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Abstract. This study presents a probabilistic model that partitions the precipitation phase based 

on hourly measurements from a network of radar-based disdrometers in eastern Canada. The 

network consists of 27 meteorological stations located in a boreal climate for the years 2020–-

2023. Precipitation phase observations showed a 2-m air temperature interval between 0–-4°C 

where probabilities of occurrence of solid, liquid, or mixed precipitation significantly 15 

overlapped. Single-phase precipitation was also found to occur more frequently than mixed-

phase precipitation. Probabilistic phase-guided partitioning (PGP) models of increasing 

complexity using random forest algorithms were developed. The PGP models classified the 

precipitation phase and partitioned the precipitation accordingly into solid and liquid amounts. 

PGP_basic is based on 2-m air temperature and site elevation, while PGP_hydromet integrates 20 

relative humidity, surface pressure and precipitation rate. PGP_full includes all the above 

previous data, plus  along with atmospheric reanalysis data, the 1000-850 hPa layer thickness, 

and temperature lapse rate. The PGP models were compared to benchmark precipitation phase 

partitioning methods. These included a single temperature threshold model set at 1.5°C, a linear 

transition model with dual temperature thresholds of –0.38 and 5°C, and a psychrometric balance 25 

model. Among the benchmark models, the single temperature threshold had the best 

classification performance (F1 score of 0.74) due to a low count of mixed-phase events. The 

other benchmark models tended to over-predict mixed-phase precipitation in order to decrease 

partitioning error. All PGP models showed significant phase classification improvement by 

reproducing the observed overlapping precipitation phases based on 2-m air temperature. 30 

PGP_hydromet and PGP_full displayed the best classification performance (F1 score of 0.84). 

In terms of partitioning error, PGP_full had the lowest RMSE (0.27 mm) and the least variability 

in performance. The RMSE of the single temperature threshold model was the highest (0.40 mm) 

and showed the greatest performance variability. An input variable importance analysis revealed 

that the additional data used in the more complex PGP models mainly improved mixed-phase 35 

precipitation prediction. The improvement of mixed-phase prediction remains a challenge. 
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Relative humidity was deemed the least important input variable used, due to consistent near 

water vapour saturation conditions. Additionally, the reanalysis atmospheric data proved to be 

an important factor to increase the robustness of the partitioning process. This study establishes 

a basis for integrating automated phase observations into a hydrometeorological observation 40 

network and developing probabilistic precipitation phase models.  

1 Introduction 

Precipitation phase is a critical component in hydrological modelling. Simply put, the 

hydrological effect following either a snowfall or rainfall event isare drastically different; 

snowfall accumulates in winter and melts later in the spring or during winter melt events, while 45 

rain can either infiltrate or become runoff, potentially increasing streamflow in the short term. 

The precipitation phase also affects snowpack characteristics in different ways; a rain-on-snow 

event infiltrates the snowpack, increasing its liquid water content, and can create ice layers and 

change the snowpack internal characteristics (Singh et al., 1997; Wever et al., 2016), while 

snowfall increases the depth of the snowpack. During individual precipitation events, errors in 50 

snowpack water equivalent (SWE) and depth are mainly caused by errors in precipitation 

partitioning (Leroux et al., 2023). On a seasonal basis, the precipitation phase significantly 

affects the ablation of the snowpack, particularly due to its impact on the snow albedo (Essery 

et al., 2013; Günther et al., 2019). As such, the cumulative effects of misclassified precipitation 

have a significant impact on various seasonal values such as peak SWE, peak discharge date, 55 

and snow cover duration  (Harder and Pomeroy, 2014).  

As the climate warms, regions that typically experience winter snowfall are expected to face 

more rainfall in their winter precipitation, resulting in more rain-on-snow events (Jeong and 

Sushama, 2018; Ye et al., 2008; Musselman et al., 2018). Consequently, the proportion of runoff 

caused by rain-on-snow events during the winter is projected to increase in these regions (Jeong 60 

and Sushama, 2018; Musselman et al., 2018). Effective precipitation partitioning methods are 

more important than ever to anticipate potentially damaging events and to monitor water 

resources at the catchment scale. This need is also felt for field monitoring of precipitation 

quantities. Indeed, solid precipitation is much more sensitive to undercatch (underestimation due 

to the wind moving hydrometeors away from the gauge) than liquid precipitation (Rasmussen et 65 

al., 2012). Consequently, an inaccurate measurement identification of the phase necessarily 

translates into an erroneous estimation of the precipitation quantity. Ehsani and Behrangi (2022) 

showed that undercatch for solid precipitation introduced a significant bias in gridded 

precipitation products at both the seasonal and annual scales at higher latitudes. This highlights 

the need to account for the precipitation phase at the synoptic scale, especially when using 70 

precipitation products to bias-correct satellite precipitation estimates (Behrangi et al., 2019; 

Ehsani and Behrangi, 2022). 
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The modelling of the precipitation phase in operational hydrological models is often based on a 

single near-surface air temperature threshold (Harpold et al., 2017). While simple to implement, 

this method cannot predict mixed precipitation events, which tend to occur when falling 75 

hydrometeors of different sizes coexist and melt at different rates (Thériault and Stewart, 2010). 

As an alternative to the single-threshold approach, one can use a linear relationship to account 

for mixed-phase precipitation events while occurringthat occur between those two thresholds. 

Furthermore, these types of methods can be refined into curvilinear functions, which would 

theoretically yield to a more accurate phase identification, but using more computation resources  80 

(Feiccabrino et al., 2013). In both cases, the classification error is reduced when compared to the 

single threshold approach (Feiccabrino et al., 2013; Wen et al., 2013). The advantage of using 

temperature threshold-based models comes mainly from a data availability and computational 

requirement standpoint. Variables other than air temperature are known to influence the 

precipitation phase, such as relative humidity and atmospheric pressure (Behrangi et al., 2018; 85 

Dai, 2008; Jennings et al., 2018). Thus, precipitation partitioning models can be improved by 

using dew point temperature (e.g. Marks et al., 2013; Ye et al., 2013) or wet bulb temperature 

(e.g. Ding et al., 2014; Wang et al., 2019; Behrangi et al., 2018) instead of relying solely on air 

temperature, increasing the spatial robustness of such models.  

Phase partitioning models tend to rely on near-surface hydrometeorological variables because 90 

this information is easily accessible. However, the hydrometeor’s initial phase as it leaves the 

cloud, the shape and size distribution of the droplets, and the properties of the atmosphere from 

the cloud to the ground all determine the precipitation phase (Feiccabrino et al., 2015). As it they 

falls, the hydrometeor exchanges latent and sensible heat with its their surroundings, linking its 

their phase to the temperature and vapour deficit as they fall through the atmosphere. 95 

Additionally, both heat fluxes are also affected by the ventilation of the hydrometeor, which 

depends on its fall speed and the surrounding wind velocities (Stewart, 1992).  

Atmospheric temperature gradients can vary with time, so the thickness of the melting 

atmospheric layer is also a key variable to consider, as it affects the time the hydrometeor spends 

in conditions favourable to melting. Empirical models approximate this layer thickness by 100 

computing the height difference between two selected pressure levels (Feiccabrino et al., 2015). 

Precipitation rates can also increase the energy required to melt hydrometeors. Indeed, at high 

precipitation rates, there is a larger volume to melt, thus increasing the likelihood of solid 

precipitation at warmer temperatures (Froidurot et al., 2014; Thériault and Stewart, 2010). 

Therefore, by accounting for the characteristics of the atmospheric layer, microphysical models 105 

can determine the precipitation phase of falling hydrometeors (Thériault and Stewart, 2010). 

Other models are instead based on the statistical relationship between the hydrometeorological 

variables and the precipitation phase. Such models compute the probability of a precipitation 

phase occurring considering a set of environmental conditions.  
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The methodology for calculating the probability of phase occurrence varies across studies and 110 

includes, for example, a curvilinear function (Dai, 2008), logistic regression (Behrangi et al., 

2018; Froidurot et al., 2014; Jennings et al., 2018), and machine learning algorithms (Shin et al., 

2022). Therefore, tThese methods output a precipitation type rather than a fraction of solid and 

liquid precipitation, in the case of dual threshold models. However, the use of these methods is 

limited when dealing with mixed-phase precipitation, as they do not provide information on how 115 

the precipitation is partitioned. Fortunately, mixed-phase events are less common than single-

phase events (Dai, 2008) and are thus often omitted from studies using probabilistic methods. 

In addition to selecting the appropriate variables to include in a phase partitioning model, the 

quality and availability of the validation dataset is a critical aspect to consider. Indeed, the 

scarcity of validation data was cited by Harpold et al. (2017) as a major factor hindering the 120 

development of phase partitioning models. Direct manual phase observations collected from 

trained observers have been used to validate precipitation partitioning models (e.g. Behrangi et 

al., 2018; Dai, 2008; Froidurot et al., 2014; Jennings et al., 2018). Jennings et al. (2023) have 

also shown the possibility of using crowd-sourced precipitation phase data. While such datasets 

are extensive in time and space, they do not provide quantitative information on the snow and 125 

rain fractions in mixed-phase events, thus limiting the possible predicted precipitation phases to 

either solid or liquid.  

