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Abstract. Accurate quantification of wetland depression water storage capacity (WDWSC) is
imperative for comprehending the wetland hydrological regulation functions to support integrated
water resources management. Considering the challenges posed by the high acquisition cost of
high-resolution LiDAR DEM or the absence of field measurements for most wetland areas, urgent
attention is required to develop an accurate estimation framework for WDWSC using open-source,
low-cost, multi-source remote sensing data. In response, we developed a novel framework,
WetlandSCB, utilizing coarse-resolution terrain data for accurate estimation of WDWSC. This
framework overcame several technical difficulties, including biases in above-water topography,
incompleteness and inaccuracy of wetland depression identification, and the absence of bathymetry.
Validation and application of the framework were conducted in two national nature reserves of
northeast China. The study demonstrated that integrating priority-flood algorithm, morphological
operators and prior information can accurately delineate the wetland depression distribution with
overall accuracy and Kappa coefficient both exceeding 0.95. The use of water occurrence map can
effectively correct numerical biases in above-water topography with Pearson coefficient and R?
increasing by 0.33 and 0.38 respectively. Coupling spatial prediction and modeling with remote sensing
techniques yielded highly accurate bathymetry estimates, with <3% relative error compared to filed

measurements. Overall, the WetlandSCB framework achieved estimation of WDWSC with <10%
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relative error compared to field topographic and bathymetric measurements. The framework and its
concept are transferable to other wetland areas globally where field measurements and/or
high-resolution terrain data are unavailable, contributing to a major technical advancement in
estimating WDWSC in river basins.

Keywords: Wetland depression; Water storage capacity; Hypsometric curve; coarse-resolution

terrain data; wetland hydrological regulation functions

1 Introduction

Wetlands are multifunctional ecosystems considered as nature-based solutions for effective water
management in river basins (Thorslund et al., 2017). They exert a profound influence on watershed
hydrological processes and water resource availability through their hydrological regulation functions,
such as maintaining baseflow, buffering floods, and delaying droughts (Acreman and Holden, 2013;
Wau et al., 2023). These functions are essential for enhancing watershed resilience and ensuring water
security (Cohen et al., 2016; Evenson et al., 2018; Lane et al., 2018). Wetland depression water storage
capacity (hereafter abbreviated as WDWSC) represents a critical component of wetland hydrological
regulation functions. The quantitative study of the WDWSC contributes to advancing scientific
understanding of wetland hydrological regulation functions and to improving integrated water
resources management at the watershed scale (Ahmad et al., 2020; Fang et al., 2019; Jones et al., 2018;
Shook et al., 2021).

The WDWSC can be defined as the maximum surface water volume that each wetland depression
can store without spilling to down-gradient waters (Jones et al., 2018). Previous studies predominantly
employed wetland depression identification algorithms to derive wetland depression topography from
terrain data. In a vector-based contour representation, wetland depressions are shown as nested closed
contours, with inner contours at lower elevations than the outer ones (Wu and Lane, 2016). Area-depth
pairs are derived from the contour lines of wetland depressions, and hypsometric curves are constructed
by applying curve-fitting methods to the obtained pairs (e.g., Haag et al., 2005; Wu and Lane, 2016).
Therefore, the key determinants for the accuracy of the WDWSC calculation are the rationality of the
wetland depression identification algorithms and the precision of terrain data. Many scholars have
conducted research on wetland depression identification algorithms, which can be mainly categorized

