARGENT 69.778857 50.776574 641 2020-2023 

AUXLOUPS 70.48743 51.90589 537 2020-2023 

BAUBERT 63.55696 51.40946 541 2020-2022 

BETSIA_M 69.913268 49.97657 403 2019-2023 

CABITUQG 69.513611 49.573333 491 2019-2023 

CONRAD 74.261131 47.607249 433 2020-2023 

DIAMAND 73.18308 47.231302 373 2020-2023 

GAREMANG 67.13986 51.11064 778 2020-2023 

HARTJ_G 67.94598 51.77931 460 2020-2023 

LACROI_G 70.07939 51.32871 621 2019-2023 

LAFLAM_G 70.270496 48.930225 519 2019-2023 

LBARDO_G 67.828433 51.111896 486 2019-2023 

LEVASSEU 68.75496 51.26848 466 2020-2023 

LOUIS 68.48974 49.88662 315 2020-2023 

LOUISE_G 68.839767 50.658526 397 2019-2023 

MOUCHA_M 69.52778 52.12551 565 2019-2022 

NOIRS 68.83173 50.12116 385 2020-2023 

PARLEUR 69.52237 51.28547 485 2020-2021 

PERDRIX 67.96745 50.12946 315 2022-2023 

PIPMUA_G 70.91581 49.36052 566 2020-2023 

PORTO 70.27591 49.58423 413 2020-2023 

ROUSSY_G 68.09436 50.42347 456 2020-2023 

RTOULNUS 67.47676 50.96475 688 2020-2022 

SAUTEREL 63.83804 51.91782 459 2020-2023 

STMARG_G 67.04636 51.89198 461 2020-2023 

WABISTAN 73.441157 48.484572 565 2020-2023 
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Appendix B. Disdrometer phase identification validation 
Snow water equivalent (SWE) and snow depth observations were compiled from the entire 815 

network on a winter-by-winter basis. If more than 30% of a winter's snowpack observations were 

missing at a station, the winter is not included in this analysis. The resulting data subset consists 

of 11 winter-sites with a total of 53,520 hourly data points. The hourly data was then separated 

into precipitation events. The following filters were applied to the events: 

- Duration ≥ 3 h, 820 

- Mean 2-m air temperature between −5 and 5°C, 

- Total precipitation ≥ 0.5 mm, 

- Mean SWE ≥ 15 mm. 

This filtering step aimed to exclude short events and events that occurred either in warmer 

conditions, where phases other than rain are uncommon, or in the absence of snow cover. As 825 

such, 235 precipitation events were retained. In addition to the data points encompassing each 

event, the following hours were added until the next update of the SWE observations, at most 6 

hours. The events were then classified according to their main precipitation phase, that is the 

phase associated with at least half the total precipitation of the event.  

The mean 2-m air temperature, SWE variation (∆SWE), and snow depth variation (∆SD) are 830 

compiled from precipitation events, according to the main precipitation phase of the event (Table 

B1). The effects of rain and the mix of snow and rain/drizzle events on the snowpack are similar, 

a SWE increase accompanied by a SD decrease. In addition, the average temperature of mixed 

snow and rain/drizzle events is significantly above the freezing point, where rainfall is more 

likely to occur than snowfall. In the case of freezing rain, the average temperature during the 835 

events is more similar to snowfall. Although freezing rain does not generally increase the SD, it 

contributes to the solid component of the snowpack as it freezes on contact. Thus, the phase 

aggregation of this study was based on the hydrological impact and temperature range of freezing 

rain and the mix of snow and rain/drizzle.  