High-frequency automatic measurements do not suffer from limitations caused by mixed-phase 

precipitation (Froidurot et al., 2014; Harpold et al., 2017),. as the precipitation phase can be 

coupled with a concurrent precipitation amount. When both phase identification and 130 

precipitation gauge measurements are made at a high frequency, phase-separated precipitation 

can be compiled for hourly or more time steps, thus allowing for mixed-phase partitioning. One 

possible validation approach based on automatic data is to use precipitation measurements 

collocated with snow cover height measurements  (Harder and Pomeroy, 2013; Marks et al., 

2013). A more direct automatic approach is to use a disdrometer, which identifies the phase of 135 

the hydrometeor according to its size and falling speed. For instance, Wayand et al. (2016) 

utilized a disdrometer to associate precipitation phase with precipitation amounts, which helped 

evaluate multiple phase models. This combination of observations not only allows for the 

validation of a phase model, but also addresses a major limitation of previous studies, namely 

the partitioning of precipitation in the case of mixed-phase events. Another important factor to 140 

consider is the time step of the validation data. While many conceptual hydrological models 

employ daily time steps to determine precipitation phase, sub-daily time steps greatly enhance 

the accuracy of modelled phase (Feiccabrino, 2020; Harder and Pomeroy, 2013). Therefore, it is 

necessary to use sub-daily time steps, such as 15 minutes or hourly, as a significant portion of 

the phase model’s performance depends on the time step of interest. 145 
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There are many ways to improve the representation of the precipitation phase for hydrological 

purposes. As pointed out in Harpold et al. (2017), the often too simple phase models need more 

hydrometeorological observations for a successful partitioning of the precipitation phase. Such 

observations include the relative humidity, as well as atmospheric information, like the 

temperature and humidity lapse rate. Additionally, an important research limitation comes from 150 

the lack of validation data. Direct observations, while commonly utilized, have limited 

application for mixed phase precipitation due to their qualitative nature. A preferable solution 

involves automated phase observations, as they enable the coupling with precipitation rate 

measurements. AdditionallyHowever, direct phase observations datasets indicate the existence 

of a temperature transition zone, where both snow and rain are possible. This highlights the 155 

limitations of simplistic phase models that fail to capture the complex nature of phase 

determination. 

This study leverages a unique regional-scale radar disdrometer network coupled with 

precipitation observations to develop a probabilistic phase partitioning model. The probabilistic 

model follows a phase-guided partitioning (PGP) in the form of a chain of random forest models. 160 

The precipitation phase is classified before partitioning to accurately replicate its intricate 

behaviour and to take advantage of the significant amount of validation data available through 

such a network. As such, the models classify the precipitation as either solid, liquid, or mixed 

phase. The predicted phase then dictates the partitioning into solid and liquid fractions. 

Additionally, multiple PGP models with lower data requirements are developed to evaluate the 165 

possibility of utilizing such models in practical operations. This study begins with a description 

of the precipitation dataset and hydrometeorological variables used, followed by the 

methodology used to develop the PGP models. Finally, the results section presents an analysis 

of the dataset and evaluates the model’s phase classification and partitioning performance, 

comparing it to benchmark models of differing levels of complexity. 170 

2 Data 

2.1 Surface hydrometeorological measurements 

The disdrometer network used for this study was deployed on the north shore of the St. Lawrence 

River in the province of Quebec, Canada (Fig. 1). It is part of a larger hydrometeorological 

observation network operated by Hydro-Quebec, a public utility responsible for the generation 175 

and distribution of electricity in Quebec. The network lies between latitudes 47.23 and 52.13 °N, 

and longitudes 63.17 to 75.29° W, spanning an area of roughly 1,138,000 km2. The 27 stations 

have been in operation for varying periods of time between the years 2019 and 2023, totalling 

80 site-years. The sites’ elevations ranges from 315 to 641 m above sea level (ASL), for an 
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average of 469 m ASL. The names, coordinates, and operational timeframes for each station are 180 

presented in the Appendix A.  

The sites have a mean annual 2-m air temperature of 0.2°C and a mean annual cumulative 

precipitation of 902 mm, calculated from 160 site-years of daily observations. Figure 2 illustrates 

the distribution of annual mean daily 2-m air temperature and precipitation, as well as the 

elevation of the sites. The annual precipitation decreases with latitude, as the northern sites (>51° 185 

N) experience an annual mean of 813 mm. The southernmost sites (<4849° N) see significantly 

receive more precipitation on average, with an annual mean of 1002 mm. However, the 

variability observed at these sites is much greater than observed elsewhere. The sites’ elevation 

followfollows a mostly a normal distribution in the within a 400 m range between sitesof the 

mean, with elevations generally increasing northward. Following Köppen climate classification, 190 

the sites are nearly evenly split between humid continental (Dfb) and humid subarctic (Dfc) 

climates. The study period spans from October 1 to June 1 of the following year, as the chances 

of snowfall are practically non-existent outside of these dates for the domain of interest. 

 

Figure 1: Location of the study sites in eastern Canada. The black square in the top left inset corresponds to 195 

the map domain. 

Each site is equipped with a radar-based disdrometer (model WS100, Lufft), providing 15-min 

phase observationsidentifications. The WS100 is a K-band (24 GHz) Doppler radar that 

classifies droplets into 11 size classes between 0.3 and 5.0 mm. The disdrometer assigns World 

Meteorological Organization (WMO, SYNOP table 4677) present weather codes for no 200 

precipitation (code 0), rain (code 60), freezing rain (code 67), mix of snow and rain or drizzlemix 

of rain or drizzle and snow (code 69), and snowfall (code 70). The precipitation phase is 

identified according to the hydrometeor diameter-fall velocity relationships for water droplets 

outlined in Gunn and Kinzer (1949), as well as in Locatelli and Hobbs (1974) for solid-phase 
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precipitation particles. Rain and snow falling velocity as a function of measured reflectivity from 205 

K-band Doppler radar was investigated in Atlas et al. (1973) and remains an area of active 

research (e.g. Garcia-Benadi et al., 2020; Kneifel et al., 2011; Löffler-Mang et al., 1999; Sarkar 

et al., 2015). For simplicity, the phase identifications derived from the diameter-fall velocity 

relationships are referred as observations in this study. In addition, each site also provides 

measurements of SWE using a passive gamma ray monitoring system (model CS725, Campbell 210 

Scientific) and snow depth using an ultrasonic sensor (SD, model SR50A, Campbell Scientific).   
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Figure 2: Distributions of the (a) annual mean temperature, (b) annual mean precipitation and (c) elevation at 

the study sites, separated by latitudinal range. 215 

The meteorological observations in this study are come from weather stations near the 

disdrometer stations, operated by Hydro-Quebec and SOPFEU, the province’s wildfire 

prevention organizsation. The weather stations provide 15-min accumulated precipitation 

(model Pluvio2 by OTT, equipped with a single-Alter shield), allowing the coupling of 

precipitation with concurrent disdrometer phase identification. The weather stations measure 220 

hourly air temperature (model CS109, Campbell Scientific) and relative humidity (model 

HMP155a, Campbell Scientific) with sensors mounted at 2 m above ground level. Additionally, 

wind speed and direction are monitored at a 15-min interval with a ground propeller anemometer 

(model 05103, Young) mounted 2 m and 10 m above the ground surface.  

Most of the study sites and weather stations are located in close proximity to each other. 225 

Specifically, 67% of the study sites are within 3 km of or collocated with the nearest weather 

station. The remaining stations are between a median distance of 7 km and a maximum distance 

of 12 km. The only exception is the AUXLOUPS station and the nearest weather station, which 

are separated by 28 km. To account for the elevation differences between the study sites and 

weather stations, the air temperature measurements were adjusted using international standard 230 

atmosphere methods. The discussion section will address the uncertainty related to the distance 

between the study site and the weather station. The temporal resolution and detailed 

specifications about the study sites’ instruments are provided in Table 1. 

Table 1: Study site instruments details. 

Model, 

manufacturer 

Temporal 

resolution 

Observation Specifications 

WS100, Lufft 15 min Precipitation 

phase 

See section 3.1 and Appendix B. 

Pluvio2, OTT 15 min Precipitation rate Resolution: 0.1 mm 

Accuracy: ±0.05 mm 

CS109, Campbell 

Scientific 

60 min Near-surface air 

temperature 

Accuracy: ±0.2°C (from 0°C to 

70°C), increasing to ±0.5°C at 

−50°C 

HMP155a, 

Campbell 

Scientific 

60 min Near-surface 

relative humidity 

Accuracy: ±(1.0 + 0.008 × 

reading) % RH (from −20°C to 

40°C) 

05103, R.M. 

