Supplement material content

3				
4	1	NIHM_	Modular LandScape Model model description	2
5	1	1.1 En	ergy balance model	2
6		1.1.1	Estimation of the net radiation	2
7		1.1.2	Energy balance in the canopy	2
8		1.1.3	Energy balance at the soil surface	
9	1	1.2 Wa	ater balance in the atmosphere-vegetation- soil system	5
10		1.2.1	Water balance in the canopy	5
11		1.2.2	The snow routine	6
12		1.2.3	Flow in the unsaturated zone	7
13	2	Estimati	ion of canopy albedo	
14	3	NIHM_	Modular LandScape Moldel symbol list	9
15	4	Paramet	er identification codes for the sensitivity analysis	
16	5	Referen	ces	
17				
18				

21 1 NIHM_Modular LandScape Model model description

- 22
- The main mathematical formulations applied in NIHM-MLSM are described here. Symbols are
 detailed in a specific list for simplicity.
- 25

26 1.1 Energy balance model

27 Assuming steady state, energy balance at the soil surface can be formulated as:

28
$$R_n - \rho_w \lambda (E + Tr) - G - H = 0,$$

Here, R_n [W.m⁻²] is the net radiation reaching the surface; $\rho_w \lambda E$ [W.m⁻²] is the surface latent

30 heat flux related to evaporation; $\rho_{w} \lambda Tr$ [W.m⁻²] is the surface latent heat flux related to

31 transpiration; H [W.m⁻²] represents the sensible heat flux (also termed conductive heat flux)

32 between the surface and the atmosphere; and G [W.m⁻²] is the conductive heat flux between the

- 33 surface and the soil.
- 34

35 **1.1.1 Estimation of the net radiation**

36 Soil net radiation R_n is rendered by (Haghighi et al., 2017):

37
$$R_n = R_{S\downarrow}(1-\alpha) + \zeta \varepsilon \left(\varepsilon_a T_a^4 - T^4\right), \tag{2}$$

38 where $R_{s\downarrow}$ [W.m⁻²] is the solar incoming radiation (short wave radiation), α [-] is the albedo,

39 ζ [kg.s⁻³.K⁻⁴] is the Stefan-Boltzmann constant, ε [-] is the surface emissivity, ε_a [-] is the air 40 emissivity; and T_a [K] and T [K] are the air and surface temperature, respectively.

41 If the incoming long wave radiation $R_{I\downarrow}$ is known, the net radiation reads:

42
$$R_n = R_{S\downarrow}(1-\alpha) + \varepsilon R_{L\downarrow} - \varepsilon \zeta T^4, \qquad (3)$$

Energy balance in NIHM-MLSM is formulated for the canopy, which is turn represented by a
foliage layer and a soil layer with negligible heat capacity. The canopy layer is assumed to be
semi-transparent with a reflectivity associated with the Beer-Lambert type transmission
(Deardorff, 1978). Using the resistance analogy based on Ohm's law, conductive heat fluxes *G*and *H* are expressed in terms of the near-surface gradient of temperature.

48

49 **1.1.2 Energy balance in the canopy**

50 For the surface near the canopy layer, the components of the energy balance are:

(1)

$$51 \qquad \begin{cases} R_n = R_{s\downarrow} (1 - \alpha_c) \left(1 - e^{-K_{ea} LAI} \right) + \varepsilon_c R_{L\downarrow} - \varepsilon_c \zeta T_c^4 \\ H = \frac{\rho_a c_a}{r_{ac}} \left(T_c - T_a \right) \\ \rho_w \lambda Tr = \frac{\rho_a c_a}{\gamma (r_{ac} + r_c)} \left[e_s^{sat} \left(T_c \right) - e_s \right] \end{cases}$$

$$(4)$$

52 Evaporation is included in the interception of precipitation by the vegetation (Kergoat, 1998);

- 53 we refer to Section 2.1 for additional details. Knowledge of the aerodynamic canopy resistance
- 54 r_{ac} and the stomatal canopy resistance r_c is required to solve system of Eqs. (4).