into three types: depression filling, depression breaching and hybrid combing both the filling and
2
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breaching approaches (Wu et al., 2019). Among these, the priority-flood algorithm within the
depression filling category is widely adopted as a prevalent algorithm for wetland depression
identification (Barnes et al., 2014; Lindsay, 2016; Wu et al, 2019; Zhou et al., 2016). The
priority-flood algorithm works by flooding DEM cells inwards from their edges using a priority queue
to determine the sequence of cells to be flooded. Wu et al. (2019) and Rajib et al. (2019) demonstrated
the feasibility of accurately deriving wetland depression topography using the priority-flood algorithm
in the Pipestem watershed and Upper Mississippi river basin, respectively. Bare-earth high-resolution
airborne light detection and ranging (LiDAR) DEM can provide accurate topographic information of
wetland depressions, significantly improving the estimation accuracy of the WDWSC. For example,
Jones et al. (2018) used high-resolution LiDAR DEM to estimate WDWSC in the Delmarva Peninsula.
However, the high acquisition cost of LIDAR DEM renders it impractical for large-scale estimation of
WDWSC. The global open-access spaceborne-derived DEMs (hereafter referred as global DEMs),
such as Shuttle Radar Topography Mission (SRTM), ALOS Global Digital Surface Model, the Terra
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital
Elevation Model, offer topographic information at a fine spatial scale. However, compared to the
bare-earth LIDAR DEM, the global DEMs exhibit three obvious limitations. First, radar altimetry
cannot penetrate water surfaces, so the global DEMs produced from radar altimetry do not provide any
bathymetric information. Second, in certain regions, there may be substantial numerical discrepancies
in above-water topography. The above-water DEMs demonstrate systematic overestimation caused by
canopy height, and their accuracy is significantly influenced by terrain slope (Maresova et al., 2024;
Simard et al., 2024). Third, the global DEMs often suffer from lower horizontal and vertical resolutions
(Chen et al., 2022; Liu et al., 2019; Liu et al., 2024). Due to the limitations in global DEMs, delineation
of wetland depressional areas using the advanced priority-flood algorithm also suffers from three
problems: the bias in above-water topography (Fig. la and 1b), incompleteness and inaccuracy of
wetland depressions identification (Fig. 1c), and the absence of bathymetric information (Fig. 1d)

(Gdulova et al., 2020; Hawker et al., 2019; Li et al., 2011; Liu et al., 2024).
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Figure 1. Wetland depression extraction based on the priority-flood algorithm and global DEMs suffers
from the bias of above-water topography(Figures 1la-lc illustrate the discrepancies in above-water
topography between LiDAR DEM and ALOS DEM, where Figure 1a shows the 1m spatial resolution
LiDAR DEM, Figure 1b displays the LiDAR DEM resampled to 30m spatial resolution using the
nearest-neighbor method, and Figure 1c presents the 30m spatial resolution ALOS DEM), incompleteness
and inaccuracy of wetland depressions identification (Figure 1d shows a historical satellite image from 2013,
and Figure le depicts the spatial distribution of wetland depressions extracted using the priority-flood
algorithm and ALOS DEM, which exhibits noticeable characteristics of incomplete boundaries and spatial
fragmentation), and the absence of bathymetric information (Figure 1f, where the entire water surface is

represented by a single elevation value of 129 m).

In an effort to minimize the impact of the absence of bathymetric information in global DEMs on
the estimation accuracy of the WDWSC, researchers have conducted studies on the estimation of
underwater hypsometric relationship of wetland depressions, and the methods can be divided into two
types: spatial prediction and modeling methods and remote sensing technologies. The spatial prediction
and modeling methods assume that the bathymetry can be considered as a spatial extension of the
surrounding exposed terrains due to long-term tectonic and geophysical evolution processes.

Consequently, the underwater hypsometric relationship is assumed to be fundamentally similar to the

4



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

above-water hypsometric relationship in wetland depressions (e.g., Ahmad et al., 2020; Bonnema et al.,
2016; Bonnema and Hossain, 2017; Liu and Song, 2022; Tsai et al., 2010; Vanthof and Kelly, 2019;
Verones et al., 2013; Wu and Lane, 2016; Xiong et al., 2021). However, the large numerical bias in the
above-water topography of global DEMs in certain regions can distort the constructed above-water
hypsometric relationship of wetland depressions, thus introducing significant uncertainty to the
underwater hypsometric relationship estimated by this method (Khazaei et al., 2022; Zhan et al., 2021).
Over the past few decades, remote sensing technologies have demonstrated remarkable capabilities in
estimating underwater hypsometric relationships at large spatial scales, facilitated by the rapid
emergence of various advanced satellite sensors, including optical, passive microwave, and radar
instruments (Duan and Bastiaanssen, 2013; Gao et al., 2015; Liu et al.,, 2022). The commonly
employed approach for estimating underwater hypsometric relationship requires simultaneous
observations of water area provided by optical images (e.g., Landsat series) and the corresponding
water level provided by altimetry satellites (e.g., Sentinel-3, CryoSat-2, ICESat-2, Envisat). However,
accuracy challenges arise due to numerical biases of altimetry satellites, cloud contamination in some
optical images, and the occasional occurrence of one water area value corresponding to multiple water
level values or vice versa (Li et al., 2019a; Liu et al., 2024).