Young 

15 min Wind speed 2 m 

above ground 

Wind speed threshold: 1.0 m s–1 

Accuracy: ±0.3 m s−1 
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SR50A, Campbell 

Scientific 

60 min Snowpack depth Resolution: 0.25 mm 

Accuracy: ±1 cm or 0.4% of 

distance to target 

CS725, Campbell 

Scientific 

6 h Snowpack SWE Resolution: 1 mm 

Accuracy: ±15 mm (from 0 mm 

to 300 mm) 

 235 

2.2 Reanalysis products 

Hourly atmospheric data from the ECMWF-ERA5 reanalysis (Hersbach et al., 2023) are added 

to this study’s dataset, to account for the energy transfer to falling hydrometeors in the 

atmosphere closest to the surface. Furthermore, this will help assessing the potential 

performance gain of incorporating gridded data, despite the spatial scale discrepancy with local 240 

observational data. The added data include temperature profiles for pressure levels of 1000 and 

850 hPa. The corresponding geopotential height of these levels is also added to the dataset. The 

values from the nearest 0.25° × 0.25° grid cell, roughly 28 km × 18 km at the study sites’ latitude, 

are assigned to every study site. Additionally, the hourly surface atmospheric pressure from 

ERA5-Land (Muñoz Sabater, 2019) is added to the dataset, as it was not measured at the weather 245 

stations used in this study. The atmospheric pressure from the nearest 9 km × 9 km grid space is 

assigned to every study site. From this data, the thickness Δ𝑧 between the 1000 and 850 hPa 

layers (m) is calculated with: 

Δ𝑧 =
𝑧଼ହ଴ − 𝑧ଵ଴଴଴

𝑔
(1) 

wwhere 𝑧଼ହ଴ and 𝑧ଵ଴଴଴ correspond to the geopotential heights (m2 s−2) at the top and bottom of 250 

the layer, and 𝑔 is the gravitational acceleration (9.81 m s−2). The layer thickness between the 

two pressure levels is correlated with the mean temperature of the layer and indicates the travel 

time of the hydrometeor in the air column. It is also a commonly used variable in operational 

meteorological models (Feiccabrino et al., 2015). The pressure levels were selected based on 

their successful use in the classification of the precipitation phase at the surface in prior studies 255 

(e.g. Bourgouin, 2000; Shin et al., 2022). The temperature lapse rate 𝛤  (°C km−1) is also 

calculated: 

𝛤 = −
Δ𝑇

Δ𝑧
× 1000 (2) 

where where Δ𝑇 correspond to the temperature difference between the 850 and 100 hPa layers 

(°C).  260 
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3 Methodology 

3.1 Precipitation data processing 

The observed 15-min precipitation amounts were compiled at the hourly time step. Each 15 min 

precipitation data segment was coupled with a disdrometer phase identification. Both valid, non-

zero values were required for the data segment to be included in the analysis. A first filter was 265 

applied, where hourly precipitations rates <  0.2 mm h–1 were considered erroneous trace 

amounts, following Environment and Climate Change Canada methodology standard WMO 

methodology (WMO, 2018). A second filter was also applied where precipitations rates > 110 

mm h–1 were considered erroneous (Smith et al., 2022). A neutral aggregating filter (Ross et al., 

2020) was then applied to eliminate noise and diurnal oscillations to the precipitation data. 270 

Additionally, hourly precipitation exceeding 30 mm h−1 was visually inspected. Any data not 

consistent with nearby stations was considered invalid. 

The disdrometers used in this study can identify freezing rain and a mix of rain and snow in 

addition to snow and rain. However, as most hydrological models only interpret the effect of 

snow and rain, this study focuses on the prediction of solid and liquid precipitation. Therefore, 275 

the disdrometer identifications of freezing rain and of mix of snow and rain/drizzlemix of 

rain/drizzle and snow were aggregated, respectively with snow and rain events, respectively. For 

example, if an hourly precipitation has a fraction of rain and a mix of rain/drizzle and snow, it 

would be considered completely liquid after the aggregation. The selected phase aggregation 

aims to group the phases that are most similar in terms of hydrological influence and average 280 

occurring temperature. These assumptions are supported by an analysis of the effect of each 

precipitation phase on the snowpack properties (height and snow water equivalent), as detailed 

in Appendix B.  

When solid precipitation was identified, the universal transfer functions of Kochendorfer et al. 

(2017) were applied to adjust for wind-induced gauge undercatch. To do so, local hourly wind 285 

speed and temperature measurements at gauge height were used, which were shown to provide 

appropriate corrections for sites in boreal climates (Pierre et al., 2019). The solid and liquid 15-

min precipitation were then compiled at hourly time steps and partitioned into liquid and solid 

precipitation fractions, totalling 4431,790 905 data points. The resulting phase partitioning was 

used to classify the phase of each precipitation event as solid, liquid, or mixed, with respective 290 

dataset proportions of 71%, 22% and 7%. 



12/46 

 

Figure 3: Hourly event Event counts of (a) the main 15-min precipitation phase identified by the disdrometers 

and (b) the aggregated hourly precipitation phases according to the 2-m air temperature. 295 

Figure 3a shows the phase occurrence of the coupled 15-min precipitation data along an 

interpolated 15-min 2-m air temperature. The phase occurrence in Fig. 3b shows that it is mostly 

that the aggregation mainly affects the mixed and liquid precipitation that are affected by the 

aggregation, and that very few freezing rain events aggregated with snow events results in solid 
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precipitation counts being similar to snowfall countsthe snow and solid phase distributions being 300 

very similar. The aggregation of the mix of snow and rain/drizzlemix of rain/drizzle and snow 

with rain results in an increase in liquid precipitation in the 0–-5°C range. Mixed-phase 

precipitation occurs in the same air temperature range as that of the mix of snow and 

rain/drizzlemix of rain/drizzle and snow, suggesting that this phase is often present in mixed-

phase precipitation, thus validating the aggregation. A cursory analysis of the mixed-phase 305 

precipitation events revealed that events with a phase transition between snow and mix of snow 

and rain/drizzlemix of rain/drizzle and snow account for roughly 75% of the mixed-phase events. 

Transitions from rain to snow are infrequent and represent roughly 15% of the mixed-phase 

precipitation events, while the remainder includes other phase combinations. 

3.2 Model performance evaluation 310 

The models presented in this study are evaluated for their ability to correctly predict the 

precipitation phase using a variety of performance metrics. First, the metrics used to quantify 

the predictive ability of the models are the precision (PRE) and the recall (REC), as well as the 

F1 score (Rokach et al., 2023). The combination of precision and recall is commonly used to 

evaluate model classification performance, as the metrics indicate different information. The 315 

precision indicates the proportion of correct predictions for a given phase, while the recall 

indicates the probability of detection hit rate for a given phase. ConsequentlyBy definition, 

model precision and recall are inversely proportional. The assessment of both metrics informs if 

a model over or underpredicts a given class. For instance, low precision and high recall indicate 

a class overprediction, while high precision and low recall indicate a class underprediction.  320 

Therefore, a model that achieves good performance in both metrics is desirable.  

𝑃𝑅𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3) 

 

𝑅𝐸𝐶 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4) 

 325 

wwhere 𝑇𝑃, 𝐹𝑁, 𝐹𝑃 are the true positive, false negative and false positive counts respectively 

for a given phase. The F1 score, being the harmonic mean of the precision and recall, is a useful 

metric to quantify the general performance of the model, as it harshly penalizes a poor score in 

either metric.  

 330 

𝐹1 = 2 ൬
𝑃𝑅𝐸 × 𝑅𝐸𝐶

𝑃𝑅𝐸 + 𝑅𝐸𝐶
൰ (5) 
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These metrics are computed for each precipitation phase separately. A general score is also 

computed by weighing each phase’s score according to its proportion in the dataset. As such, the 

weighted F1 score is used as a general classification performance metric, as it combines both 335 

precision and recall, and harshly penalizes a poor score in either of them while also considering 

the dataset imbalance. 

 

Second, the model partitioning performance model isare evaluated based on the predicted solid 

and liquid precipitation amounts. The metrics used are the coefficient of determination R2 and 340 

the RMSE. Due to the slightly asymmetric phase distribution and overlap between the phases 

shown in Fig. 3, different R2 are calculated for the solid and liquid precipitation. Thereby, the 

metrics are calculated on the phase-separated precipitation rather than on the precipitation 

fraction, as the precipitation phase could be solid, liquid or mixed for a given temperature. 

Because of the partitioning between solid or liquid precipitation, the RMSE is equal to the root 345 

mean squared of the misclassified precipitation. Therefore, the RMSE is the same for both solid 

and liquid precipitation, and a single score is presented.However, the RMSE is only calculated 

for the solid precipitation, as the score would be equal for both solid and liquid precipitation. In 

other words, the RMSE amounts to the root mean squared misclassified precipitation. 

 Finally, the partitioning performance metrics are performed on different subsets of the dataset 350 

using a K-fold method. The K-fold validation method is commonly used to assess the variability 

of model performance with machine learning methods. By using different subsets of the dataset 

to train and validate the model K times, a more general performance can be assessed.  Because 

of the fewer liquid and mixed precipitation events compared to solid precipitation events, the K-

Fold is also stratified to maintain phase proportions between training and validation sets from 355 

fold to fold. As such, in the case of the partitioning validation, the variability of the precipitation 

amounts from fold to fold must be considered. The performance metrics are repeated until the 

variance of the partitioning performance metrics stabilizes. In this case, the validation was 

performed with 5-fold validation and was repeated six times for a total of 30 validation folds.  

3.3 Phase-guided probabilistic precipitation phase model 360 

Machine learning algorithms are powerful tools for building classification and regression 

models. Random forests (Breiman, 2001) are commonly utilized in the environmental sciences 

due to their simple implementation and lower susceptibility to overfitting compared to other 

models. The model is based on decision trees, where variables are randomly chosen at each node 

to create a prediction. Therefore, the decision trees, each unique due to randomness, provide 365 

predictions that are ultimately aggregated to generate a final well-informed prediction.  
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Given the overlapping phases of the data set, a Random Forest (RF) classifier is used to predict 

the precipitation phase with a probabilistic approach. The procedure to develop the RF model is 

illustrated in Fig. 4. To address the phase type imbalance, the data were adjusted by 

undersampling the solid phase and increasing the weight of both liquid and mixed precipitation 370 

phases in the dataset. To achieve this, only data points with air temperatures between –4 and 8°C 

were kept in the analysis. The phase proportions resulting from the undersampling are 60% solid, 

26% liquid and 14% mixed. The data were then split using an 80/20 ratio between the training 

and validation sets respectively, resulting in 13,339 data points for training and 3,335 for 

validation. To account for the prevalence of solid precipitation samples, Because solid 375 

precipitation events make up most of the samples, the training and validation sets were stratified 

to maintain the same aforementioned phase distribution proportions between the two subsets 

(60% solid, 26% liquid, 14% mixed).. Hyperparameters were optimized on the training set to 

increase the model performance and reduce the chance of overfitting by using a stratified 5-fold 

cross validation and maximizing for a weighted F1 score. The RF classifier was then retrained 380 

on the entire training data set and was ready for use on the validation set.  