55

56 1.1.2.1 Aerodynamic canopy resistance

57 The aerodynamic canopy resistance (r_{ac}) is computed as:

58
$$r_{ac} = \frac{\log((z_u - d_u) / z_{ou}) \cdot \log((z_h - d_h) / z_{oh})}{k^2 \cdot u_c}$$
 (5)

Aerodynamic roughness parameters for vegetated areas are related to the vegetation height, h_c , by the empirical formulations of Brutsaert (1982):

61
$$\begin{cases}
z_{u} = h_{c} + W_{T} \\
z_{h} = z_{u} \\
d_{u} = 2/3 h_{c} \\
d_{h} = d_{u} \\
z_{ou} = 0.123 h_{c} \\
z_{oh} = 0.1 z_{ou}
\end{cases}$$
(6)

62 Wind speed, u_c , is computed by:

63
$$u_{c} = \begin{cases} u \log (z_{u} / z_{um})^{\kappa_{u}} & z_{u} > z_{um} \\ u & z_{u} \le z_{um} \end{cases}$$
(7)

64 with $\kappa_{\mu} = 0.413$ (Brutsaert, 2005).

65

66 1.1.2.2 Stomatal canopy resistance

In the literature, stomatal conductance is typically preferred to its inverse, i.e., the stomatal resistance. Stomatal conductance is calculated using a Jarvis-type multiplicative model (Cox et al. 1998; Jarvis 1976) and it is affected by environmental factors embedded in efficiency functions (solar radiation, air temperature, vapor pressure deficit, and CO_2 concentration). The *LAI* is used to scale stomatal conductance to canopy conductance, i.e.,

72
$$g_{C} = g_{s}^{\max} LAI_{act} \left(F_{PAR} F_{VPD} F_{T} F_{CO2} \right),$$
(8)

- Here, g_s^{max} is the maximum value of the stomatal conductance, *LAI* act is the active part of the *LAI*. Considering the whole canopy as a 'big leaf', the active part of the canopy is equal to *LAI* or *LAI*/2 if only one half of the big leaf is considered (Allen et al., 2004).
- 76 The efficiency functions *F* are defined by:

77
$$F_{PAR} = \ln\left(\frac{R_S^* + K_{ext}R_{S\downarrow}}{R_S^* + K_{ext}R_{S\downarrow}\exp(-K_{ext}LAI)}\right),\tag{9}$$

78 R_s^* corresponding a parameter that varies between 30 and 300 W/m² depending on species 79 (Saugier and Katerji, 1991).

80 The function F_{VPD} takes water pressure deficit into account as (Avissar et al., 1985):

81
$$F_{VPD} = \left[1 + \exp(-2.86\Delta e - 3.110^{-6}\right]^{-1},$$
 (10)

82 where Δe is vapor pressure difference between the canopy layer surface and the ambient air.

83 The function F_T describes the temperature dependence of the stomatal resistance and is 84 expressed as:

85
$$F_{T} = \left(\frac{T_{a} - T_{\min}}{T_{opt} - T_{\min}}\right) \left(\frac{T_{\max} - T_{a}}{T_{\max} - T_{opt}}\right)^{(T_{\max} - T_{opt})/(T_{opt} - T_{\min})}.$$
(11)

86 The optimal temperature T_{opt} is around 20 to 30°C (Baldocchi et al., 1991), T_{min} and T_{max}

87 being about 5°C and 45°C, respectively (Jarvis, 1976).

88 F_{CO2} depends on the CO₂ concentration in the atmosphere according to:

89
$$F_{CO2} = \frac{1}{1.4 - 0.4CO_2 / CO_2^*}$$
 (12)

90 where CO_2 [ppm] is carbon dioxide concentration in and CO_2^* [ppm] is the reference carbon

- 91 dioxide concentration (which is usually set at 330 ppm) (Stockle et al., 1992).
- 92

93 1.1.3 Energy balance at the soil surface

94 For the soil surface, the components of the energy balance equation are:

95
$$\begin{cases}
R_{n,s} = R_{s\downarrow} (1 - \alpha_{s}) e^{-K_{ext} LAI} + \varepsilon_{s} R_{L\downarrow} - \varepsilon_{s} \zeta T_{s}^{4} \\
G = \frac{\rho_{a} c_{a}}{r_{g}} \left(T_{s} - T_{g} \right) \\
H = \frac{\rho_{a} c_{a}}{r_{as}} \left(T_{s} - T_{a} \right) \\
\rho_{w} \lambda E = \frac{\rho_{a} c_{a}}{\gamma r_{as}} \left(e_{s}^{sat} (T_{s}) - e_{s} \right)
\end{cases}$$
(13)

