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Abstract 16 

We focus on the way temporal distributions of key components of the water cycle are influenced 17 

by typically uncertain parameters embedded in a Land Surface Model. We rest on a joint analysis of 18 

multiple global sensitivity metrics to provide a comprehensive assessment of the ranking of the relative 19 

importance of uncertain factors of various origins on the hydrological system response. The latter is 20 

rendered in terms of the temporal dynamics of transpiration, evaporation, and groundwater recharge. 21 

The NIHM (Normally Integrated Hydrological Model) modular Land Surface model is applied to 22 

simulate realistic field conditions (in terms of, e.g., climate, vegetation, and soil type) associated with 23 

two watersheds in the Vosges region (France) across a one-year period. These watersheds are 24 

characterized by similar climatic conditions while being associated with differing soil types and 25 

vegetation. Uncertain model parameters we consider comprise monthly values of albedo and leaf area 26 

index, vegetation-related parameters, as well as parameters related to the soil types associated with the 27 

litter layer and root zone. Four diverse sensitivity indices are used to quantify impacts of uncertain 28 

model parameters on the whole probability distribution or given statistical moments of the density 29 
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function of model outputs. Our results document that the strength of the relative importance of model 30 

parameters depends on the statistical moment considered. Evaporation is directly influenced by the 31 

energy flow through the canopy and by the parameters associated with the top litter layer. As one could 32 

expect, transpiration appears as mainly influenced by the vegetation characteristics and by albedo that 33 

influences the incoming radiation. Groundwater recharge is influenced only by a very limited number 34 

of model parameters. It mainly depends on soil-related parameters and is unexpectedly not sensible to 35 

any of the vegetation parameters considered, except the root layer thickness and the intercept. 36 

  37 

https://doi.org/10.5194/hess-2024-73
Preprint. Discussion started: 4 April 2024
c© Author(s) 2024. CC BY 4.0 License.



3 

 

1 Introduction 38 

Since the work of Manabe (1969), Land Surface Models (LSMs) have become critical tools for 39 

modeling energy balance, water cycle, vegetation dynamics, and their feedbacks. They constitute one 40 

of the key routines employed in General Circulation Models (GCMs) to evaluate the effects of climate 41 

change on the Earth surface as well as in modeling workflows routinely used for water resources 42 

management. Numerous LSMs have been developed in the last decades (e.g. Blyth et al., 2020; Fisher 43 

and Koven, 2020; Overgaard et al., 2006; and references therein). These are characterized by various 44 

levels of complexity such as, e.g., LSMs described in Niu et al., (2011), Maneta and Silverman (2013), 45 

Decharme et al., (2019), Lawrence et al., (2019), Wiltshire et al., (2019) or Yokohata et al. (2019). 46 

A primary purpose of a LSM is to simulate exchanges of energy and water between the land surface, 47 

the underground, and the atmosphere. Due to the variety of processes that are mathematically rendered 48 

therein, LSMs embed numerous input parameters related to vegetation, energy transfer and water 49 

fluxes across the atmosphere and in the soil. Many of these parameters (e.g., soil attributes or 50 

vegetation characteristics) are difficult to quantify through direct measurements and may vary across 51 

scales and locations. These elements typically lead to uncertainty in our knowledge of the values of 52 

such parameters (Beven and Smith, 2014). In case a target model output is not (or only minimally) 53 

affected by the particular value associated with certain parameters, it may be appropriate to rely on 54 

typical literature values for these. It is then important to properly identify parameters that significantly 55 

impact model outputs. 56 

In this context, sensitivity analysis enables one to quantitatively rank the influence that diverse 57 

uncertain model parameters, involved in the mathematical rendering of different processes, have onto 58 

model predictions of interest. Thus, sensitivity analysis should be considered as an integral and 59 

essential step in the diagnosis and understanding of complex models of hydrological systems (Ferretti 60 

et al., 2016; Song et al., 2015; Vemuri et al., 1969; Razavi et al., 2021). Sensitivity analyses can yield 61 
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valuable information about LSMs development, potentially simplifying mathematical representations, 62 

and streamline LSMs calibration by omitting uninfluential parameters (Mc Cuen, 1973). 63 

Demarty et al. (2005) perform a sensitivity analysis of soil heat conduction flux, sensible heat flux, 64 

latent heat flux, water content of the upper five soil centimeters and local directional brightness 65 

temperature considering 35 input parameters associated with the physically-based model SiSPAT-RS 66 

(Braud et al., 1995). Their findings indicate the saturated water content of the upper 5 cm of soil and 67 

the thermal infrared brightness temperature as the most influent model parameters. Liang and Guo 68 

(2003) compare the sensitivity of evapotranspiration, total runoff, sensible heat flux and soil moisture 69 

to 5 model parameters that appear in 10 different LSMs. Their results show that parameters associated 70 

with soil properties appear to play a more significant role than those associated with vegetation 71 

properties whereas the outputs of the diverse models considered exhibit the highest sensitivity to the 72 

maximum soil moisture content, considering three different hydroclimatic scenarios. Bastidas et al. 73 

(2006) assess parameter sensitivity of 5 different LSMs with increasing level of complexity in the 74 

description of vegetation-related physical processes. They show that (a) the sensitivity of the energy 75 

budget component to parameters with similar physical meaning employed in the diverse LSMs 76 

analyzed depends on the specific LSM model and varies depending on the location of the system, and 77 

(b) soil-related parameters could be considered as most influential. Based on the hydrologic model 78 

WetSpa (Wang et al., 1996), Yang et al. (2012) highlight the intense sensitivity of runoff flow rate of 79 

two water catchments to the parameters involved in the description of the evapotranspiration process. 80 

Li et al. (2013) employ diverse sensitivity analysis methodologies to assess the sensitivity of 6 model 81 

outputs of the LSM CoLM (Dai et al., 2003), i.e., sensible heat, latent heat, upward longwave radiation, 82 

net radiation, soil temperature, and soil moisture, with respect to 40 uncertain model parameters. Their 83 

results highlight that all model outputs are sensitive to the Clapp and Hornberger parameter (which is 84 

related to soil water retention, see Clapp and Hornberger, 1978), while (i) aerodynamic roughness 85 

length markedly influences the sensible and latent heat fluxes (along with the upward longwave and 86 
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net radiations and soil temperature), and (ii) soil porosity chiefly governs soil moisture. Li et al. (2013) 87 

suggest that latent heat flux (related to evapotranspiration) is also sensitive to quantum efficiency of 88 

vegetation photosynthesis and minimum soil suction. Baroni and Tarantola (2014) employ classical 89 

variance-based Sobol indices to rank the importance of model parameters and forcing terms involved 90 

in the simulation of the mean soil moisture of the root zone, the cumulative evaporation, and the water 91 

flux below the root zone upon leveraging on the SWAP model (van Dam et al., 2008). Their results 92 

suggest uncertainty related to the crop parameters (i.e., crop height, root depth, and the Leaf Area 93 

Index (LAI)) does not have a significant effect on these three model outputs in the setting analyzed. 94 

Sobol indices estimated through a surrogate model are also used by Maina et al. (2022) to highlight 95 

the significant impacts of hydrodynamic parameters’ uncertainties on simulated evapotranspiration. 96 

These Authors show that, under energy limited conditions and where plants have access to 97 

groundwater, the uncertainty on evapotranspiration is related to uncertainties in saturated hydraulic 98 

conductivities. Under water limited conditions, the parameters that contributes to the evaporation 99 

uncertainty are those related to unsaturated flow conditions.  100 

While the above-mentioned studies constitute only a sample across the broad literature associated with 101 

diagnosis of LSMs through sensitivity analyses, they clearly show that the importance of model 102 

parameters depends on several factors (such as, e.g., the target model output considered, the processes 103 

embedded in the employed LSM, and the hydroclimatic conditions) and possibly on the selected 104 

sensitivity analysis methodology. 105 

This work aims at providing a comprehensive sensitivity analysis across spatial and temporal locations 106 

within a hydrological system to highlight the most relevant model parameters and the corresponding 107 

processes that need to be considered in a LSM. Here, we rely on a modular LSM developed at the 108 