Phase-stratified separation of dataset and solid phase 
undersampling

Study site data:
- Precipitation phase
- Phase fraction

Training set (80% of dataset)

Hyperparameter 
optimization

Train model with 
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- Temperature
- Relative humidity
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Reanalysis data:
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- Temperature lapse rate
- 1000-850 hPa layer

Input variables Output variables

 

Figure 4: Development and validation methodology for the Phase-Guided-Partitioning model. 

While the precipitation partitioning is straightforward when the predicted phase is either solid 

or liquid phase, it is less so for predicted mixed phase, where a solid and liquid precipitation 385 

fraction must be assigned. Thus, in the case of a predicted mixed phase, an RF regression model 

is developed following the same steps described above. The loss function used to optimize the 

regression model parameters is the mean-squared error (MSE), to increase the penalty on larger 
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errors. The Phase-Guided-Partitioning model predicts a precipitation phase, as well as a solid 

and liquid precipitation partitioning according to the predicted phase, with the complete process 390 

illustrated in Fig. 5. 

Predicted precipitation phase

Random forest 
classifier

Mixed phase 
precipitation? No

Solid/liquid 
precipitation 

quantities

Predicted solid/liquid 
fraction

Random forest 
regressor

Yes

 

Figure 5: Phase-Guided-Partitioning model structure. 

Multiple PGP models using a combination of atmospheric variables were developed. The subsets 

of input variables of the PGP models accommodate different levels of data availability, ranging 395 

from the strictest minimum data requirements (e.g., in an operational context) to atmospheric 

variables, with each subset fully incorporating the previous subsets (see Table 2). This approach 

will help to quantify the impact of some atmospheric variables that are not measured at surface 

weather stations. The simplest model, PGP_basic, includes only 2-m air temperature and site 

elevation. Next, PGP_hydromet includes all related near-surface hydrometeorological data, such 400 

as relative humidity, atmospheric pressure, and precipitation rate. Finally, the PGP_full model, 

as discussed in the previous sections, incorporates atmospheric data from reanalysis, specifically 

the thickness of the 1000-850 hPa layer and temperature lapse rate. 

Table 2: Listing of the input variables used in the tested PGP models. 

PGP model Input variables 

PGP_basic 2-m air temperature, elevation 

PGP_hydromet 2-m air temperature, elevation, relative humidity, atmospheric pressure, 

precipitation rate 
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PGP_full 2-m air temperature, elevation, relative humidity, atmospheric pressure, 

precipitation rate, 1000-850 hPa layer thickness, temperature lapse rate 

 405 

3.4 Benchmark phase partitioning models 

The benchmark models used for this study are common methods of increasing complexity found 

in hydrological models. First, a single 2-m air temperature threshold (ST) model is used as a 

baseline comparison. This model separates precipitation into solid and liquid phases based on a 

calibrated air-temperature threshold. While this type of model is widely used, it is generally 410 

associated with larger partitioning errors on a seasonal basis (Harpold et al., 2017). Second, a 

linear transition (LT) model is used. It allows for mixed-phase precipitation, while still being of 

low complexity. LT partitions the solid and liquid precipitation according to a linear relationship 

between a snow and rain temperature threshold. Finally, the psychrometric energy balance (PB) 

model is used, which is a physically based phase partitioning method based on the mass energy 415 

and energy balance of a sublimating ice sphere that integrates the relative humidity to estimate 

the hydrometeor temperature (Harder and Pomeroy, 2013). The estimated hydrometeor 

temperature is then used as an input in a two-parameter curvilinear relationship. All three 

benchmark models are calibrated individually with the least squares method, minimizing the 

error with the observed solid-phase fractions. The models and their calibrated values are given 420 

in Appendix C. The precipitation phase can then be inferred from the predicted fractions. In 

other words, mixed phase will be predicted in the instance of non-zero solid and liquid fractions, 

otherwise the predicted phase is either solid or liquid. Previous studies that employed 

probabilistic models based on direct phase observations (e.g. Behrangi et al., 2018; Jennings et 

al., 2018) were not included as benchmark models. Mixed-phase precipitation is typically 425 

excluded from such studies, as there is no effective method to accurately partition the 

precipitation due to the categorical nature of direct phase observations. The above considerations 

make such models difficult to compare with the PGP models presented in this study.Probabilistic 

models from previous studies (e.g. Behrangi et al., 2018; Jennings et al., 2018), were not 

included as benchmark models as the omission of mixed-phase events in such studies makes it 430 

difficult to compare the results. 

3.5 Input variable importance analysis 

A common way to interpret input variable importance for a machine learning model is to use 

permutation importance, which helps decreasing the black-box aspect of machine learning 

algorithms (McGovern et al., 2019). The performance of the model is computed according to a 435 

chosen scoring scheme. Each variable of the model is then shuffled individually. The goal of this 

step is to break the relationship between a variable and the desired prediction. After each shuffle, 

a performance score is calculated to show the decrease in model performance. This process is 
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then repeated several times to account for data variability. Thus, the relative importance of each 

input variable to the model can be quantified with the resulting performance decrease. 440 

Permutation importance analysis provides only the importance of an input variable to the model, 

not the inherent information provided by that variable. However, when shuffling a variable that 

is highly correlated to another, the model can still find the shuffled variable’s information when 

performing permutation importance analysis. In practice, this is an important consideration as it 

means the importance of either, or both, input variables can be lower. This analysis offers insight 445 

into the crucial variables for the PGP models and how they can be further improved. 

4 Results 

4.1 Dataset analysis 

The distribution of the hydrometeorological variables categorized by precipitation phase isare 

displayed in Fig. 6. The temperature distributions show a significant overlap between all three 450 

phases from 1.5 to 3.6°C, similar to that reported in Jennings et al. (2023). Mixed precipitation 

probability peaks at approximately 2.4°C. The distribution of relative humidity reveals that 

precipitation is associated with near liquid water vapour saturation conditions, with a median 

value of 97%, regardless of the precipitation phase. The mean precipitation rate is generally low, 

at 0.9 mm h–1. The median precipitation rate for mixed-phase events is generally the highest at 455 

0.8 mm h–1, followed by liquid-phase events at 0.7 mm h–1 and solid-phase events at 0.6 mm h−1. 

Atmospheric pressure distributions are similar for both liquid and mixed-phase precipitation 

events. The mean air pressure during the solid precipitation events is comparable to that of the 

other phases, but there are more events between 90 and 92 kPa. The distribution for the thickness 

of the 1000-850 hPa layer closely mirrors that of air temperature, given their general correlation. 460 

The temperature lapse rate averages 4.9°C km–1 and distributions, especially solid precipitation, 

show a bias toward the standard atmospheric lapse rate of 6.5°C km–1. 

The overlap of the phase distributions for each input variable, most notably the air temperature, 

indicates that a probabilistic approach is appropriate for predicting the precipitation phase. 

Indeed, between approximately 0 and 4°C, solid and liquid precipitation may occur separately 465 

or coexist. According to findings in previous studies, precipitation over land is more likely to 

occur in a single phase than in mixed phase precipitation (Dai, 2008; Froidurot et al., 2014), as 

is the case in this study, where only 13% of the precipitation data points are mixed phase. There 

is, however, a narrow 2-m air temperature range, between 2 and 2.5°C, where mixed-phase 

probability exceeds the probability of single-phase precipitation. An appropriate phase 470 

partitioning model must thus accurately predict the phase in the temperature interval where solid, 

liquid, and mixed precipitation occurrences overlap while also providing accurate partitioning 

when needed. 
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Figure 6: Input distributions separated by phase of (a) 2-m air temperature, (b) relative humidity, (c) 475 

atmospheric pressure, (d) precipitation rate, (e) 1000-850 hPa layer thickness, (f) air temperature lapse rate. 

4.2 Phase classification 

Figure 7 shows the phase density distribution of the benchmark models and the PGP models in 

comparison to the observations. The corresponding classification scores of the models, which 

were weighted to reflect the precipitation phase proportions in the dataset, are presented in Table 480 

3. The phase density distributions show the limitations of benchmark phase partitioning models, 

namely that the mixed phase is absent or overrepresented compared to the observations. 