In summary, previous studies using the global DEMs have overlooked critical issues such as the
incompleteness and inaccuracy of wetland depression identification, as well as biases in above-water
topography, leading to significant uncertainties in WDWSC estimation. In addition, insufficient
attention has been paid to the drawbacks and limitations of both spatial prediction and modeling
methods and remote sensing technologies in estimating bathymetry. Consequently, a comprehensive
and systematic solution for the accuracy estimation of WDWSC based on the global DEMs has not yet
been developed. Therefore, this study aims to develop a framework for accurately estimating WDWSC
by integrating multi-source remote sensing data and prior knowledge. Specifically, we integrated
priority-flood algorithm, morphological operators and prior information on water distribution map to
delineate the spatial extent of wetland depressional areas. We then corrected the bias in above-water
topography based on water occurrence map. Finally, we utilized remote sensing techniques to couple
spatial prediction and modeling to estimate bathymetry of wetland depressional areas. The principle
contribution of this developed framework, termed as WetlandSCB, lies in addressing the challenges

hindering the improvement of accuracy in estimating WDWSC based on global DEMs.
5
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2 Methodology

The WetlandSCB framework can be summarized in four steps as illustrated in Figure 2. Step 1
delineation of wetland depressional areas; Step 2 above-water topography reconstruction; Step 3
bathymetric information estimation; and Step 4 hypsometric curve construction and WDWSC

calculation. Each of the four steps are described in the following sections.
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Figure 2: Flowchart of the WetlandSCB framework for accurate estimation of wetland depression water
storage capacity (WDWSC) comprising four technical steps. In step 1, spatial distribution of wetland
depressional areas are delineated. In step 2, wetland above-water topography is reconstruction. In step 3,
bathymetric information of wetland depressional areas is estimated. In step 4, a hypsometric curve (i.e.

depth-area relation) is developed and WDWSC is quantified.

2.1 Wetland depression spatial delineation

We extracted the original wetland depression map from the SRTM DEM based on the priority-flood
algorithm and wetland maps (Fig. 3). The priority-flood algorithm was applied to identify and fill sinks
in the DEM, resulting in a depressionless DEM. By subtracting the original DEM from the
depressionless DEM, an elevation difference grid was generated, where each cell value represents the
depth of the depression. Subsequently, cells with elevation changes greater than zero were extracted

and identified as topographic depressions. To eliminate the artifact wetland depressions, it was
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necessary to transform the wetland depression map into a binary image consisting of pixels that area
labeled as logical ones (wetland depression) and zeros (non-wetland depression). We then employed
the eight-neighbor connectivity algorithm to extract the spatial extent of each wetland depression from
the binary image. Artifact wetland depressions (e.g., rivers and channels) typically exhibit low
circularity (Eq. 1) and high eccentricity (Eq. 2), whereas true wetland depressions generally display
high circularity and low eccentricity. By iteratively refining the threshold values of these indicators and
validating the results through visual inspection, the optimal thresholds were established to effectively

eliminate artifact wetland depressions (Ahmad et al., 2020).

Circularity = P (1)
2N7m-A
Eccentricity = Dr (2)

m

where P (m) and 4 (m?) are the perimeter and area of the wetland depression, respectively. Dy (m)

and L, (m) represent distance between foci and the length of major axis of wetland depression.

Topographic depression

‘Wetland depression
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Figure 3. (a) Conceptual diagram of wetland depression profile. (b) representative wetland depressional

area located in Nenjiang river basin, China. (c) 3-dimensions diagram of wetland depressional areas.