96 The aerodynamic soil resistance, r_{as} , is computed using the formulation of Choudhury and 97 Monteith (1988) and Shuttleworth and Gurney (1990), i.e.,

98
$$\begin{cases} r_{as}^{0} = \frac{\ln(z_{u} / z_{sr})^{2}}{k^{2} u_{z}} \\ r_{as} = \begin{cases} r_{as}^{0} / (1 + Ri)^{2} & Ri < 0 \\ r_{as}^{0} / (1 + Ri)^{0.75} & Ri > 0 \end{cases} \\ Ri = 5g(z_{u} - d_{u})\frac{T_{s} - T_{a}}{T_{a} u^{2}} \end{cases}$$
(14)

- 99 The quantity r_{as}^0 is considered as the resistance under neutral conditions (i.e., corresponding to 100 no temperature or vapor pressure differences at a horizontal surface of roughness z_{sr}). Under 101 non-neutral conditions, r_{as} is modified using the Richardson number *Ri*.
- 102 Ground conduction is considered as a fraction of soil net radiation (Choudhury et al., 1987;103 Kustas and Daughtry, 1990):

104
$$G = \alpha R n, \tag{15}$$

- 105 Here, $\alpha = 0.50$ or 0.70 for bare soil or open water, respectively.
- 106

107 1.2 Water balance in the atmosphere-vegetation- soil system

108 **1.2.1** Water balance in the canopy

109 Interception by the forest canopy plays a critical role by diverting significant quantities of 110 precipitation that would otherwise be directed to soil moisture, transpiration, and surface and 111 groundwater recharge. Key concepts of the water balance model include:

- 112 the intercepted water I_c is evaporated and does not contribute to the throughfall;
- 113 the excess of water is partly stored in the canopy, whose storage capacity S_c is limited to 114 a maximum value S_c^{max} ;
- 115 throughfall is the remaining part of exceeding water.
- 116 The amount of water intercepted by the canopy is given by (Kergouat, 1998):

117
$$I_c = P_r \kappa_p LAI, \qquad (16)$$

118 where κ_p is the rainfall interception coefficient whose value varies between 0.01 and 0.06

- 119 (Kergouat, 1998).
- 120 There are two different contributions to throughfall, i.e.,:
- 121 the amount of water above the maximum storage capacity, defined by:

122
$$T_{P1} = (S_c - S_c^{\max}) / \Delta t$$
 (17)

123 - and the canopy leakage, defined by: 124 $T_{P2} = S_c (1 - K_c) / \Delta t$. (18) 125 Water balance in the canopy is therefore expressed as:

126
$$\begin{cases} \frac{dS_c}{dt} = P_r - E_c - T_p \\ E_c = I_c \\ T_p = T_{p_1} + T_{p_2} \end{cases}$$
 (19)

127 P_r , S_c , and T_p orresponding to the rainfall rate, the actual canopy storage, and the throughfall, 128 respectively.

129 The maximum canopy storage capacity is estimated by (von Hoyningen-Huene, 1983):

130
$$S_c^{\text{max}} = (0.935 + 0.498 \cdot LAI - 0.00575 \cdot LAI^2) \cdot 10^{-3}.$$
 (20)

131

132 1.2.2 The snow routine

133 The model is an adaptation of the snow module of the HBV hydrological model (Seibert and 134 Bergström, 2022; Seibert and Vis, 2012). The first step consists in splitting precipitation (after 135 interception) in either snow, rain, or both. This is achieved through the following formulations:

136
$$\begin{cases} P_{s} = T_{p} & P_{Sn} = 0 & T \ge T_{s}^{\max} \\ P_{s} = 0 & P_{Sn} = T_{p} & T \le T_{s}^{\min} \\ P_{s} = \kappa_{sn} T_{p} & P_{Sn} = (1 - \kappa_{Sn}) T_{p} & T_{s}^{\min} < T < T_{s}^{\max} \end{cases},$$
(21)

137 where P_s and P_{Sn} denote the amount of water and snow reaching the soils surface, respectively; 138 T_s^{\min} and T_s^{\max} are the two temperature thresholds, set to -3°C and 1°C, respectively; and κ_p is 139 a proportional factor varying linearly from 0 at T_s^{\min} to 1 at T_s^{\max} .