Institut Terre et Environment de Strasbourg (ITES – Strasbourg Earth and Environment Institute) to 109 

simulate key components of the water cycle (i.e., transpiration, evaporation, and groundwater 110 

recharge) and to assess their sensitivity with respect to diverse model parameters that are typically 111 
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uncertain. We conduct a detailed sensitivity analysis by considering four diverse sensitivity indices: 112 

(i) the distribution-based Borgonovo index (Borgonovo et al., 2007); (ii) the variance-based Sobol 113 

indices (Sobol, 2001); and (iii) the moment-based AMAE and AMAV indices (Dell’Oca et al., 2017). 114 

The joint use of these metrics is exemplified upon relying on realistic field conditions (in terms of, 115 

e.g., climate, vegetation, and soil type) associated with two watersheds in the Vosges region (France) 116 

across a one-year period. The relevance of relying on various sensitivity analysis, each providing a 117 

unique contribution to enriching our knowledge of the system behavior, is underlined in several studies 118 

(e.g., Maina and Guadagnini, 2018; Bianchi Janetti et al., 2019; Ju et al., 2021; Sandoval et al., 2022; 119 

and references therein). 120 

The methodological aspects associated with the LSM development and implementation, the definition 121 

of the various sensitivity indices, and the description of the hydrological settings associated with the 122 

catchments are presented in Section 2. Modeling results and the ensuing sensitivity analyses are 123 

illustrated in Section 3, while conclusions are drawn in Section 4. 124 

2 Methodology 125 

2.1 NIHM modular Land Surface Model 126 

The NIHM (Normally Integrated Hydrological Model) modular Land Surface model (NIHM-MLSM, 127 

see Pan et al. (2015) and Jeannot et al. (2018)) is a numerical model design to compute on an hourly 128 

basis (i) the energy balance at the soil and vegetation (vegetation being considered as a single layer) 129 

surfaces, as well as, (ii) the water balance from the top of the vegetation layer to the groundwater table. 130 

Diverse mathematical formulations for processes such as transpiration, evaporation and snow melt, 131 

can be selected in conjunction with a modular structure on the basis of the observation that (a) 132 

application of a unique model formulation across different soil and vegetation types is questionable 133 

(Hogue et al., 2006) and (b) this allows adaptation to system complexity (Fisher and Koven, 2020). 134 
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Details of NIHM-MLSM are provided in the supplementary material. Here, we recall only the main 135 

mathematical formulations, assumptions and parametrization. 136 

 137 

2.1.1 Energy balance 138 

The different components of the energy balance for the surface near the canopy layer are: 139 
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The corresponding components for the soil surface are: 142 
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 144 

Here, Rn [W.m-2] is net radiation at the surface; w E   and w Tr   [W.m-2] are surface latent heat flux 145 

related to evaporation and transpiration, respectively; H [W.m-2] represents sensible heat flux (also 146 

termed conductive heat flux) between the surface and the atmosphere; G [W.m-2] is the conductive 147 

heat flux between the soil surface and the underground; 
S

R


 [W.m-2] and 
L

R


 [W.m-2] are the 148 

incoming solar radiation and the longwave radiation, respectively; s  is the soil albedo (-); extK  is the 149 

canopy attenuation coefficient [-]; LAI is the leaf area index [-]; s  is soil emissivity [-];   is the 150 
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Boltzman constant [W/m/K4 ]; Ta, Tg, and TS are the air, underground and soil temperature [K], 151 

respectively; 
w  and 

a  are water and air density [kg/m3] respectively; 
ac  is the specific heat of dry 152 

air at constant pressure [J/kg/K]; 
gr  and 

asr  are the aerodynamic resistance at the soil and canopy 153 

surface, respectively [s/m]; 
se  and sat

se  are the water vapor pressure and the water vapor pressure at 154 

saturation [Pa], respectively;   is the psychrometric constant [Pa/K]; and   is the latent heat of water 155 

vaporization [J/Kg]. 156 

 157 

Main assumptions related to the formulation of the energy balance comprise the following: 158 

- steady-state is considered, upon assuming that vegetation and soil layers have negligible heat 159 

capacity; 160 

- conductive heat fluxes are expressed on the basis of a resistance analogy, similar to Ohm’s law; 161 

- the amount of energy absorbed by the vegetation and received by the ground are estimated by 162 

assuming a Beer-Lambert transmission reflectivity through the vegetation (Deardorff, 1978; 163 

Taconet et al., 1986) and depend on the leaf area index (LAI) and an attenuation coefficient 164 

(hereafter denoted as Kext); 165 

- transpiration takes place only in the canopy; stomatal conductance is evaluated using a Jarvis-166 

type multiplicative model (Cox et al., 1998; Jarvis, 1976) and is affected by the environmental 167 

factors embedded in the efficiency functions (solar radiation, air temperature, vapor pressure 168 

deficit); the LAI is used to scale stomatal conductance to canopy conductance; 169 

- water intercepted by the canopy is assumed to evaporate with negligible impact on energy 170 

balance (Kergoat, 1998); 171 

- the soil heat flux is approximated as proportional to the net radiation (Clothier et al., 1986; 172 

Choudhury and Monteith, 1988; Kustas and Daughtry, 1990); for this study, the coefficient of 173 

proportionality between the former and the latter is set at 0.5   (Singh and Sharma, 2017, 174 

Norman et al., 1995; Anderson et al., 1997; Boegh et al., 2000). 175 
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The equations governing energy mass balance are solved upon considering the surface temperature as 176 

unknown and using a Newton Raphson method. If convergence is not reached after a maximum 177 

number of user-defined iterations, temperature is set to corresponding value associated with the 178 

previous time step. This approximation is assumed to be appropriate due to the small time steps 179 

employed (hourly time steps). 180 

 181 

2.1.2 Water flow and balance 182 

Water balance is formulated for three diverse compartments, i.e., the canopy, the snow cover, and the 183 

soil. Key concepts associated with the water balance model for the canopy are: (i) water from 184 

precipitation is partly stored in the canopy, whose storage capacity is limited to a maximum value; (ii) 185 

the intercepted water is subject to evaporation and does not contribute to throughfall (i.e., the process 186 

according to which excess water leaves wet leaves to reach the ground surface). 187 

The snow model is adapted from the snow module of the HBV hydrological model (Seibert and 188 