Due to incompleteness and inaccuracy identification of some wetland depressions in the original
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wetland depression map (Figure 4a), morphological operators of erosion and dilation are applied for the
initial spatial processes (Figure 4b). The erosion operator erodes away the boundaries of wetland
depressions to enhance their edges and remove noise. The dilation operator fills up small holes
(non-wetland depression pixels) surrounded by a group of wetland depression pixels (Pulvirenti et al.,
2011a). The combined effect of the two operators is to remove noises while preserving the substantive
features in the image. Specifically, on the Python platform, morphological opening was performed by
first applying the erosion operator, followed by the dilation operator. These operations require a
binary-valued kernel, where the output pixel value in the erosion step is determined by the minimum
value within the kernel. A disk-shaped kernel with a 3-pixel radius was used, which is significantly
smaller than typical wetland depressions but sufficient to eliminate speckle noise. The water
distribution map is defined as the maximum water body distribution map, which serves as prior
information, effectively characterizes the spatial extent of wetland depressions (Figure 4c). Therefore,
after applying morphological operators, the wetland depression map is merged with the water
distribution map within the depression boundaries through a union operation, ensuring the creation of a

comprehensive and finalized wetland depression map (Figure 4d). .

Wetland depression

(a)‘;,;

Erosion and dilation =~ Water distribution map Final wetland depression

2 2 (© (d) P

Figure 4. The final wetland depression map derived from morphological operators and prior water

distribution information. Figure 4a depicts the spatial distribution of the wetland depression before
processing, with pink indicating wetland depression pixels; Figure 4b shows the spatial distribution of the
wetland depression after morphological operator processing, represented in white; Figure 4c¢ illustrates the
maximum water extent within the wetland depression boundaries, highlighted in blue; and Figure 4d
presents the refined spatial distribution of the wetland depression, obtained by combining Figures 4b and 4c¢
through a union operation. The red dotted polygons indicate wetland depression pixels supplemented with

prior information.
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2.2 Above-water topography reconstruction

The basic idea is that the greater the water occurrence for a pixel (i.e., the more frequently it is
covered by water), the deeper the water (Li et al., 2021). Therefore, if there is a accurate water
occurrence maps, a close relationship between the water occurrence and the topography for wetland
depressions can be found. The water occurrence map is generated by summing the times that the pixel
is detected as water and dividing it by the number of total valid observations. The open-source Global
Surface Water Mapping Layers produced by the European Commission's Joint Research Centre (JRC)
contains a water occurrence map, which has been widely used to describe the topography of wetland
depressions globally or in different regions (Luo et al., 2019; Pickens et al., 2020; Yao et al., 2019; Zou
et al., 2018). Besides, the Global Surface Water Dynamics, produced by the Global Land Analysis &
Discovery (GLAD), also includes a water occurrence map (Pickens et al., 2020). However, the
cloud-free JRC water distribution images have temporal discontinuity. They are more available during
dry seasons than wet seasons, which leads to deviations in the representation of real topography at the
scale of individual wetland depression (Chu et al., 2020).

To address the above issue, this study proposes a method to restore the cloud-contaminated JRC
water distribution images to improve the accuracy of the JRC water occurrence map. For wetland
depressional areas, the JRC water distribution images are classified into cloud-free and
cloud-contaminated images using the cloud screening algorithm (a rudimentary cloud-scoring
algorithm called simpleCloudScore) of the Google Earth Engine platform (Mullen et al., 2021). The
Canny edge detection algorithm is used to obtain the water body boundary of the two types of images
(Canny, 1986). Theoretically, if the water areas are the same, the water body boundary of the cloud-free
image should overlap with the exposed water body boundary in the cloud-contaminated image (Figure
5a). Therefore, by overlapping the water body boundaries of the cloud-free images with the
cloud-contaminated images, the missing spatial extent of water bodies in the cloud-contaminated
images can be filled. Theoretically, this method can be applicable to wetland depressional areas
exceeding 0.0144 km?.