We use a conceptual model based on snowpack temperature to estimate snow volume and snowmelt flux. The average snow pack temperature is estimated through (Neitsch et al., 2002):

142
$$T_{S_n}^{n+1} = \min\left(0, w_{s_n} T_{S_n}^n + (1 - w_{s_n}) \cdot T_A^n\right),$$
 (22)

143 where T_{Sn}^{n} is the snow pack temperature [°C] at time step *n*, T_{A}^{n} is the air temperature [°C], and 144 w_{sn} is a user defined weighting factor, here set to 0.3.

145 The stored snow volume is updated accordingly. Snow melting takes place only if the 146 temperature is higher than the user defined melting temperature T_m (set to 0 °C in this model) 147 and if the snow pack temperature is 0 °C. When these two conditions are fulfilled, the melted 148 snow flux is given by:

149
$$Q_{Sm} = \kappa_{Sm} \left(T_a^n - T_{Sm} \right), \tag{23}$$

150 where Q_{sm} is the melted snow flux and κ_{sm} is a proportionality coefficient, also termed degree-151 day factor, which is set to 10^{-4} m/s/°C.

153 **1.2.3 Flow in the unsaturated zone**

Flow in the unsaturated zone is described by a series of reservoirs. The first two represent the litter and the root zone, respectively. Each reservoir is defined by the water content at saturation,

156 θ_s , the water content at wilting point, considered as the residual water content, θ_r , and the

157 water content at field capacity, θ_c .

158 Throughfall and melted snow infiltrate in the litter layer. Evaporation computed by energy 159 balance at soil surface occurs in this layer only, and is depending on the water content. The 160 water drained from the litter layer enters the root layer. Transpiration, estimated by energy 161 balance at the canopy, occurs in this layer only, and is depending on the available water. 162 Drainage from these two layers is estimated in two ways: (i) the water volume above the layer 163 field capacity is drained immediately, representing water movement through gravity; (ii) when 164 the water content lies between the field capacity and the wilting point (residual water content), 165 drainage is computed as an exponential function of the available water.

166 Water balance for a given layer is formulated as:

167
$$T_L \frac{d\theta}{dt} = Q_{\rm in} - Q_s - Q_d, \qquad (24)$$

168 where T_L is the layer thickness, θ is the volumetric water content, Q_{in} is water infiltration 169 (throughfall and melted snow for the first layer), Q_s is the sink/source term due to evaporation 170 or transpiration, and Q_d is the drainage flux leaving the layer and supplying the next one.

For the first layer, if the water content is greater than porosity, θ^{n+1} is set to the saturated water content θ_s and the amount of infiltrated water is reduced accordingly, assuming that runoff occurs.

174 The drainage Q_d is computed through:

175
$$\begin{cases} Q_d = (\theta - \theta_c) / \Delta t & \text{if } \theta \ge \theta_c \\ Q_d = (e^{\kappa_d (\theta_L - \theta_p)} - 1.00) / \Delta t & \text{if } \theta_r \le \theta \le \theta_c \\ Q_d = 0.0 & \text{if } \theta \le \theta_r \end{cases}$$
(25)

176 where κ_d is the drainage coefficient.