Bergström, 2022; Seibert and Vis, 2012). It consists in splitting precipitation (after interception) in 189 

either snow, rain, or both. A conceptual model based on snowpack temperature is used to estimate 190 

snowmelt fluxes (Neitsch et al., 2002). 191 

Flow in the unsaturated zone is described by introducing three types of reservoirs (or layers): (i) the 192 

litter, corresponding to the layer in contact with the atmosphere and where only evaporation takes 193 

place; (ii) the root zone, which is colonized by plant roots and supplies water for transpiration; and (iii) 194 

a set of sequential reservoirs to mimic vertical water movement below the root zone down to the 195 

groundwater table. Each reservoir is defined through a given water content at saturation, the water 196 

content at wilting point (which is also considered as the residual water content), and water content at 197 

field capacity. 198 

Water from throughfall and melted snow infiltrates in the litter layer. Evaporation (as computed by 199 

energy balance at the soil surface) occurs only in this layer, and the amount of evaporated water is 200 

linearly related to water content. Water drained from the litter layer enters the root layer. Transpiration 201 
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(estimated with the energy balance for the canopy) takes place only in this layer, and its amount is 202 

adapted according to the available water therein. Drainage from the different layers is estimated in two 203 

ways: (i) the water volume above the layer field capacity is drained immediately to the next layer, to 204 

represent water movement due to gravity; and (ii) when water content lies between the field capacity 205 

and the wilting point (i.e., residual water content), drainage is computed as an exponential function of 206 

the available water amount. 207 

Similar to other LSMs, NIHM-LSM requires the estimation of numerous forcing terms and parameters 208 

related to climatic conditions, vegetation and soil characteristics. Several factors limit our ability to 209 

obtain a reliable estimate of these forcing terms and parameters. These include, e.g., incompatibility 210 

between the model scale and the support volume of the measurement and the inherent space and time 211 

variability of most of the parameters that makes the exhaustive knowledge of model parameters and 212 

forcing terms as practically unfeasible. Therefore, identification of the parameters that can be 213 

considered as most important to given model outputs is critical to effectively assist modeling and 214 

estimation of land surface energy and water fluxes. Note that we consider as important (or influential) 215 

those model parameters whose variations impact to some extent model outputs of interest, i.e., 216 

transpiration, evaporation and groundwater recharge fluxes in this study. 217 

Such parameters are identified through a global sensitivity analysis in an ab initio context, i.e., the 218 

degree of uncertainty assigned to the vegetation and soil model parameters is grounded on a priori 219 

qualitative knowledges (e.g., prior experience, literature data). In the present study, we do not evaluate 220 

parameter uncertainty based on a model calibration procedure against experimental data associated 221 

with the modeled system (e.g., measured transpiration fluxes). 222 

 223 

2.2 Global Sensitivity analysis 224 

A critical step in diagnosing and understanding the functioning of a model works involves quantifying 225 

the relevance that different uncertain model parameters exert on the model results of interest to identify 226 
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the (possible) influential and non-influential parameter sets. These are here assessed through global 227 

sensitivity analysis. In broad terms, the latter enables one to quantify the (relative) strength of the 228 

influence of the variability/uncertainty in a given parameter on the corresponding 229 

variability/uncertainty in the output(s) of the model analyzed. 230 

Here, we rely on two complementary global sensitivity analysis methodologies: (i) density function- 231 

and (ii) and moment-based strategies. While the former is tailored to analyze the effects that variations 232 

of uncertain model parameters have on the whole (probability or cumulative) density function of the 233 

model output, the latter focuses on the impact on given statistical moments of the density function of 234 

model output. Here, we consider the Borgonovo index (Borgonovo et al., 2007) as a density function-235 

based metric. For moment-based metrics, we use the Sobol indices (Sobol, 2001) and the AMAE and 236 

AMAV indices (Dell’Oca et al., 2017). 237 

Considering X as a set of random independent parameters and Y as the corresponding model output, 238 

the Borgonovo index ( B ) associated with parameter Xi is defined as: 239 

 240 

|

1
( ) ( ) ( )

2i i iX X i Y Y X iB f x f y f y dy dx = −
     (3) 241 

 242 

Here, ( )
iX if x  is the marginal probability density function (pdf) of the i-th model (input) parameter Xi; 243 

( )Yf y  and | ( )
iY Xf y  are the unconditional and conditional (to a given value of Xi) marginal pdf of Y, 244 

respectively. Note that the Borgonovo index grounds the concept of the sensitivity of Y to Xi on the 245 

base of the (average) distance between the unconditional pdf of the output and its counterparts 246 

stemming from conditioning on diverse plausible values of Xi. This index ranges in the unit interval, 247 

where a null value corresponds to scenario in which the pdf of Y is unaffected by variations in 248 

parameter Xi. 249 
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We also rely on the classical Sobol indices (Sobol, 2001) to quantify the contribution of the uncertainty 250 

in Xi to the model output variance when considered alone, i.e., principal index 
iXSP , or as it interacts 251 

with other parameters, i.e., total index 
iXST . The principal Sobol index associated with Xi is given by: 252 

 253 

 

 

|

i

i

X

V E y X
SP

V y

  =  (4) 254 

 255 

where E[-] and V[-] denote the expectation and variance operators, respectively, and E[y|Xi] is the 256 

expected value of Y conditional to a particular value of Xi. The principal Sobol index measures the 257 

relative contribution of Xi to the model output variance without considering interactions with other 258 

uncertain model parameters. The corresponding total Sobol index embeds also the contributions of 259 

interactions with the remaining model parameters and is defined as: 260 

 261 

, , ,

,

...
i i i j i j k

j j k

X X X X X X X

x x x

ST SP SP SP= + + +    (5) 262 

 263 

where 
,i jX XSP  is the fraction of model output variance due to the interactions between parameters Xi 264 

and Xj (the remaining symbols being characterized by a corresponding meaning). We recall that the 265 

total Sobol index represents the expected contribution of Xi to the variance of the model output, 266 

including contributions caused by its interactions with other input variables. Sobol indices are broadly 267 

used because of their simplicity and intuitive nature to assess sensitivity of models to input parameters 268 

by decomposing the total variance of a model output of interest into different contributions, each 269 

associated with a subset of parameters. These indices are used to measure the importance of individual 270 

parameters and interactions between parameters (Sobol, 2001). 271 

 272 
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To complement our investigation, we evaluate the moment-based metric introduced by Dell’Oca et al. 273 

(2017), termed AMA indices. The latter quantify sensitivity as the degree of variations in given 274 

statistical moments of the target model output Y that are due to the variability in model parameter Xi. 275 

Considering the expected value of Y, we introduce the following moment-based index: 276 

 277 

 

 

0 0 0

0

| / 0

| 0
i

i

X

i

E y E y X y y
AMAE

E E y X y

  −   
= 

  =  

  (6) 278 

 279 

where y0 is the unconditional expected value of Y. Considering the second (centred) statistical moment, 280 

i.e., the variance of Y, we introduce following index: 281 

 282 

 [ ] | / [ ]
iX iAMAV E V y V y X V y = −   (7) 283 

 284 

Relying on the AMA indices enables one to assess the sensitivity of Y in terms of various salient features 285 

of the probability density function of the target model output, as rendered through diverse statistical 286 

moments. Here, we focus on the mean and the variance of the model output. These metrics have been 287 

applied in diverse settings, including scenarios related to, e.g., groundwater hydrology (Bianchi Janetti 288 

et al., 2019; Dell’Oca, 2023), subsurface energy resources associated with gas flow migration across 289 

low‑permeability media (Sandoval et al., 2022), analysis of seismic metabarriers (Zeighami et al., 290 

2023), dynamics of emerging contaminants in groundwater (Ceresa et al., 2023), or assessment of 291 

infiltration structures (Dell’Oca et al., 2023). 292 

Our reliance on various sensitivity indices is in line with the observation that it is often difficult for 293 

one method to provide a complete sensitivity assessment. This is even more critical for complex 294 

hydrological systems of the kind we consider here (Mai et al., 2022). 295 

 296 
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2.3 Study catchments and data-sets 297 

The NIHM-MLSM model is run under realistic field conditions (in terms of climate, vegetation, and 298 

soil type) on two catchments in the Vosges region of northeastern France (i.e., in the Bruche and Doller 299 

catchments) that are characterized by similar climatic conditions while being associated with differing 300 

soil types and vegetation. While the model is run in a distributed way on the whole extent of each 301 

catchment, results are only illustrated for a selected location (or computational pixel) for each 302 

catchment, for simplicity. Selection of each of these pixels is based on the criterion that they are 303 

considered as a representative of the conditions associated with the corresponding catchment in terms 304 

of soil type, climate, and vegetation cover. Both locations are subject to an oceanic climate, being 305 

affected by continental traits (Peel et al., 2007) due to the action of Foehn. Consequently, considerable 306 

fluctuations in local climatic variables, such as air temperature or rainfall rates, are experienced. 307 