However, ST performs well in all three metrics due to the low likelihood of mixed phase 

occurrence. When evaluating the overall classification performance using the F1 score, LT 

follows ST because of a disparity between precision and recall that affects its F1 score. The 485 

lower recall score for LT can be attributed to its overprediction of the less frequent mixed phase, 

which, in turn, negatively affects the recall of other phases. This enhances the model’s weighted 

precision by decreasing the number of false positives in non-mixed-phase prediction. The same 

reasoning can be more extensively applied to PB’s weighted scores. The mixed phase’s overlap 

with other phases significantly decreases the model’s overall recall. Due to the relationships used 490 

to create the benchmark models, the overlap between all three phases is not accurately 

represented. By including relative humidity, PB can model phase overlap, but this does not 

improve the modelled phase distributions density with respect to the observations.  
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Finally, tThe weighted F1 score for the PGP models shows that they have a more robust general 

performance, as they have high weighted precision and recall scores, while having a small 495 

disparity between both scores.  

The PGP models reproduce the observed phase overlap well, but slightly overpredict the mixed 

phase, affecting both the solid and liquid-phase predictions. PGP_basic overpredicts exhibits the 

most the greatest mixed phase overprediction, while the difference between PGP_hydromet and 

PGP_full is marginal. This result suggests possible improvements to PGP models, particularly 500 

for mixed-phase precipitation.  
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Figure 7: Modelled Hourly phase distributions according to 2-m temperature of the (a) observations, (b) single 505 

threshold, (bc) PGP_basic, (cd) linear transition, (de) PGP_hydromet, (ef) psychometric balance and (fg) 

PGP_full. PGP model details are summarized in Table 2. 

The classification scores of the various models in Table 3 were weighted to reflect the 

precipitation phase proportions in the dataset and reveal insightful performance patterns. ST 

performs well in all three metrics due to the low likelihood of mixed phase occurrence. When 510 

evaluating the overall classification performance using the F1 score, LT follows ST because of 

a disparity between precision and recall that affects its F1 score. The lower recall score for LT 

can be attributed to its overprediction of the less frequent mixed phase, which, in turn, negatively 

affects the recall of other phases. This enhances the model’s weighted precision by decreasing 

the number of false positives in non-mixed-phase prediction. The same reasoning can be more 515 

extensively applied to PB’s weighted scores. The mixed phase’s overlap with other phases 

significantly decreases the model’s overall recall. Finally, the weighted F1 score for the PGP 
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models shows that they have a more robust general performance, as they have high weighted 

precision and recall scores, while having a small disparity between both scores. 

 520 

Table 3: Weighted classification scores for Single Threshold (ST), Linear Transition (LT), Psychrometric 

Balance (PB) and Phase-Guided Partitioning PGP models. PGP model details are summarized in Table 2. 

Model F1 Precision Recall 

ST 0.74 0.71 0.79 

LT 0.71 0.88 0.66 

PB 0.31 0.88 0.30 

PGP_basic 0.82 0.86 0.80 

PGP_hydromet 0.84 0.85 0.83 

PGP_full 0.84 0.84 0.84 

 

The phase-separated classification metrics provide further insight into the performance of the 

models, shown in Fig. 8. The F1 score provides an overall performance for each phase 525 

prediction. PGP_full has the best F1 scores for both the solid and liquid phases, while 

PGP_hydromet has a higher F1 for the mixed phase. PGP_basic is generally the third best 

performing model in terms of F1 score, except for the solid phase, where ST outperforms it. 

While it is not able to predict the mixed phase, ST has the highest scores for the liquid and solid 

precipitation phases out of the benchmark models. This is probably because mixed-phase 530 

precipitation events are only roughly 13% of the samples, this low proportion does not 

significantly decrease the model’s performance. LT performs slightly worse than ST for both 

solid and liquid phases F1 scores but has the highest mixed-phase F1 score out of the benchmark 

models.  



24/46 

 535 

Figure 8: Model phase classification metrics separated by (a) the solid, (b) the mixed and (c) the liquid phase. 

PGP model details are summarized in Table 2. 

PB’s poor F1 scores are explained by the overlaps between the phases shown in Fig. 7. The 

model allows the predicted mixed phase to overlap with the predicted solid and liquid phases, 

which is the opposite behaviour of the observed phase density, where mixed-phase precipitation 540 

mostly exist in the solid and liquid phase overlap. Given the modelled phase density and the 

resulting classification scores, the phase prediction ability of both LT and PB suffers from 

overprediction of the mixed phase. This is evidenced by the significant disparity between the 

precision and recall scores of LT and PB for the mixed phase. A high recall score signifies that 

the model minimizes the number of false negatives, which negatively affects the model’s 545 

precision. Thus, overpredicting the mixed phase greatly reduces the models’ precision for the 

mixed phase, while greatly increasing their recall for the mixed phase. Conversely, the 

conservative prediction of the liquid and solid phases increases the precision of the model but 

decreases the recall for both phases.  
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 550 

Figure 8: Model phase classification metrics separated by (a) the solid, (b) the mixed and (c) the liquid phase. 

PGP model details are summarized in Table 2. 

 

Although they are not always the best models in terms of either precision or recall, the PGP 

models have the best general performance, making them more reliable for phase prediction. 555 

Thus, PGP models significantly reduces phase identification error by showing high precision 

and recall, with small disparities for solid and liquid phase prediction. However, PGP’s main 

distinguishing feature is its general ability to predict mixed-phase precipitation. Furthermore, 

the disparity between the precision and recall scores for the mixed phase is much smaller than 

for the other models studied, indicating that the overprediction of the mixed phase is much less 560 

severe for PGP.  

4.3 Precipitation partitioning 

Figure 9 displays how the regression metrics vary across validation folds. The precipitation rate 

variability has a significant impact on ST’s performance, making its ability to partition 

precipitation highly variable from winter to winter. In contrast, LT and PB exhibit better 565 

performance than ST due to their ability to partition the solid and liquid phases, with much less 

variability in performance. The variability of R2 for liquid precipitation is lower for LT and PB 

than for solid precipitation, because fewer of these events occur. For all regression metrics, LT 

and PB have similar performance. This is most likely due to the very humid environment, which 

decreases the difference between the 2-m air temperature and the hydrometeor temperature 570 

computed for PB.  
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Figure 9: Model regression performance in (a) R2 for solid precipitation, (b) R2 for liquid precipitation and (c) 

RMSE. PGP model details are summarized in Table 2. 

The average regression metrics in Table 4 shows the partitioning performance of the various 575 

models. All models have a high R2 for solid precipitation, likely due to the abundance of solid 

precipitation. However, model performance decreases for liquid precipitation R2, with ST being 

significantly lower than other models. This trend is also observed for the RMSE. While ST is 

the worst performing model, LT, PB and PGP_basic perform similarly in all regression metrics. 

The inclusion of hydrometeorological data in PGP_hydromet leads to a slight increase in 580 

performance. Lastly, the inclusion of atmospheric data in PGP_full improves performance 

compared to the other models. 

Table 4: Average regression scores for Single Threshold (ST), Linear Transition (LT), Psychrometric Balance 

(PB) and Phase-Guided Partitioning (PGP) models. PGP model details are summarized in Table 2. 

Model R2 solid R2 liquid RMSE (mm) 

ST 0.76 0.65 0.40 

LT 0.86 0.80 0.31 

PB 0.86 0.80 0.31 

PGP_basic 0.87 0.81 0.30 

PGP_hydromet 0.88 0.83 0.29 

PGP_full 0.89 0.85 0.27 

 585 
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Generally, the performance of PGP_basic is similar to that of LT and PB, with slight differences. 

PGP_basic is more variable in its performance for solid precipitation R2 and RMSE. This 

variability can be attributed to the misclassification of precipitation events due to its limited 

input variables.  The R2 scores for PGP_hydromet are less variable than for PGP_basic, while its 

RMSE is the most variable out of the PGP models. PGP_full exhibits the lowest variability for 590 

both R2 and is the only PGP model with RMSE variability similar to benchmark models LT and 

PB. 

The broader RMSE score range of the PGP models highlights the impact of misidentified phases. 

Misidentification can be more costly than for a benchmark model that systematically separates 

precipitation into solid and liquid phases for temperatures where mixed-phase events are 595 

possible. Furthermore, models such as LT and PB achieve partial accuracy in phase partitioning 

by forcing mixed-phase precipitation, but if a PGP model misclassifies the phase, the entire 

precipitation event may be incorrectly partitioned. However, PGP models do show that phase 

identification prior to phase partitioning can reduce the overall error of a model for both solid 

and liquid precipitation. This suggests that improved phase identification, specifically with 600 

mixed-phase prediction, could greatly enhance the accuracy of precipitation partitioning from 

PGP models. 

4.4  Input variable importance 

Figure 10 shows the correlation matrix of PGP_full input variables. While the correlation of 

most input variable combinations is low, the 2-m air temperature and 1000-850 hPa layer 605 

thickness are highly correlated. The layer thickness is affected by environmental temperatures, 

as the air density is inversely proportional to its temperature. Therefore, as temperatures 

increase, the distance between two pressure levels also increases. The layer thickness is affected 

by environmental temperatures, as the air density is inversely proportional to its temperature, 

which increases the distance between two pressure levels. There is a moderate negative 610 

correlation between elevation and air pressure, probably because of the small range of study site 

elevations. The temperature lapse rate has a small correlation with almost all features.  

Improving PGP models’ ability to accurately predict the mixed phase is manifold. The scoring 

scheme for permutation importance must be carefully selected according to the model and use 

case. FirstIn this instance, the PGP models tend to overpredict the mixed phase, which also 615 

negatively impact their ability to predict the other phases. In turn, this also affects the models’ 

partitioning error, which indicates that their overall performance is reliant on accurate phase 

classification. For these reasons, the chosen scoring scheme for the permutation importance is 

the weighted F1 score, to consider the classification of the imbalanced proportions of the phase 

dataset. 620 
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Figure 10: Correlation matrix of PGP_full input variables pairs. 
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Figure 11 shows the permutation importance of PGP_full input variables and the resulting 625 

decrease in the weighted F1 score on the validation set. The 2-m air temperature is the most 

important variable, with its permutation decreasing the score by more than 0.2. The second most 

important variable is the 1000-850 hPa layer thickness, a result shared by Shin et al. (2022). 