177 In this version of NIHM-MLSM, the root zone drainage is considered as groundwater recharge.

179 2 Estimation of canopy albedo180

181 Values of albedo used in NIHM-MLSM are provided by satellite data and correspond to average 182 values at the pixel size. Since information on land use are available (through Corine Land 183 Cover), it is possible to distinguish bare soils from vegetated areas and assess energy balance. 184 Following Taconnet et al. (1986), we consider a soil layer below the canopy that allows 185 accounting for the reflection of the radiation trapped between soil and vegetation. The global 186 albedo, α_g , of this system is given by (Taconnet et al., 1986):

187
$$\alpha_{g} \simeq \sigma_{c} \alpha_{c} + \frac{\alpha_{s} \left(1 - \sigma_{c}\right)^{2}}{1 - \sigma_{c} \alpha_{c} \alpha_{s}},$$
(26)

188 with:

189
$$\sigma_c = 1 - \exp(-K_{ext} LAI).$$
(27)

190 From the global albedo, α_g , and assuming that the soil albedo, α_s , is known, it is possible to

192
$$\left(\sigma_c^2 \alpha_s\right) \alpha_c^2 - \sigma_c \left(\alpha_g \alpha_s + 1\right) \alpha_c + \left(\alpha_g - \alpha_s \left(1 - \sigma_c\right)^2\right) = 0$$
 (28)

193 It can be readily shown that Eq. (28) has always two real solutions and only one, i.e.,:

194
$$\alpha_{c} = \frac{\left(\alpha_{g}\alpha_{s}+1\right) - \sqrt{\left(\alpha_{g}\alpha_{s}-1\right)^{2} + 4\alpha_{s}^{2}\left(1-\sigma_{c}\right)^{2}}}{2\sigma_{c}\alpha_{s}}.$$
(28)

is comprised between 0 and 1.

3 NIHM_Modular LandScape Moldel symbol list

Symbol	Description	Unit	Value
Ca	Specific heat of dry air at constant pressure	J/kg/K	1.013 10 ³
CO_2	Carbone dioxide concentration (ppm)	kg/kg	
d_h	Reference elevation for humidity	m	
d_u	Evaporation flux	m/s	
E_c	Evaporation flux from the canopy	m/s	
e_a	Air partial water vapor pressure.	Pa	
e_s	Vapor pressure.	Pa	
e_s^{sat}	Vapor pressure at saturation.	Pa	
F_{CO2}	CO ₂ efficiency function.	-	
$F_{\scriptscriptstyle PAR}$	Photosynthetic active radiation efficiency function.	-	
F_T	Temperature efficiency function.	-	
F_{VPD}	Vapor pressure deficit efficiency function.	-	
G	Conductive heat flux between surface and the ground	W/m^2	
g	Gravity	m/s^2	9.81
g_c	Canopy conductance	m/s	
g_s^{\max}	Maximum conductance of fully open stomata	m/s	
Н	Sensible heat flux (conductive heat flux) between the surface and the atmosphere	W/m ²	
h_c	Canopy height	m	
I_c	Water interception by the canopy	m/s	
Kext	Attenuation coefficient depending on the vegetation	-	
k	Von Karman constant	-	0.40
LAI	Leaf area index	m^2/m^2	
LAIact	Active part of the LAI	m^2/m^2	
Patm	Air pressure	Pa	
PAR	Photosynthetic active radiation (400–700 nm)	W/m^2	
P_r	Precipitation	m/s	
P_s	Precipitation as liquid	m/s	
P_{sn}	Precipitation as snow	m/s	
$Q_{\scriptscriptstyle Sm}$	Melted snow infiltration flux	m/s	

\mathbf{Q}_{in}^n	Reservoir inflow water flux	m/s	
\mathbf{Q}_{d}^{n}	Reservoir drainage water flux	m/s	
Q_s^n	Sink/source term in the soil reservoir (evaporation for litter layer, transpiration for the root zone)	m/s	
q_a	Air specific humidity	kg/kg	
$R_{\downarrow S}$	Short wave radiation incoming from the sun (400–2500 nm).	W/m^2	
R_{\downarrow_L}	Long wave (infra-red) incoming radiation	W/m^2	
Ri	Richardson number	-	
R_n	Net radiation	W/m^2	
r _{ac}	Aerodynamic resistance of the canopy surface	s/m	
ras	Aerodynamic resistance of the soil surface	s/m	
r_{as}^0	Soil surface aerodynamic resistance at neutral conditions	s/m	
<i>r</i> _c	Canopy resistance	s/m	
r _g	Soil resistance to heat exchange	s/m	
S_c	Canopy water storage capacity	m	
S_c^{\max}	Canopy maximum water storage capacity	m	
T_a	Air temperature	K	
T_c	Near canopy surface temperature	Κ	
T_s	Near soil surface temperature	Κ	
Tr	Transpiration flux	m/s	
T_{min}	Minimal temperature threshold for stomatal resistance.	Κ	
T_{max}	Maximal temperature threshold for stomatal resistance.	Κ	
Topt	Optimal temperature for stomatal resistance.	Κ	
T_s^{\min}	Minimal temperature threshold for liquid/snow partition.	Κ	
T_s^{\max}	Maximal temperature threshold for liquid/snow partition.	K	
T_{Sm}	Snow melting threshold coefficient	-	
T_L	Layer thickness	m	
T_p	Throughfall	m/s	
T_{p1}	Throughfall from water excess	m/s	
T_{p2}	Throughfall from canopy drainage	m/s	
и	Measured wind speed	m/s	
u_c	Corrected wind speed	m/s	
W _{sn}	Weighting coefficient for snow storage	-	0.30