Historical streamflow data indicate a low-water period taking place between June and October and a 308 

high-water period between December and March (Banque HYDRO, 2020). 309 

The first exemplary location considered in this study is located in the Bruche catchment, which is 310 

characterized only by vineyards on Calcosol soil. The second location considered is representative of 311 

the Doller catchment, which is covered by deciduous forest, moorland and heathland in combination 312 

with the Alocrisols soil. Figure 1 and 2 depict records of the main climatic forcings monitored across 313 

the study period, i.e., precipitation, temperature, wind speed, and solar radiation reaching the canopy 314 

for the Bruche and Doller watersheds, respectively. 315 

 316 
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 317 

Figure 1: Main climatic forcing for the Bruche watershed.  318 

 319 

https://doi.org/10.5194/hess-2024-73
Preprint. Discussion started: 4 April 2024
c© Author(s) 2024. CC BY 4.0 License.



16 

 

 320 

Figure 2: Main climatic forcing for the Doller watershed.  321 

 322 

Climatic data (air temperature, air humidity, precipitation, snow, wind speed, incoming solar radiation, 323 

and longwave radiation) are included in the Safran database produced by Météo-France (Durand et al., 324 

1993; Habets et al., 2008). The Safran system interpolates key climatic variables from ground 325 

measurements on a fixed grid of 8  8 km2 with a hourly temporal resolution (Durand et al., 2009; 326 

Quintana-Seguí et al., 2008). It has been widely used to address hydrological monitoring and climate 327 

change studies (Vidal et al., 2010). Note that uncertainty on these forcing terms is not considered in 328 

this work which is otherwise specifically focused on the parameters required for LSMs. 329 
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 330 

In this study, the uncertain parameters involved in the evaluation of transpiration, evaporation, and 331 

groundwater recharge fluxes at a given time are: 332 

- the LAI and the albedo; considering their smooth variation over time, we rely on linearly 333 

interpolated monthly data; this implies that a given simulation time is associated with two LAI 334 

and two albedo parameter values; 335 

- five vegetation-related parameters per vegetation type (i.e., precipitation interception, radiation 336 

attenuation, root depth, stomatal conductance, and canopy height); 337 

- five parameters for the litter layer (i.e., residual water content, field capacity, porosity, 338 

thickness, and drainage coefficient) and four parameters for the root layer (residual water 339 

content, field capacity, porosity, and drainage coefficient, root depth being considered as a 340 

vegetation dependent parameter) per soil type. 341 

A total number of 18 parameters is associated with a given type of vegetation and a given type of soil. 342 

 343 

Monthly values for LAI and albedo are estimated from satellite data at a spatial scale of 3  3 km2 344 

(downloaded from https://land.copernicus.eu/global/products/ (Copernicus Climate Change Service, 345 

2018)). When several values are associated with a given month, we consider their average as a 346 

representative monthly value. If only one value is available, it is considered as the average value across 347 

the month. Albedo values for the vegetation are computed upon relying on the albedo value rendered 348 

by the satellite information and a prescribed albedo value for the soil assuming multireflection between 349 

the soil and the vegetation (see Supplementary Material (SM)). Parameter uncertainty is also provided 350 

in the dataset (in terms of a corresponding standard deviation). 351 

 352 

The Corine Land Cover database (https://land.copernicus.eu/en/products/corine-land-cover) allows for 353 

the identification of distinct vegetation categories at each studied catchment at raster scale of 100m 354 

(European Union - SOeS, 2018). Table 1 lists the support (i.e., ranges of variability) associated with 355 
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the uncertain vegetation-related parameters for the diverse vegetation types related to the two 356 

watersheds here considered. The width of these supports is identified on the basis of a detailed analysis 357 

of previous literature studies. For completeness, we list the main literature sources analyzed for each 358 

vegetation-related parameter: 359 

- precipitation interception (Brecciaroli et al., 2012; Couturier and Ripley, 1973; Friesen and 360 

Van Stan, 2019; Kergoat, 1998; Nicholas et al., 2011); 361 

- radiation attenuation coefficient (Zhang et al., 2014); 362 

- root depths (Escamilla et al., 1991; Freeling and Walbot, 1994; Leuschner et al., 2001; Mueller 363 

et al., 2013; Richards, 2011; Grassland: Mission: Biomes, 2023); 364 

- stomatal conductance (Gowdy et al., 2022; Brewer et al., 2022; Carter, 1998; Charreyron, 2011; 365 

Hovenden and Brodribb, 2000; Jonard et al., 2011; Juan Carlos Baca Cabrera, 2021; Kim and 366 

Verma, 1991; Mahhou et al., 2005; Mueller et al., 2013; Ocheltree et al., 2012; Reis and 367 

Ribeiro, 2020; Song et al., 2018; Tardieu et al., 1991; Winkel and Rambal, 1993; Zhang et al., 368 

2012); 369 

- canopy height (Campos et al., 2021; Liu et al., 2019; Matese et al., 2017; Grassland: Mission: 370 

Biomes, 2023; Peiffer et al., 2014; Smirnova et al., 2008). 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

Vegetation 

type 

Interception 

[-] 

Attenuation 

[-] 

Root 

Depth [m] 

Stomatal 

conductance [m/s] 

Canopy height 

[m] 

T1 0.1 0.4 0.16 0.54 0.5 2.5 0.005 0.015 0.2 1.2 
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T2 0.1 0.53 0.29 0.65 0.6 2.3 0.0002 0.0036 12.6 27.0 

T3 0.14 0.22 0.35 0.65 0.2 1.0 0.0011 0.0110 0.2 2.1 

Table 1: Vegetation-dependent parameters (minimum and maximum values) for T1: Vineyards 379 

(Bruche catchment), T2: Deciduous forests (Doller catchment) and T3: Grasslands, Natural grasslands 380 

and pastures, Moors and heathland (Doller catchment). 381 

 382 

Only the vineyards vegetation is considered (T1 in Table 1) at the Bruche catchment. Two types of 383 

vegetation are considered for the exemplary location selected at the Doller catchment. These 384 

correspond to (i) vegetation composed mainly of broad-leaved species, including shrub and bush 385 

understoreys for 2/3 of the pixel area (T2 in Table 1) and (ii) vegetation resulting mainly from forest 386 

degradation (low and closed cover, dominated by bushes, shrubs and herbaceous plants) for 1/3 of the 387 

pixel area (T3 in Table 1). 388 

 389 

Soil types are classified upon relying on the Regional Soil Reference System for Alsace and Vosges 390 

(https://data.europa.eu/data/datasets/fr-341142131-araa_bdsol-alsace_250000_2011?locale=fr). Six 391 

main categories are identified (Chambre Régionale d’Agriculture Grand Est, 2011, 2015) and denoted 392 

according to the World Reference Base for Soil Resources (IUSS Working Group WRB, 2022).In this 393 

work we consider only the first two soil layers (i.e., litter and root zone) and groundwater recharge is 394 

assumed to coincide with drainage from the root zone, the overall thickness of the unsaturated zone 395 

being limited to a few meters. Table 2 lists ranges of variability associated with the uncertain soil-396 

related parameters for the diverse soil types of interest. As stated above, the width of these supports is 397 

set on the basis of previous studies (Belfort et al., 2018; Clapp and Hornberger, 1978; Dingman, 2002). 398 

Note that soil types S1 and S2 constitute typical traits of the Bruche and Doller catchment, respectively. 399 