Because of its high correlation with the 2-m air temperature, it is difficult to interpret the real 

importance of this variable. In terms of classification performance, the addition of this variable 630 

seems to provide small improvements, as shown by the differences in classification metrics 

between PGP_hydromet and PGP_full.  

For the remaining variables, the importance decreases sharply. However, while the individual 

importance of the variables is low, they improve the phase classification when combined. This 

suggests that the additional variables used in PGP_full likely improve mostly mixed-phase 635 

prediction, which is supported by the model’s performance in section 4.2. The elevation is used 

to approximate the atmospheric pressure of a site and can improve phase partitioning (e.g. Ding 

et al., 2014; Behrangi et al., 2018). Furthermore, atmospheric pressure is often cited as an 

important variable for phase partitioning (e.g. Behrangi et al., 2018; Dai, 2008; Jennings et al., 

2018). The thinner air in low-pressure environment allows snow to reach the ground faster. The 640 

temperature lapse rate provides key information regarding the amount of energy the 

hydrometeors absorb before reaching the ground. 

 
Figure 11: Permutation importance of PGP_full input variable, showing the decrease in the model’s weighted 

F1 score. 645 

The precipitation rate has a minor impact on the performance of the model. Nevertheless, it may 

hold significance for the prediction of the mixed phase. The precipitation rate is linked to the 

precipitation phase as it increases the energy required to completely melt falling precipitation 

(Froidurot et al., 2014; Thériault et al., 2010). However, its effect is minimal, most likely due to 

the small proportion of mixed-phase events. Finally, the model ranks relative humidity as the 650 
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least important feature. This outcome is unexpected because relative humidity was shown to 

have a significant effect on phase partitioning (e.g. Behrangi et al., 2018; Jennings et al., 2018). 

One explanation could be the high percentage of data points near water vapour saturation, 

resulting in the variable being less regionally significant than more heterogeneous regions such 

as mountain ranges. Besides, this could account for the PB model’s underwhelming 655 

classification accuracy since it utilizes relative humidity to determine the precipitation phase 

and the fact that it was developed for the drier climate near the Canadian Rockies. 

5 Discussion 

5.1 Model performance and input variable importance 

The classification and regression metrics of the PGP models show that phase classification prior 660 

to phase partitioning reduces the partitioning error of solid and liquid precipitation, while also 

providing a more reliable phase prediction than benchmark models. The use of radar-based 

disdrometer measurements enabled the partitioning step of the model by providing precipitation 

fractions for mixed-phase events, a flaw mentioned in other studies (Froidurot et al., 2014; 

Jennings et al., 2018). Out of the benchmark models, ST displayed the best classification 665 

performance, despite not allowing for mixed-phase precipitation. The tendency of 

overpredicting mixed-phase precipitation of both LT and PB reduced their overall classification 

performance. This general behaviour was also observed in Leroux et al. (2023), where simpler 

methods outperformed methods based on a precipitation phase fraction. However, ST showed 

significantly worse partitioning performance compared to LT and PB. The limitations of 670 

precipitation fraction-based models are highlighted by the fact that LT and PB were the worst 

performing phase classification benchmark models, despite being the best partitioning 

benchmark models. These models were calibrated to minimize partitioning error, but in doing 

so, they are biased toward predicting mixed-phase precipitation. The mixed-phase prediction of 

the benchmark models could be artificially constrained to reduce overprediction and improve 675 

classification performance. Such constraints would, however, increase the benchmark models’ 

partitioning error, given that they were calibrated according to solid precipitation fractions. 

Therefore,As such, there is a trade-off between classification and partitioning error for 

precipitation fraction-based models such as LT and PB.  

PGP_basic, while showing an improvement in phase classification, did not significantly 680 

outperform the partitioning of benchmark models LT and PB. PGP_hydromet showed improved 

phase classification, notably for mixed phase, and partitioning. PGP_full showed further 

increase in overall performance, while also reducing the partitioning error variability. However, 

all PGP models tended to over predict the mixed phase as shown in Fig. 7. Reducing the 
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overprediction of mixed phase is a persistent challenge in improving precipitation phase 685 

modelling, as noted in previous studies (Casellas et al., 2021; Leroux et al., 2023). 

The permutation importance analysis showed that most input variables used, apart from the 2-m 

air temperature, are of low importance. However, the classification performance improvement 

of PGP_hydromet and PGP_full show the cumulative importance of the additional variables 

used, most notably for mixed-phase prediction. Despite many studies demonstrating its impact 690 

on precipitation phase, relative humidity was found to be the least important factor. This is likely 

due to the regional homogeneity, with most observations occurring near liquid water vapour 

saturation. The site elevation was considered important for phase classification, even though it 

is a constant variable. This suggests that an atmospheric pressure estimated by the elevation 

could provide enough information relevant to improve phase classification. Still, out of the 695 

hydrometeorological variables, the atmospheric pressure had the most impact on phase 

classification performance. This is in line with other studies that found it has a significant impact 

on the precipitation phase (e.g. Behrangi et al., 2018; Dai, 2008; Jennings et al., 2018), although 

generally to a lesser extent than relative humidity, when considering the regional variability. 

The precipitation rate’s low importance is most likely because it affects mixed-phase prediction, 700 

thus has low impact for overall performance. According to Thériault et al. (2010), higher 

precipitation rates raise the likelihood of larger hydrometeors, which require more energy to 

melt. Consequently, there is an increased likelihood of mixed-phase precipitation occurring in 

the form of partially melted hydrometeors. As noted by Feiccabrino et al. (2015), higher 

precipitation rates can lead to snowfall happening at warmer temperatures due to the presence 705 

of unstable air below the isothermal layer. 

The permutation importance of 1000-850 hPa layer thickness is second to the 2-m air 

temperature. However, because of the high correlation of the pair of variables combined with 

the moderate classification improvement of PGP_full, the real importance of the 1000-850 hPa 

layer is most likely low. While the importance of the temperature lapse rate is low, the 710 

partitioning results demonstrated that incorporating gridded atmospheric variables alongside 

local observations led to a reduction in the variance of the regression performance. This finding 

is noteworthy because few studies, as pointed out by Harpold et al. (2017), have explored the 

impact of incorporating atmospheric reanalysis data into phase modelling. Froidurot et al. (2014) 

indicated that models using atmospheric data did not greatly improve the phase prediction, as is 715 

the case in this study’'s classification performance. Furthermore, Dai (2008) emphasizes the 

terrain-dependent nature of lapse rates. Thus, even though the study sites in the region are 

relatively similar in terms of terrain, the importance of lapse rates in the modelling process was 

still significant, contrary to the fairly homogenous relative humidity measurements. 
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5.2 Coupled precipitation data uncertainty 720 

There are uncertainties regarding the results due to the dataset and assumptions employed. 

Hydrological models commonly limit the precipitation phases to solid or liquid. Nonetheless, 

this dataset includes a considerable quantity of mixed snow and rain/drizzle events, and it is 

uncertain how hydrological models should handle this precipitation phase. The phase 

aggregation step considered the behaviour of the snowpack following the different phases 725 

detected by the disdrometers. Following a mix of rain/drizzle and snow, the SWE and snow 

height tended to decrease, a snowpack response similar to that following a rain event. It can be 

inferred that this type of precipitation is likely to be dominated by rainfall given the warm 

temperature at which it occurs and the ensuing effects on the snowpack. However, it is probable 

that this interpretation is specific to the disdrometers used in this study unless evidence to the 730 

contrary emerges.  However, phase identification errors have the potential to introduce 

uncertainties in the results, notably in the case of mixed-phase precipitation.. To measure this 

uncertainty, it is recommended that studies be conducted using collocated WS-100 disdrometers 

and other well-documented options such as laser disdrometers, to assess the differences between 

ground-truth providing instruments (Harpold et al., 2017).  735 

Another source of uncertainty arises from the coupling of precipitation amounts and phase 

observations. Fehlmann et al. (2020) demonstrated that laser disdrometers have low missed 

event and false alarm rates for sub-daily integration times compared to precipitometers, but no 

such study was conducted with the radar-based disdrometers of this study. Additionally, the 

study from Fehlmann et al. (2020) was carried out in a site sheltered site from the wind, implying 740 

that the wind-induced gauge undercatch could not be studied. In turn, the wind could influence 

the missed event and false alarm rates of this study’s instruments. In this study, data segments 

where either the precipitation gauge or disdrometer did not detect any precipitation were 

discarded. Figure 12 displays the hit-rate of both the instruments at the initial 15-min intervals 

and shows that the instruments’ hit-rates are generally in agreement. The instrument hits were 745 

normalized over the precipitation gauge observations to compute relevant agreement metrics. 

The precipitation gauge is considered as ground-truth as it would be used in conjunction with a 

precipitation phase model and phase observations are rare in operational context. 
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Figure 12: Confusion matrix of the precipitometers and disdrometers 15-min precipitation hit-rate, normalized 750 

over the precipitometer observations. The upper-left metric is the probability of detection, upper-right metric 

is the miss rate, and the lower-left metric is the false alarm rate. 