W_T	Turbulence layer thickness above canopy	m
Zu, Zh	Height above the canopy layer for wind and humidity	m
Z_{um}	Elevation at which wind speed has been measured	m
Z _{sr}	Soil roughness length	m
Z _{ou} , Z _{oh}	Roughness length for momentum and humidity	m

Symbol	Description	Unit	Value*
$lpha_{c}$, $lpha_{s}$	Canopy and soil albedo.	-	
χ	Psychrometric function.	Pa/K	
Δe	Vapor pressure difference between the canopy layer surface and the ambient air.	Ра	
$\mathcal{E}_a, \mathcal{E}_c, \mathcal{E}_s$	Air, canopy and soil emissivity and absorptivity.	-	
ζ	Stefan-Boltzmann constant.	$W/m/K^4$	5.670 10-8
θ	Water content.	m^3/m^3	
$ heta_{c}$	Water content at field capacity.	m^3/m^3	
θ_r	Water content at the wilting point.	m^3/m^3	
θ_{σ}	Water content at saturation.	m^3/m^3	
κ_{d}	Drainage coefficient.	-	
κ_p	Rainfall interception coefficient.	-	
κ_{sn}	Water/snow partition coefficient.	-	
κ_{Sm}	Degree day factor for snow melting.	m/s/°C	10-4
λ	Latent heat of water vaporization.	J/kg	2.45 10 ⁶
$ ho_a$	Air density.	kg/m ³	1.204
$ ho_w$	Water density.	kg/m ³	999.9

4 Parameter identification codes for the sensitivity analysis

Id	Parameter
1-12	LAI
13-24	Albedo
25	Root zone field capacity
26	Root zone porosity
27	Litter drainage rate
28	Root zone drainage rate
29	Litter layer thickness
30	Litter layer porosity
31	Litter zone field capacity
32	Rainfall interception coefficient.
33	Canopy radiation attenuation coefficient
34	Root zone thickness
35	Maximum conductance of fully open stomata
36	Canopy height