 400 

Soil Root layer Litter layer 

Type Field capacity 

c  

Porosity 

s  

Field capacity 

c  

Porosity 

s  

Thickness (m) 
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S1 0.22 0.33 0.42 0.48 0.25 0.35 0.50 0.80 0.05 0.15 

S2 0.12 0.16 0.40 0.45 0.17 0.25 0.50 0.80 0.05 0.15 

Table 2: Soil-dependent parameters (minimum and maximum values) for S1: Calcosols and Calcisols 401 

(Bruche catchment) and S2: Alocrisols (Doller catchment). 402 

 403 

Drainage coefficients for both layers and all soil types are set to range between 1.0  10-7 and 9.0  404 

10-7. This range of variability has been defined on the basis of the temporal pattern of groundwater 405 

recharge fluxes obtained through preliminary model runs (details not shown). Residual water content 406 

is fixed at 0.01 for all soil types. 407 

 408 

Evaluation of the global sensitivity indices listed in Section 2.2 is performed through a numerical 409 

Monte Carlo (MC) approach. Parameter values are randomly sampled by considering model 410 

parameters as independent and identically distributed random variables, each characterized through a 411 

uniform distribution with support given in Table 1 and 2. With reference to LAI and albedo, the semi-412 

width of the support is set to the value of the standard deviation provided in the Copernicus data sets.  413 

Sobol indices are calculated upon considering the algorithm described in Saltelli (2007). A total of 414 

147,500 and 168,000 simulations are performed for the Bruche and the Doller catchment, respectively. 415 

The number of simulations is higher for the Doller catchment due to the additional vegetation type 416 

(see Table 1). 417 

The temporal window associated with our simulations spans a period of two years (01/09/2005 to 418 

31/08/2007). The analyses target solely the second year of simulations, to minimize impacts of initial 419 

conditions on model outputs. 420 

 421 
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3 Results 422 

3.1 Catchments behaviors 423 

Here, we illustrate the type of results obtained with the modeling study to assist grasping the overall 424 

behavior of the systems and to provide a first quantitative appraisal of the nature of the available 425 

observations and modeling outputs related to the complex hydrological systems analyzed. We rely on 426 

graphical depictions rendered in terms of the expected value +/- one standard deviation of daily 427 

averaged values grounded on the set of MC simulations for the period from August 1st, 2006 to July 428 

31th, 2007. Temporal dynamics of actual evaporation, actual transpiration, and groundwater recharge 429 

fluxes are provided in Figures 3 and 4 for the selected locations in the two watersheds (see Section 430 

2.3), together with the corresponding observed rainfall series. Detailed quantitative results concerning 431 

the main components of the water cycle are listed in Table 3 and 4 for the Bruche and Doller catchment, 432 

respectively. 433 

 434 

 Autumn Winter Spring Summer Total 

Precipitation (mm) 212.7 165.1 237.7 287.6 903.2 

(%) 24 18 26 32 100 

Evaporation (mm) 39.21 / 4.41 54.93 / 6.30 65.50 / 12.73 60.70 / 15.52 220.34 / 33.98 

(%) 18 25 30 28 100 

Transpiration (mm) 10.74 / 4.21 2.05 / 1.59 55.85 / 18.69 60.25 / 18.69 128.89 / 40.84 

(%) 8 2 43 47 100 

Groundwater 

Recharge (mm) 

116.65 / 25.31 75.00 / 7.98 63.12 / 11.95 74.86 / 24.03 329.62 / 60.88 

(%) 35 23 19 23 100 

Table 3. Amount of water volume (in mm) for the different seasons and over the year for the Bruche 435 

catchment. Values of transpiration, evaporation, and groundwater recharge are evaluated through the 436 

NIHM-MLSM model (mean / standard deviation). Percentage values (%) are defined as the ratio 437 

between seasonal values and their yearly counterparts. 438 

 439 

 440 

 441 

https://doi.org/10.5194/hess-2024-73
Preprint. Discussion started: 4 April 2024
c© Author(s) 2024. CC BY 4.0 License.



22 

 

 442 

 Autumn Winter Spring Summer Total 

Precipitation (mm) 566.4 780.03 414.54 780.63 2541.3 

(%) 22 31 16 32 100 

Evaporation (mm) 34.45 / 1.52 71.22 / 3.63 43.17 / 8.47 25.69 / 2.53 174.54 / 13.71 

(%) 20 41 25 15 100 

Transpiration (mm) 15.4 / 4.06 1.60 / 0.71 44.22 / 12.63 58.64 / 14.2 119.86 / 30.21 

(%) 13 1 37 49 100 

Groundwater 

Recharge (mm) 

315.19 / 80.72 609.40 / 24.83 201.77 / 35.9 246.20 / 105.8 1372.56 / 236.23 

(%) 23 44 15 18 100 

Table 4. Amount of water volume (in mm) for the different seasons and over the year for the Doller 443 

catchment. Values of transpiration, evaporation, and groundwater recharge are evaluated through the 444 

NIHM-MLSM model (mean / standard deviation). Percentage values (%) are defined as the ratio 445 

between seasonal values and their yearly counterparts.  446 

 447 

https://doi.org/10.5194/hess-2024-73
Preprint. Discussion started: 4 April 2024
c© Author(s) 2024. CC BY 4.0 License.



23 

 

 448 

Figure 3 Observed (a) precipitation, (b) calculated evaporation and (c) transpiration together with (c) 449 

groundwater recharge at the Bruche watershed.  450 
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 451 

Figure 4. Observed (a) precipitation, (b) calculated evaporation and (c) transpiration together with (c) 452 

groundwater recharge at the Doller watershed (note the different scale for recharge 453 

https://doi.org/10.5194/hess-2024-73
Preprint. Discussion started: 4 April 2024
c© Author(s) 2024. CC BY 4.0 License.



25 

 

Despite the geographical proximity of the watersheds, precipitation patterns are quite different. Tables 454 

3-4 indicate that the annual amount of precipitated water over the year is very different between the 455 

two catchments (903.2 mm for the Bruche and 2541.3 mm for the Doller) and that during Winter the 456 

Bruche catchment is relatively dry, while the Doller catchment experiences significant precipitation 457 

events. These findings are further corroborated by the inspection of Fig.s 3a, 4a. 458 

 459 

Tables 3-4 suggest that evaporation in both catchments occurs over the whole year, with very similar 460 

total amount of evaporated water. However, inspection of Figs. 3b, 4b and of the seasonal values listed 461 

in Table 3-4, reveals that evaporation intensify during Winter for the Doller catchment, due to more 462 

frequent and intense precipitation (in line with the previous observation regarding the difference in the 463 

precipitation patterns during Winter). Additionally, despite the stronger similarity in the precipitation 464 

patterns during Summer (see also percentage values in Table 3-4) evaporation at the Doller catchment 465 

appears to be less pronounced than at Bruche. We attribute this difference to the (overall) lower values 466 

of the attenuation coefficient (characteristic of vineyard vegetation cover) at Bruche with respect to 467 

the counterparts at Doller (see Table 1). The periods with the highest uncertainties in the evaporation 468 

(as quantified in terms of standard deviation of model outputs) are generally observed to take place 469 

between rainy episodes (at both catchments) and during Summer at Bruche, when a significant amount 470 

of solar radiation is intercepted by the vineyard that is characterize by a more uncertain attenuation 471 

coefficient that the vegetation covers present at Doller (see Table 1). 472 

Joint inspection of Tables 3-4 and Figs. 3c and 4c highlights that transpiration fluxes at both 473 

catchments are characterized by a typical seasonal variability, with very poor transpiration fluxes in 474 

Winter (less than 2% of the annual transpired water) and increased transpiration (close to 50%) in 475 

Summer. These findings are in line with the weather conditions (temperature, radiation) and vegetation 476 

status. When active, transpiration is more intense in the Bruche watershed due to its higher soil storage 477 

capacity that allows for water extraction in the root zone to fulfil the evaporation potential. Notably, 478 

https://doi.org/10.5194/hess-2024-73
Preprint. Discussion started: 4 April 2024
c© Author(s) 2024. CC BY 4.0 License.