Precipitation data segments of 0.1 mm coincide with 38% of the disdrometer misses. Assuming 

that a significant portion of this precipitation data would be labelled as trace amounts when 

resampled at the hourly interval (< 0.2 mm), the probability of missed events is likely lower in 755 

reality. Multiple factors could account for disagreements between the instruments, including the 

effect of wind, which likely varies from instrument to instrument, and the fact that certain 

stations are not collocated or nearby. However, the environmental effects on theof disdrometer 

performance lacks previous studies and requires more detailed investigation as outlined in 

Harpold et al. (2017).  760 

Figure 13 shows the variation of the instrument agreement according to the distance between 

stations. The station pairs are divided into four distance categories: less than 3, 4 to 7, 7 to 12 

and more than 12 km. Generally, the stations separated by less than 3 km show better agreement, 

with a few outliers. However, the instrument agreement does not seem to decrease with distance, 

as the 4 to 7 km category exhibits the poorest agreement. Notably, the AUXLOUPS station, 765 

separated by 28 km with the nearest weather station, has a probability of detection of 0.79, a 

false alarm rate of 0.14 and a miss rate of 0.21. These instrument agreement metrics are only 

slightly worse than the metrics of the 15-min dataset in Fig. 12. This suggests that instrument 

agreement is linked to site specific conditions rather than distance between stations. However, 

by discarding data points where the instruments do not agree, we ensure that precipitation events 770 

are consistent across study sites and weather stations. In addition, the coupling of instruments 

from nearby stations brings the spatial scale of the observational data closer to the scale of the 

reanalysis data.  
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Figure 13: Comparison of the (a) Probability of detection, (b) false alarm rate, and (c) miss rate according to 775 

the distance between the study site and paired weather station. The dashed grey line corresponds to the metric 

computed on the full dataset in Figure 12. 

5.3 Data validation across studies 

The phase observations from this study can be compared to other studies that use different 

validation data, such as direct observations (e.g. Behrangi et al., 2018; Dai, 2008; Jennings et 780 

al., 2018). However, it can be difficult to compare the phase occurrence according to the 2-m air 

temperature, as the datasets in such studies often exclude mixed-phase precipitation. 

Consequently, the mixed phase is usually not analyzed in detail. One method to simply compare 

phase partitioning models is the critical threshold air temperature value 𝐶𝑇௔, which is defined as 

the critical temperature threshold where both solid and liquid phase have 50% chance of 785 

occurrence. In the case of this study, we define a different critical threshold for solid 𝐶𝑇ௌ and 

liquid phase 𝐶𝑇௅, as well as a temperature where the probability for mixed phase is highest 𝑃௠. 

Figure 14 shows the probability of occurrence of the phases at the study sites separated in 0.2°C 

bins. The resulting thresholds are 𝐶𝑇ௌ of 1.3°C, 𝐶𝑇௅ of 3.8°C and 𝑃௠ of 2.4°C for a mixed-phase 

probability of 0.44. It is also noteworthy that 𝑃௠ is roughly where the probability of solid and 790 

liquid precipitation is equal. Because of this study’s aggregation step, 𝐶𝑇ௌ should be similar to 

𝐶𝑇௔ values from other studies, as the aggregation mostly affected the probability of mixed and 

liquid precipitation, and 𝐶𝑇௅ will be much warmer than 𝐶𝑇௔. 
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Figure 14: Observed probability of occurrence for the solid, liquid, and mixed phase. 795 

In Behrangi et al. (2018), the average hourly 𝐶𝑇௔  of 1.58°C aligns roughly with the study’'s 𝐶𝑇ௌ 

and the calibrated 2-m air temperature threshold of benchmark ST. One of the main conclusions 

from the study was that the wet-bulb temperature model is more robust than the dry-bulb 

temperature model, as the 𝐶𝑇௔ can vary significantly from site to site. Humid conditions lead to 

a cooler 𝐶𝑇௔ , while drier conditions have the opposite effect. As such, the 𝐶𝑇௔  for humid 800 

conditions would be approximately equal to the mean value minus the standard deviation, 

resulting in 1.18°C, and is thus closer to this study’s 𝐶𝑇ௌ of 1.3°C. Additionally, The the study's 

upper limit of 𝐶𝑇௔  has an upper limit of 2.16°C in Behrangi et al. (2018), which  closely   

matchesmatches the 𝑃௠ of this study. This finding lends credibility to the disdrometer phase 

identifications and the phase aggregation step, as it indicates the temperature range in which 805 

both solid and liquid phases are possible. 

In Dai (2008), the overland 3-hourly 𝐶𝑇௔ of 1.2°C is comparable to this study’s 𝐶𝑇ௌ, despite the 

different time step. The chance for mixed phase in this study is much higher and more likely at 

warmer temperatures than that of Dai (2008), where they report a peak 14.3% chance of mixed 

rain and snow at 1.4°C overland.  However, Ding et al. (2014) have shown that the probability 810 

of mixed-phase precipitation at the daily time step  greatly increases in humid conditions, 

particularly near saturation. Such an analysis would, however, be required at the hourly time 

step to confirm this behaviour. The reasoning for the increase in mixed-phase precipitation 

probability is that the increase in relative humidity decreases evaporative cooling and favours a 

transition from snow to rain. In contrast, the temperature difference between the hydrometeors 815 

and the air decreases as humidity rises, which decreases sensible heat transfer and hinders the 

transition from snow to rain. The relatively homogenous conditions of the study sites could 

explain the differences in mixed-phase precipitation probability, while the analysis in Dai (2008) 

lumped together a large amount stations.  
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The findings in Jennings et al. (2018) report a much lower 3-hourly 𝐶𝑇௔  of 0.7°C for 820 

precipitation in 90–-100% relative humidity and 0.9°C for precipitation occurring in 90–-105 

kPa, humidity and pressure conditions where the majority of this study’s precipitation occur. 

The greater difference between these 𝐶𝑇௔ and 𝐶𝑇ௌ could be due to several reasons. First, the 3-

hourly 𝐶𝑇௔ should theoretically be lower than the hourly 𝐶𝑇௔. As the time step increases, the 

occurrence of mixed-phase precipitation increases due to the higher likelihood of a phase 825 

transition. Second, the different types of validation data could explain why 𝐶𝑇௔  is generally 

lower than 𝐶𝑇ௌ. Phase identification errors, particularly near the solid-liquid phase transition, 

could also differ between direct observations and radar disdrometers. The source of the 

validation data, direct manual observations versus automated observations, could account for the 

difference. The longer time step may lead to a lower critical threshold because the energy needed 830 

to melt the precipitation can be supplied over a longer period.  

Overall, the radar-based disdrometer measurements are similar to the findings of previous 

studies, although with generally slightly warmer conditions of occurrence for solid precipitation. 

, but However, more research is needed to properly quantify the uncertainties associated with 

this type of disdrometer. In addition, models based on automated phase observations may differ 835 

from those based on direct observations, especially as the time step can vary from study to study. 

This also highlights the importance of the verification step performed after aggregating mixed 

snow and rain/drizzle with rainfall, as their effect was deemed closer to that of rainfall. 

6 Conclusion 

The study used phase measurements from radar-based disdrometers to train probabilistic models 840 

to classify and partition precipitation data for a network of study sites in eastern Canada. The 

study sites were located in predominantly boreal climates and at similar elevations, ranging from 

315 to 641 metreers above sea level. The mean annual 2-meter air temperature was around 0.2°C, 

and the cumulative annual precipitation was significant at 902 mm. The humidity conditions for 

the data points used in the study were generally close to water vapour saturation. The utilization 845 

of automated measurements enabled partitioning of precipitation for mixed-phase events, which 

were previously limited with direct phase observations. The studied PGP models showed an 

improvement in phase partitioning with prior phase classification compared to benchmark 

models of varying complexity. PGP provides more accurate phase classification, which can 

benefit hydrological modelling at both local and watershed scales. It successfully reproduced the 850 

phase overlap between 1.5 and 3.5°C seen in Fig. 7, where mixed phase probability was the 

highest.  

The classification performances show a substantial enhancement in phase classification as 

opposed to benchmark models, which were designed to minimize errors in phase partitioning. 
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Additionally, the PGP models reduced partitioning error, especially PGP_hydromet and 855 

PGP_full.  However, due to prior classification, partitioning performance is highly dependent on 

classification performance. As a result, the less complex PGP_basic had increased error 

variability. According to the input variable importance analysis, atmospheric pressure was the 

second most important hydrometeorological near-surface variable for phase classification. The 

reanalysis atmospheric data reduced the partitioning error variability of PGP_full in comparison 860 

to the other PGP models. As for relative humidity, it was deemed to be the least important 

hydrometeorological feature for phase classification due to the regional homogeneity of the study 

sites. Overall, these findings demonstrate that automated phase observations enhance PGP 

method development and significantly improve precipitation phase classification, even with 

limited hydrometeorological information. The incorporation of reanalysis atmospheric data 865 

further enhances the accuracy of local observations, pointing towardtowards potential 

operational applications for such methods.  