Table B1: Precipitation events characteristics separated by phase. 840 

Main phase Event 

count 

Mean temperature 

(°C) 

 ∆SWE 

(mm) 

∆SD 

(cm) 

Snow 192 -2.0 3.0 3.3 

Rain 12 3.6 3.5 -1.8 

Mix of snow and 

rain/drizzle 

19 1.5 5.9 -1.5 

Freezing rain 12 -1.7 3.2 0.2 
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Appendix C. Benchmark models description 
The single threshold model ST to compute the solid precipitation fraction 𝑓  (-) functions as 

follows: 

𝑓 =
1  𝑇 ≤ 𝑇

0 𝑇 > 𝑇
(𝐶1) 

 845 

Where 𝑇  is the temperature (°C) and 𝑇  is the calibrated temperature threshold (°C). The linear 

transition model LT uses two calibrated thresholds to calculate 𝑓 : 

𝑓 =

1 𝑇 ≤ 𝑇
𝑇 − 𝑇

𝑇 − 𝑇
𝑇 < 𝑇 < 𝑇

0 𝑇 ≥ 𝑇

(𝐶2) 

 

Where 𝑇  and 𝑇  are the calibrated rain and snow thresholds (°C). Finally, the 850 

psychrometric energy balance model PB (Harder and Pomeroy, 2013) calculates 𝑓  as 

follows:

𝑓 = (𝐶3) 

 

Where 𝑏 and 𝑐 are calibrated values and 𝑇  is the hydrometeor temperature (°C). 𝑇 is calculated 855 

iteratively with the following function: 

𝑇 = 𝑇 + 𝐿
𝐷

𝜆
𝜌 − 𝜌 (𝐶4) 

 

Where 𝐿  is the latent heat of sublimation or vaporization (J k−1 ), D is the diffusivity of water 

vapour (m2 s−1), λt is the thermal conductivity of air (J m−1 s−1 K−1) and 𝜌 , 𝜌  are the water 860 

vapour density of the surrounding air and on the hydrometeor’s surface respectively (kg m−3). 

The procedure to compute the variables is as detailed in Harder and Pomeroy (2013). D is 

computed following Thorpe and Mason (1966): 

𝐷 = 2.06 × 10
𝑇

273.15

.

(𝐶5) 

 865 

The vapour pressure 𝑒 (kPa) is computed from Dingman (2015): 

𝑒 =
𝑅𝐻

100
× 0.611 exp

17.37𝑇

237.3 + 𝑇
(𝐶6) 
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Where 𝑅𝐻  is the relative humidity (%) and 𝑇  is the air temperature (°C). 𝜌  is computed 

following the ideal gas law:  

𝜌 =
𝑚 𝑒

𝑅𝑇
(𝐶7) 870 

 

Where 𝑚  is the molecular weight of water (0.01801528 kg mol−1) and 𝑅 is the universal gas 

constant (8.31441 J mol−1 K−1). The air thermal conductivity 𝜆  is computed from List (1951): 

𝜆 = 0.000063𝑇 + 0.00673 (𝐶8) 

 875 

Finally, the latent heat of sublimation (𝑇  <  0) and vaporization (𝑇  ≥  0) are computed as 

follows (Yau and Rogers, 1996): 

𝐿 =
1000(2834.1 − 0.29𝑇 − 0.004𝑇 ) 𝑇 < 0

1000(2501 − 2.361𝑇 ) 𝑇 ≥ 0
(𝐶9) 

 

Table C1 shows the calibrated parameters for the models presented in this section. The 880 

calibration was made on the same training set used for the PGP models. Figure C1 shows the 

simulated solid fraction for the benchmark models, as well as the observed solid fraction. 

Table C1: Benchmark model calibrated parameters. 

Model Calibrated parameters 

Single threshold (ST) 𝑇 = 1.50 

Linear transition (LT) 
𝑇 = −0.38 

𝑇 = 5.00 

Psychrometric balance  

(PB) 

𝑏 = 6.34 

𝑐 = 0.39 
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 885 

Figure C1: Observed solid precipitation fraction according to the 2-m air temperature and the modeled solid 
precipitation fraction of the a) static threshold, b) linear transition and c) psychrometric balance. 
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7 Data availability 

The data used to train/calibrate the models in this study are available at 890 
10.5281/zenodo.10790810. Supplementary data in the analysis are available from the 
corresponding author upon reasonable request. All data are subject to Hydro-Québec’s Creative 
Commons Attribution – Non‑Commercial 4.0 International licence 
(https://www.hydroquebec.com/documents-data/open-data/licence.html). 
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