26 

 

uncertainty in the transpiration is larger in correspondence of the growing phase of vegetation during 479 

Spring at both watersheds. 480 

 481 

Comparison of Tables 3-4 reveals different (relative) amounts of groundwater recharge at the two 482 

watersheds: groundwater recharge represents about 36% and 54% of the yearly precipitation for the 483 

Bruche and Doller catchment, respectively. We mainly ascribe these differences to the diverse values 484 

of the soil field capacity (see Table 2) at the two catchments (recall that the amount of water above 485 

field capacity constitutes the groundwater recharge at a given time step). Such element also implies 486 

very different patterns (see Fig.s 3d, 4d) in the behavior of the groundwater recharge at the two 487 

catchments: the higher values of the Bruche soil field capacity result in smoother temporal fluctuations 488 

of the groundwater recharge, while the lower values of the field capacity for the Doller catchment yield 489 

a higher reactivity. At the same time, groundwater recharge mostly occurs during autumn and Winter 490 

at both catchments while still remaining significant also during Summer (around 20% of the annual 491 

recharge). Notably, in both catchments the uncertainty in the groundwater recharge tends to increase 492 

with the expected value of the latter.  493 

 494 

The results from the Monte Carlo simulations can also be analyzed in terms of the ensuing pdf of an 495 

output of interest at a given time. Figure 5 depicts exemplary pdfs obtained for diverse model outputs, 496 

i.e., (a) evaporation, (b) transpiration, (c) groundwater recharge at Bruche, (d) groundwater recharge 497 

at Doller, at different times, considering unconditional results (red curves) and conditioning on diverse 498 

subintervals of variability for a given parameter. With reference to the latter element, we select here 499 

five equiprobable subintervals, for (a) litter drainage, (b) albedo coefficient, (c) root drainage rate and 500 

(d) root depth. This type of visual analysis is akin to a regionalized sensitivity analysis. It helps one to 501 

grasp the impact that conditioning on diverse values (comprised within subintervals according to which 502 

the overall support is partitioned) of a parameter might have on the pdf of an output of interest. 503 

 504 
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 505 

Figure 5. Probability density functions related to: (a) evaporation on July 7th, 4 p.m. at Bruche with 506 

prescribed litter drainage rate; (b) transpiration on December 31th, 12 a.m. at Bruche with prescribed 507 

albedo coefficients; (c) groundwater recharge on October 5th, 12 a.m. at Bruche with prescribed root 508 

drainage rate(d) groundwater recharge on February, 2nd, 12 a.m. at Doller with prescribed root depth. 509 

In each panel, we consider the unconditional (red curve) pdf of each output and its counterparts 510 
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conditioned (blue curves) on five different (equally probable) subintervals (middle bin conditioning 511 

(denoted as Cond.) value provided in the legend) according to which the support of a given parameter 512 

is partitioned. 513 

 514 

Inspection of Figure 5 reveals several interesting features. The pdfs of the actual evaporation rate, as 515 

recorded on September 7th at 4.00 p.m. at Bruche, visually resemble a Gaussian distribution (with a 516 

slight asymmetry) and conditioning on smaller litter drainage values results in lower average 517 

evaporation rates and higher variance (see Fig. 5a). Null values of the actual transpiration rate are 518 

generally likely to occur during the December 31th at 12 a.m. at Bruche, while greater values of the 519 

albedo coefficient lead to higher average and variance (see Fig. 5b). Inspection of the pdfs of the 520 

groundwater recharge, as recorded on May 10th at 12.00 a.m. at Bruche (Fig. 5c), suggests a strong 521 

sensitivity to the root drainage coefficient. On the other hand, the pdf of the groundwater recharge, as 522 

recorded on February 11th at 12.00 a.m. at Doller, exhibits a bimodal behavior and appears to be 523 

insensitive to the root depth (Fig. 5d).  524 

 525 

These preliminary investigations for the diverse outputs and their response to model parameter 526 

variations suggest a complex behavior of the LSM here investigated. A quantitative appraisal of 527 

sensitivity is illustrated in Section 3.2 on the basis of the metrics introduced in Section 2.2. 528 

 529 

3.2 Global Sensitivity Analysis. 530 

We compute the global sensitivity indices introduced in Section 2.2 on an hourly basis over a temporal 531 

window of one year. Figure 6 depicts color-coded (from red/high to white/low) values of B (Eq. 3) ST 532 

(Eq. 5), AMAE (Eq. 6), and AMAV (Eq. 7) indices for the evaporation rate at Bruche across the year 533 

and the diverse model parameters (listed along the vertical axis; corresponding parameter identification 534 

number is defined in the Symbol List of the Supplementary Material). Figure 7 depicts corresponding 535 
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results for the Doller catchment. Fig.s 8-11 are patterned after Fig.s 6-7 considering the results for 536 

transpiration rate and groundwater recharge. 537 

 538 

We recall that, B (similar to all other indices) should vanish for certain outputs of interest that one 539 

knows are for sure insensitive to certain parameters. For example, the value of B for the evaporation 540 

at Bruche during the month of July associated with the LAI of January must be zero. However, 541 

inspection of Fig. 6a does not reflect this anticipated outcome. This apparent anomaly is attributed to 542 

a random noise (that would require a markedly high amount of additional computation hours to be 543 

reduced) stemming from the still incomplete sampling of the parameters space (despite our analysis 544 

incorporates an extensive number of random samples). Drawing from these findings, we identify a 545 

threshold value of B  = 0.17 (average value in correspondence of instances associated with an expected 546 

null value of B ) as a benchmark for evaluating the adequacy of parameter sampling within our 547 

sensitivity analysis. Consequently, we disregard from our sensitivity analysis instances in which B548 

falls below 0.17, i.e., we assign a value of zero to B, ST, AMAV, and AMAE to enhance interpretability 549 

of visual representations. 550 

Overall, the evaporation rate in the two catchments (see Fig.s 6 and 7) is mainly sensitive to the 551 

characteristics of the litter layer (in terms of layer thickness, field capacity, and drainage rate), the 552 

amount of radiation reaching the soil surface (as expressed through the attenuation coefficient), and 553 

the LAI. The relative influence of parameters related to the litter layer is generally higher for the 554 

variance (see ST, AMAV) than for the expected value (see AMAE) of evaporation in both catchments. 555 

Additionally, if a parameter influences the expected value of the evaporation rate at a given period 556 

during the year, it also influences its variance (the opposite not being generally observed). 557 

 558 
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 559 

Figure 6. Temporal behavior of the sensitivity indices related to the evaporation rate at the Bruche 560 

catchment. Parameter id from 1 to 12 corresponds to LAI; parameter id = 25 denotes root layer field 561 

capacity, 27 is litter layer drainage coefficient, 29 is litter layer thickness, 31 is litter layer field 562 

capacity, and 33 is attenuation coefficient (see Supplementary Material for the complete list of 563 

parameter identifiers 564 

 565 

Results for the indices associated with measurements of uncertainty of the output (i.e., B , ST, and 566 

AMAV) at the Bruche catchment suggest the uncertainty in the evaporation rates switches from being 567 

dominated by the litter layer drainage coefficient during Winter to being majorly influenced by the 568 

variability in attenuation coefficient of the vegetation during the rest of the year. Considering the 569 

sensitivity of the expected value of the evaporation rate (as rendered through AMAE), the attenuation 570 
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coefficient of the vegetation is the predominant parameter across the year with the exception of the 571 