The presented methodology of this study could be applied to other environments, including drier 

conditions or a broader spectrum of environments. Further research should include a 

comprehensive comparison of the radar-based disdrometers used in this study with other phase 870 

validation techniques to assess potential limitations. Research is also needed to improve the 

prediction of the mixed phase. Other variables such as wind speed could be considered, as high 

wind speed can have a cooling effect on precipitation. Additionally, the impact of using a model 

that combines both phase classification and partitioning on snowpack accumulation and basin 

mass and energy dynamics should be investigated.  875 
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Appendix A. Study sites details 
 

Table A1: List of study site coordinates, elevation, and timeframes whenre the station has been in operation. 

Station name Longitude  

(° W) 

Latitude  

(° N) 

Elevation  

(m ASL) 

Operational timeframe 

ARGENT 69.778857 50.776574 641 2020-2023 

AUXLOUPS 70.487430 51.905890 537 2020–-2023 

BAUBERT 63.556960 51.409460 541 2020-2022 

BETSIA_M 69.913268 49.976570 403 2019-2023 

CABITUQG 69.513611 49.573333 491 2019-2023 

CONRAD 74.261131 47.607249 433 2020-2023 

DIAMAND 73.183080 47.231302 373 2020-2023 

GAREMANG 67.139860 51.110640 778 2020-2023 

HARTJ_G 67.945980 51.779310 460 2020-2023 

LACROI_G 70.079390 51.328710 621 2019-2023 

LAFLAM_G 70.270496 48.930225 519 2019-2023 

LBARDO_G 67.828433 51.111896 486 2019-2023 

LEVASSEU 68.754960 51.268480 466 2020-2023 

LOUIS 68.489740 49.886620 315 2020-2023 

LOUISE_G 68.839767 50.658526 397 2019-2023 

MOUCHA_M 69.527780 52.125510 565 2019-2022 

NOIRS 68.831730 50.121160 385 2020-2023 

PARLEUR 69.522370 51.285470 485 2020-2021 

PERDRIX 67.967450 50.129460 315 2022-2023 

PIPMUA_G 70.915810 49.360520 566 2020-2023 

PORTO 70.275910 49.584230 413 2020-2023 

ROUSSY_G 68.094360 50.423470 456 2020-2023 

RTOULNUS 67.476760 50.964750 688 2020–-2022 

SAUTEREL 63.838040 51.917820 459 2020–-2023 

STMARG_G 67.046360 51.891980 461 2020–-2023 

WABISTAN 73.441157 48.484572 565 2020–-2023 
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Appendix B. Disdrometer phase identification validation 880 
Snow water equivalent (SWE) and snow depth observations were compiled from the entire 

network on a winter-by-winter basis. If more than 30% of a winter’'s snowpack observations 

were missing at a station, the winter is not included in this analysis. The resulting data subset 

consists of 11 winter-sites with a total of 53,520 hourly data points. The hourly data was then 

separated into precipitation events. The following filters were applied to the events: 885 

- Duration ≥ 3 h, 

- Mean 2-m air temperature between −5 and 5°C, 

- Total precipitation ≥ 0.5 mm, 

- Mean SWE ≥ 15 mm. 

This filtering step aimed to exclude short events and events that occurred either in warmer 890 

conditions, where phases other than rain are uncommon, or in the absence of snow cover 

detectable by the instrumentation in place. As such, 235 precipitation events were retained. In 

addition to the data points encompassing each event, the following hours were added until the 

next update of the SWE observations, at most 6 hours. The events were then classified according 

to their main precipitation phase, that is the phase associated with at least half the total 895 

precipitation of the event.  

The mean 2-m air temperature, SWE variation (∆SWE), and snow depth variation (∆SD) are 

compiled from precipitation events, according to the main precipitation phase of the event (Table 

B1). The effects of rain and the mix of snow and rain/drizzlemix of rain/drizzle and snow events 

on the snowpack are similar, a SWE increase accompanied by a SD decrease. In addition, the 900 

average temperature of mixed snow and rain/drizzle events is significantly above the freezing 

point, where rainfall is more likely to occur than snowfall. In the case of freezing rain, the 

average temperature during the events is more similar to snowfall. Although freezing rain does 

not generally increase the SD, it contributes to the solid component of the snowpack as it freezes 

on contact. Thus, the phase aggregation of this study was based on the hydrological impact and 905 

temperature range of freezing rain and the mix of snow and rain/drizzlemix of rain/drizzle and 

snow.  

Table B1: Precipitation events characteristics separated by phase. 

Main phase Event 

count 

Mean 

temperature (°C) 

 ∆SWE 

(mm) 

∆SD 

(cm) 

Snow 192 -2.0 3.0 3.3 

Rain 12 3.6 3.5 -1.8 

Mix of snow and rain/drizzleMix of 

rain/drizzle and snow 

19 1.5 5.9 -1.5 

Freezing rain 12 -1.7 3.2 0.2 
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Appendix C. Benchmark models description 
The single threshold model ST to compute the solid precipitation fraction 𝑓௦௡௢௪ (-) functions as 910 

follows: 

𝑓௦௡௢௪ = ቊ
1  𝑇௔ ≤ 𝑇௄

0 𝑇௔ > 𝑇௄

(𝐶1) 

 

wwhere 𝑇௔  is the temperature (°C) and 𝑇௄  is the calibrated temperature threshold (°C). The linear 

transition model LT uses two calibrated thresholds to calculate 𝑓௦௡௢௪: 915 

𝑓௦௡௢௪ = ൞

1 𝑇௔ ≤ 𝑇௦௡௢௪

𝑇௥௔௜௡ − 𝑇௔

𝑇௥௔௜௡ − 𝑇௦௡௢௪
𝑇௦௡௢௪ < 𝑇௔ < 𝑇௥௔௜௡

0 𝑇௔ ≥ 𝑇௥௔௜௡

(𝐶2) 

 

wwhere 𝑇௥௔௜௡  and 𝑇௦௡௢௪  are the calibrated rain and snow thresholds (°C). Finally, the 

psychrometric energy balance model PB (Harder and Pomeroy, 2013) calculates 𝑓௦௡௢௪  as 

follows:920 

𝑓௦௡௢௪ =
ଵ

ଵା௕ା௖೅೔
(𝐶3) 

 

wwhere 𝑏 and 𝑐 are calibrated values and 𝑇௜  is the temperature of an unventilated hydrometeor 

temperature (°C). Based on the mass balance of a sublimating ice sphere,  𝑇௜ is calculated 

iteratively with the following function: 925 

𝑇௜ = 𝑇௔ + 𝐿௧

𝐷

𝜆௧
൫𝜌்ೌ − 𝜌்೔

൯ (𝐶4) 

 

wwhere 𝐿௧  is the latent heat of sublimation or vaporization (J k−1  ), D is the diffusivity of water 

vapouur (m2 s−1), λt is the thermal conductivity of air (J m−1 s−1 K−1) and 𝜌்ೌ , 𝜌்೔  are the water 

vapouur density of the surrounding air and on the hydrometeor’s surface respectively (kg m−3). 930 

The procedure to compute the variables is as detailed in Harder and Pomeroy (2013). D is 

computed following Thorpe and Mason (1966): 

𝐷 = 2.06 × 10ିହ ൬
𝑇௔

273.15
൰

ଵ.଻ହ

(𝐶5) 

 

The vapouur pressure 𝑒 (kPa) is computed from Dingman (2015): 935 
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𝑒 =
𝑅𝐻

100
× 0.611 exp ൬

17.37𝑇

237.3 + 𝑇
൰ (𝐶6) 

where 𝑅𝐻  is the relative humidity (%) and 𝑇  is the air temperature (°C). 𝜌  is computed 

following the ideal gas law:  

𝜌 =
𝑚௪𝑒

𝑅𝑇
(𝐶7) 

 940 

wwhere 𝑚௪  is the molecular weight of water (0.01801528 kg mol−1) and 𝑅 is the universal gas 

constant (8.31441 J mol−1 K−1). The air thermal conductivity 𝜆௧  is computed from List (1951): 

𝜆௧ = 0.000063𝑇௔ + 0.00673 (𝐶8) 

 

Finally, the latent heat of sublimation (𝑇௔  <  0) and vaporization (𝑇௔  ≥  0) are computed as 945 

follows (Yau and Rogers, 1996): 

𝐿௧ = ቊ
1000(2834.1 − 0.29𝑇௔ − 0.004𝑇௔

ଶ) 𝑇௔ < 0

1000(2501 − 2.361𝑇௔) 𝑇௔ ≥ 0
(𝐶9) 

 

Table C1 shows the calibrated parameters for the models presented in this section. The 

calibration was made on the same training set used for the PGP models. Figure C1 shows the 950 

simulated solid fraction for the benchmark models, as well as the observed solid fraction. 

Table C1: Benchmark model calibrated parameters. 

Model Calibrated parameters 

Single threshold (ST) 𝑇௄ = 1.50 

Linear transition (LT) 
𝑇௦௡௢௪ = −0.38 

𝑇௥௔௜௡ = 5.00 

Psychrometric balance  

(PB) 

𝑏 = 6.34 

𝑐 = 0.39 
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Figure C1: Observed solid precipitation fraction according to the 2-m air temperature and the modeled solid 955 
precipitation fraction of the a) static threshold, b) linear transition and c) psychrometric balance. 
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7 Data availability 

The data used to train/calibrate the models in this study are available at 
10.5281/zenodo.10790810. Supplementary data in the analysis are available from the 960 
corresponding author upon reasonable request. All data are subject to Hydro-Québec’s Creative  
Commons Attribution - Non‑Commercial 4.0 International licence 
(https://www.hydroquebec.com/documents-data/open-data/licence.html). 
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