208 **5 References**

- Allan, R., Pereira, L., Smith, M., 1998. Crop evapotranspiration-Guidelines for computing crop
 water requirements-FAO Irrigation and drainage paper 56.
- Avissar, R., Avissar, P., Mahrer, Y., Bravdo, B.A., 1985. A model to simulate response of plant
 stomata to environmental conditions. Agric. For. Meteorol. 34, 21–29.
 https://doi.org/10.1016/0168-1923(85)90051-6
- Baldocchi, D.D., Luxmoore, R.J., Hatfield, J.L., 1991. Discerning the forest from the trees: an
 essay on scaling canopy stomatal conductance. Agric. For. Meteorol. 54, 197–226.
 https://doi.org/10.1016/0168-1923(91)90006-C
- Brutsaert, W., 2005. Hydrology: An Introduction, 1st ed. Cambridge University Press.
 https://doi.org/10.1017/CBO9780511808470
- Brutsaert, W., 1982. Evaporation into the Atmosphere. Springer Netherlands, Dordrecht.
 https://doi.org/10.1007/978-94-017-1497-6
- Choudhury, B.J., Monteith, J.L., 1988. A four-layer model for the heat budget of homogeneous
 land surfaces. Q. J. R. Meteorol. Soc. 114, 373–398.
 https://doi.org/10.1002/qj.49711448006
- Cox, P.M., Huntingford, C., Harding, R.J., 1998. A canopy conductance and photosynthesis
 model for use in a GCM land surface scheme. J. Hydrol. 212–213, 79–94.
 https://doi.org/10.1016/S0022-1694(98)00203-0
- 228 Deardorff, J.W., 1978. Efficient prediction of ground surface temperature and moisture, with 229 inclusion layer vegetation. J. Geophys. 83, 1889. of a of Res. 230 https://doi.org/10.1029/JC083iC04p01889
- Haghighi, E., Kirchner, J.W., 2017. Near-surface turbulence as a missing link in modeling
 evapotranspiration-soil moisture relationships: ET-SOIL WATER COUPLING IN
 SEMIARID AREAS. Water Resour. Res. 53, 5320–5344.
 https://doi.org/10.1002/2016WR020111
- Idso, S.B., 1981. A set of equations for full spectrum and 8- to 14-μm and 10.5- to 12.5-μm
 thermal radiation from cloudless skies. Water Resour. Res. 17, 295–304.
 https://doi.org/10.1029/WR017i002p00295
- Jarvis, P.G., 1976. The Interpretation of the Variations in Leaf Water Potential and Stomatal
 Conductance Found in Canopies in the Field. Philos. Trans. R. Soc. Lond. B. Biol. Sci.
 240 273, 593–610.
- Kergoat, L., 1998. A model for hydrological equilibrium of leaf area index on a global scale. J.
 Hydrol. 212–213, 268–286. https://doi.org/10.1016/S0022-1694(98)00211-X
- Kustas, W.P., Daughtry, C.S.T., 1990. Estimation of the soil heat flux/net radiation ratio from
 spectral data. Agric. For. Meteorol. 49, 205–223. https://doi.org/10.1016/01681923(90)90033-3

- Neitsch, S.L., ARNOLD, J.G., KINIRY, J.R., WILLIAMS, J.R., KING, K.W., 2002. Soil and
 Water Assessment Tool Theoretical Documentation Version 2000.
- Saugier, B., Katerji, N., 1991. Some plant factors controlling evapotranspiration. Agric. For.
 Meteorol. 54, 263–277. https://doi.org/10.1016/0168-1923(91)90009-F
- Seibert, J., Bergström, S., 2022. A retrospective on hydrological catchment modelling based on
 half a century with the HBV model. Hydrol. Earth Syst. Sci. 26, 1371–1388.
 https://doi.org/10.5194/hess-26-1371-2022
- Seibert, J., Vis, M.J.P., 2012. Teaching hydrological modeling with a user-friendly catchmentrunoff-model software package. Hydrol. Earth Syst. Sci. 16, 3315–3325.
 https://doi.org/10.5194/hess-16-3315-2012
- Shuttleworth, W.J., Gurney, R.J., 1990. The theoretical relationship between foliage
 temperature and canopy resistance in sparse crops. Q. J. R. Meteorol. Soc. 116, 497–
 519. https://doi.org/10.1002/qj.49711649213
- Stockle, C.O., Williams, J.R., Rosenberg, N.J., 1992. A Method for Estimating the Direct and
 Climatic Effects of Rising Atmospheric Carbon Dioxide on Growth and Yield of Crops:
 Part 1--Modification of the EPIC Model for Climate Change Analysis.
- Taconet, O., Bernard, R., Vidal-Madjar, D., 1986. Evapotranspiration over an Agricultural
 Region Using a Surface Flux/Temperature Model Based on NOAA-AVHRR Data. J.
 Clim. Appl. Meteorol. 25, 284–307. https://doi.org/10.1175/15200450(1986)025<0284:EOAARU>2.0.CO;2
- Von Hoyningen-Huene, J., 1981. Die interzeption des Niederschlages in landwirtschaftlichen
 Pflanzenbeständen (Rainfall interception in agricultural plant stands). DVWK,
 Arbeitsbericht Deutscher Verband für Wasserwirtschaft und Kulturbau.
- 269