Winter season when the litter layer drainage coefficient gains relevance during a dry period in 572 

December (see Fig. 1a), while the LAI becomes influential during the subsequent more wet period in 573 

January. A similar pattern is documented also in correspondence of the dry month of April (here, also 574 

the litter layer thickness gains some importance), which is then followed by the wet month of May. 575 

Additionally, the LAI attains its highest influence (considering all of the sensitivity indices) during 576 

Summer (July-September). 577 

 578 

 579 

 580 

 581 
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Figure 7. Temporal behavior of the sensitivity indices related to evaporation at the Doller catchment. 582 

Parameter id from 1 to 12 correspond to LAI; parameter id = 25 corresponds to root layer field capacity, 583 

27 is litter layer drainage coefficient, 29 is litter layer thickness, 31 is litter layer field capacity; 584 

parameter id = 33 and 38 correspond to the attenuation coefficient for the two types of vegetation (see 585 

Supplementary Material for the complete list of parameter identifiers 586 

 587 

With reference to the Doller catchment, the attenuation coefficient of the deciduous forest (T2 in Table 588 

2) has a strong influence over the uncertainty (i.e., B , ST, and AMAV) and the expected value (i.e., 589 

AMAE) of the transpiration rate, the dry periods during December and April being an exception. Note 590 

that values of the corresponding indices for the other vegetation type (T3 in Table 2) shows a reduced 591 

influence because it corresponds to only 1/3 of the land cover. At the same time, the soil layer 592 

parameters that are most consistently influential to uncertainty of the evaporation rate across the year 593 

are the litter and root layer field capacities, while they appear not to influence the expected value of 594 

the evaporation rate at Doller. The drainage rate and thickness of the litter gain relevance only during 595 

the no-rain period in April, jointly with the LAI, whereas the attenuation coefficient of deciduous forest 596 

(T2 in Table 2) displays a reduced relevance. In contrast to Bruche, LAI is here mostly relevant during 597 

October to June while being less relevant during Summer. Our results suggest that field capacity of 598 

the litter and root layers are more relevant in the Doller than their counterparts in the Bruche watershed. 599 

At the same time, the litter drainage coefficient is overall less relevant in Doller than in Bruche. Similar 600 

to what we observe at Bruche, the litter field capacity is not influential when the rainy period starts 601 

(i.e., in May). 602 

 603 

With reference to transpiration (Fig.s 8 and 9), our results show that parameters related to vegetation 604 

are characterized by a relative importance of that is significantly higher than their counterparts related 605 

to soil. The relative influence of some parameters is sometimes higher when focusing on the expected 606 

value of the transpiration rate than it is for its variance (compare AMAE to corresponding values of ST 607 
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and AMAV). This is clearly the case with the parameters that regulate the amount of energy reaching 608 

the canopy, especially in Summer for LAI and in Winter for albedo. 609 

 610 

 611 

Figure 8. Temporal behavior of the sensitivity indices related to transpiration at the Bruche catchment. 612 

Parameter id from 1 to 12 correspond to LAI; parameter id from 13 to 24 correspond to albedo; 613 

parameter id = 33 and 35 correspond to the attenuation coefficient and to maximum stomatal 614 

conductance, respectively (see Supplementary Material for the complete list of parameter identifiers).  615 

 616 

Inspection of Fig. 8 highlights that transpiration in the Bruche catchment is overall sensitive to 617 

vegetation-related parameters (chiefly to the attenuation coefficient and to stomatal conductance) 618 

during the year. Otherwise, the litter layer drainage coefficient exhibits a strong influence during the 619 
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wet period in May that follows the no-rain period of April. The displayed sensitivity is consistent with 620 

the observation that water available in the root layer for transpiration is supplied by the litter layer, by 621 

drainage from the litter layer. At the same time, transpiration in Bruche exhibits a pattern of sensitivity 622 

to all of the parameters associated with LAI during the year in close similarity to what we observe for 623 

evaporation (see Fig. 6). Sensitivity to the albedo coefficient is mostly relevant during the Winter 624 

period where solar radiation is quite limited. Interestingly, the impact of the parameters related to the 625 

vegetation (attenuation coefficient and maximum stomatal conductance) on the expected value and 626 

variance of the transpiration rate are different. The attenuation coefficient mainly affects the expected 627 

value of transpiration (see corresponding values of AMAE in Fig. 8) as compared to its variance (see 628 

corresponding values of TS or AMAV in Fig. 8), whereas the relative importance of stomatal 629 

conductance is more marked for the variance than for the expected value. 630 

 631 

 632 

https://doi.org/10.5194/hess-2024-73
Preprint. Discussion started: 4 April 2024
c© Author(s) 2024. CC BY 4.0 License.



35 

 

 633 
Figure 9. Temporal behavior of the sensitivity indices related to transpiration at the Doller catchment. 634 

Parameter id from 1 to 12 correspond to LAI; parameter id from 13 to 24 correspond to albedo; 635 

parameter id = 33 and 38 correspond to the attenuation coefficient of both vegetation types; parameter 636 

id = 35 and 40 correspond to maximum stomatal conductance of both vegetation types (see 637 

Supplementary Material for the complete list of parameter identifiers 638 

 639 

Considering transpiration in the Doller catchment, Fig. 9 reveals that: (i) the LAI exerts a marked 640 

influence during the no-rain period of April and December (similar to the sensitivity of evaporation in 641 

Doller; see Fig. 7), while it is not influential during Summer; (ii) the albedo coefficient consistently 642 

impacts transpiration during the Winter-middle of Spring  period (i.e., during low radiation periods) 643 

while the strength of its influence is more intermittent during the rest of the year; (iii) parameters 644 
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related to the soil layer have no influence on transpiration in Doller during the whole year; (iv) during 645 

Winter, transpiration appears to be chiefly controlled by the albedo coefficient, the maximum stomatal 646 

coefficient and the attenuation coefficient of the deciduous forest; (v) in contrast to Bruche, the 647 

maximum stomatal conductance of the deciduous forests (T3 in Table 2) and of the degraded forest 648 

(T2 in Table 2), are the most relevant vegetation-related parameters in Doller (the former being 649 

especially relevant during Summer and fall, while the latter is more uniformly influential during the 650 

year). The variation in the sensitivity of the transpiration rate to vegetation-related parameters across 651 

the two catchments aligns with the distinct ranges of variability assigned to the stomatal conductance 652 

among different types of vegetation. Specifically, the stomatal conductance of the forest (that 653 

dominates at Doller) is relatively low as compared to that of vineyards (vegetation type of Bruche). 654 

 655 

The results encapsulated in Figs. 10 and 11 surprisingly show that groundwater recharge is sensitive 656 

to very few parameters. None of the vegetation related parameters are ranked as important on the basis 657 

of the diverse sensitivity metrics here considered, intercept being the sole exception. Inspection of Fig. 658 

10 highlights that groundwater recharge in the Bruche watershed can be considered as chiefly sensitive 659 

to the root drainage coefficient and, albeit to a reduced extent, to the rainfall interception. In particular, 660 

the root drainage coefficient is affecting the uncertainty in the groundwater recharge in Bruche in a 661 

consistent manner when considering B , ST and AMAV (Fig. 10a-c). The same finding holds for the 662 

sensitivity of groundwater recharge to the rainfall intercept (see Fig. 10a-c; note the zero values during 663 

the no-rain period, as expected). Considering the expected value of groundwater recharge (see Fig. 664 

10d), the root drainage coefficient shows a strong influence during the rain events of May (that follows 665 

the no-rain period of April), while rainfall interception is generally less influent on the expected value 666 

of the groundwater recharge during the whole year. 667 

 668 

 669 

 670 
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 671 

Figure 10. Temporal behavior of the sensitivity indices related to groundwater recharge at the Bruche 672 

catchment. Parameter id 28 and 32 correspond to root drainage coefficient and rainfall interception, 673 

respectively (see Supplementary Material for the complete list of parameter identifiers 674 

 675 

 676 

 677 
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 678 

Figure 11. Temporal behavior of the sensitivity indices related to groundwater recharge at the Doller 679 

catchment. Parameter id 28, 32, and 34 correspond to root drainage coefficient, rainfall interception 680 

and root layer thickness, respectively (see Supplementary Material for the complete list of parameter 681 

identifiers. 682 

 683 

Analysis of Fig. 11 highlights that groundwater recharge in the Doller is majorly sensitive to the root 684 

drainage coefficient and the rainfall interception. Rainfall interception by the canopy (T2 in Table 2) 685 

is dominant during Summer while the root zone drainage rate plays an enhanced role in Winter. This 686 

variability of parameter contributions to groundwater flux sensitivity is consistent with the amount of 687 

available water in the system across diverse seasons. In Summer, when soils are generally dry, small 688 
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variations in the amount of water reaching the soils surface can trigger threshold effects that influence 689 

the amount of water transpired and evaporated and, therefore, the availability of water for groundwater 690 

recharge. Otherwise, in Winter, when soils are often quite wet, the rate of root zone drainage can have 691 

a major impact on the amount of water recharging the aquifer. During the latter period, a small degree 692 

of sensitivity is also recorded for the root zone layer thickness. 693 

 694 

To summarize the key results of the sensitivity analysis conducted for the evaporation, transpiration, 695 

and groundwater recharge rates Table 5 lists for each model output the major sensitive parameters, 696 

identified by a ‘✓’ sign. 697 

 698 

  Vegetation Litter Root 

 Albedo LAI 
p  Kext max

sg  c  TL 
d  c  TL 

d  

Evaporation  ✓  ✓  ✓ ✓ ✓ ✓   

Transpiration ✓ ✓  ✓ ✓       

Groundwater 

recharge 
  ✓       ✓ ✓ 

Table 5. Sensitivity of the target outputs of NIHM-LSM to uncertain input parameters ( p : rainfall 699 

interception; Kext: radiation attenuation; max

sg : maximum stomatal conductance; c : field capacity; TL: 700 

layer thickness; d : drainage rate). Sensitive parameters are identified by a ‘✓’ sign. 701 

 702 

Most of the results summarized in Table 5 are intuitive, groundwater recharge being an exception. 703 

Evaporation only occurs in the top litter layer and is directly related to the energy flow through the 704 

canopy that then reaches ground surface. As one could expect, transpiration appears as mainly 705 

influenced by the vegetation characteristics and by albedo that influences the incoming radiation 706 

Surprisingly, groundwater recharge is not sensible to any vegetation parameters, except the root layer 707 

thickness and the intercept. This is possibly related to the observation that groundwater recharge 708 
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appears only when precipitations are significant and/or when transpiration rates are very small due to 709 

a reduced energy (for example during Winter). When transpiration is significant, recharge to 710 

groundwater takes place solely after a period of precipitations that allows transpiration and 711 

replenishment of the water stored in the unsaturated zone. 712 

4 Conclusion 713 

We focus on the diagnosis of the behavior of the recently developed NIHM (Normally Integrated 714 

Hydrological Model) modular Land Surface model. The latter embeds a variety of critical hydrological 715 

processes and, similar to other land surface models, is characterized by a marked degree of 716 

parametrization. Temporal dynamics of water fluxes associated with transpiration, evaporation, and 717 

groundwater recharge are analyzed through global sensitivity analysis to discriminate the relative 718 

importance of uncertain model parameters. Uncertainty sources comprise incomplete knowledge of 719 

monthly values of albedo and leaf area index, as well as of parameters related to vegetation and soil 720 

types constituting the litter layer and root zone. As opposed to previous studies on sensitivity analyses 721 

of land surface models, we provide an assessment of various aspects of sensitivity upon considering a 722 

joint analysis of multiple GSA metrics. These enable us to quantify the relative importance of our 723 

knowledge of a given model parameter on sensitivity metrics associated with the whole probability 724 

distribution (Eq. 3) or the first two statistical moments (i.e., mean and variance; Eqs. 4, 6 and 7) of the 725 

density function of the target model outputs. Our analyses are exemplified through the simulation of 726 

realistic field settings characterizing two watersheds in the Vosges region (France) across a one-year 727 

period. Our study leads to the following major conclusions. 728 

1. The strength of the relative importance of model parameters typically varies in time and 729 

depends on the statistical moment associated with the probability distribution of the model 730 

output of interest. For example, we document that the relative influence of parameters related 731 

to the litter layer is generally higher for the variance than for the expected value of evaporation 732 
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in both catchments analyzed (Fig.s 6 and 7). The attenuation coefficient mainly affects the 733 

expected value of transpiration as compared to its variance (Fig. 8), the relative importance of 734 

stomatal conductance being more marked for the variance than for the average. 735 

2. Water fluxes related to evaporation are chiefly influenced by the energy flow through the 736 

canopy and by the parameters characterizing the top litter layer. Transpiration appears to be 737 

mainly influenced by the vegetation characteristics and by albedo rather than by soil-related 738 

parameters, which play a very minor role. Groundwater recharge is influenced only by a very 739 

limited number of model parameters. Our result document that its mean and variance are 740 

mainly driven by the soil-related parameters, root layer thickness and intercept, while 741 

uncertainty in the remaining vegetation parameters is somehow unexpectedly not contributing 742 

to these. While most of these results can be intuitive, resting on rigorous GSA metrics yields 743 

an appropriate quantification of the relative strength of the way uncertainties related to model 744 

parameters propagates onto different statistical moments of the probability distribution of the 745 

modeled water fluxes. Since characteristics of the soils related to the litter layer and root zone 746 

play an important role in the evaluation of the evaporation and groundwater recharge fluxes, 747 

our results emphasize the need for targeted studies on modeling of flow across the soil 748 

component to best characterize these model outputs. Otherwise, the evaluation of these water 749 

fluxes would require a priori values for some vegetation-related parameters such as canopy 750 

height and stomatal conductance. 751 

3. Relying on multiple sensitivity metrics, each focused on a given aspect of the uncertainty 752 

associated with a model response of interest, contributes to enhance our ability to quantify the 753 

relative importance of uncertainties linked to parameters of multiple origins. While a moment-754 

independent analysis of the type linked to the distribution-based Borgonovo index may be 755 

subject to some operational constraints because of the need of assessing the complete 756 

probability density function of the model outcome of interest, it can nevertheless be employed 757 

as a measure of the overall impact of a model parameter on the probability distribution of the 758 
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water fluxes considered. When coupled with prior knowledge of the system functioning (as for 759 

example in the case where some parameters are not involved in the computation of the water 760 

flux of interest), the results associated with this metric can be employed to gauge the quality of 761 

sampling of the model parameter space (see Section 3.2). The total Sobol indices and the AMAV 762 

indices provide very similar results in terms of ranking parameter importance with respect to 763 

water fluxes variance. 764 

We recall that each land surface model implements various degrees of complexities for diverse 765 

processes. It is also recognized that uncertainty sources affecting land surface models typically 766 

comprise incomplete knowledge in (a) conceptual and mathematical formulation of models and 767 

processes therein and (b) parameters embedded in such models. As such, future research efforts will 768 

be aimed at extending our knowledge on the relative impact of uncertain processes (and their 769 

parameterization) on the different components of the water budget included in a land surface model. 770 

 771 
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