The corrected JRC water occurrence map is utilized to reconstruct above-water topography. This
is because the water occurrence values within the same wetland depression correspond to elevation
values of SRTM DEM (Figure 5b and 5c). However, each corrected water occurrence value may

correspond to multiple elevation values in the global DEMs. Therefore, the median of multiple
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elevation values is used as the unique elevation value corresponding to the water occurrence value.
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Figure 5. Above-water topography reconstruction of wetland depressional areas. (a) Restoration method of
cloud-contaminated satellite images. (b) LIDAR DEM and (c¢) JRC water occurrence map of Mead Lakes in
the United States. (d) SRTM DEM and (e) JRC water occurrence map of a representative wetland
depressional area located in the Nenjiang River Basin. (f) Correlation between elevations and water

occurrences in the wetland depressional area.

2.3 Bathymetric information estimation
Using remote sensing technologies, simultaneous observations of water areas provided by optical
images (e.g., Global Surface Water datasets) and the corresponding water levels from altimetry

satellites (e.g., Sentinel-3) are employed to obtain underwater area-level pairs. Furthermore, based on
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the principle of spatial prediction and modeling methods, the continuity of the slope profile between
the above-water and underwater topography is used as a filtering criterion to refine the underwater
area-level pairs, enabling precise characterization of the underwater topography of wetland
depressions.

Match multi-source altimetry satellites with optical images to construct all area-level pairs for
wetland depressions. By identifying water surface distributions in global DEMs, filter the area-level
pairs that represent underwater hypsometric relationships within wetland depressions. Since altimetry
satellite data are subject to various factors that influence the accuracy of water level monitoring,
including intrinsic factors such as sensor performance and instrument resolution, as well as extrinsic
factors like natural elements, the geometry of the wetland water body, boundary conditions, and
vegetation characteristics (Zhou et al., 2023), some of the derived water level data exhibit substantial
variability and uncertainty and are regarded as outliers. The outliers in the underwater area-level pairs
are removed using the 3-sigma rule. Morevoer, DEM errors can be categorized into two types:
systematic and random errors. To mitigate data noise, it is common practice to smooth the DEM before
applying it for terrain analysis. Several filters commonly used for smoothing DEMs include median
and mean filters, Gaussian filter, adaptive filter, and K-Nearest mean filter (Lindsay, 2016). In this
study, we use the smoothed SRTM DEM derived from Gaussian filter to calculate the slope profile. As
the slope profile is a crucial indicator reflecting the hypsometric relationship of wetland depressions
(Clark and Shook, 2022; Sjoberg et al., 2022). Therefore, we first form various combinations of the
processed underwater area-level pairs (each water area value uniquely corresponds to a water level
value in each combination), and calculate the slope profile value p, for each combination. Then the
combination with p, closest to the above-water slope profile p. is taken as the optimal solution, which
can effectively represent underwater bathymetry of wetland depressions.

In this study, a logarithmic transformation is applied to the calculation formula for the slope
profile p of wetland depressions established by Hayashi and Van der Kamp (2000) to obtain Eq. 3. The

least squares method is used to solve Eq. 3 to obtain the slope profile p value of wetland depressions:

p_ 2dn(iu ho

3
In( A4/ Ad) ®

where i (m), A (m?) represent the depth and area of wetland depressions, and w and d represent

the different area-depth pairs.
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Figure 6. Estimation of bathymetric information for wetland depressional areas. (a) Schematic
representation of a simplified wetland depression profile, where 4 (m), r (m) and 4 (m?) represent the depth
of a wetland depressional area, the distance between the edge and the center of the wetland depression, and
the area of the wetland depression, respectively. (b) Wetland depression profile for various p values. (c)
Methods for bathymetric estimation of wetland depressions, where Sentinel, Envisat, and Croysat are

different altimetry satellites, and the numbers 1, 2, and 3 are selected depth-area pairs.

2.4 Estimation of wetland depression water storage capacity

We derived the hypsometric relationship from the corrected above-water area-level pairs and
estimated underwater area-level pairs of wetland depressions. The monotonic cubic spline and power
function are employed to fit the hypsometric relationships (i.e., depth-area relations) to derive the
above-water hypsometric curve f4(L) and the underwater hypsometric curve fz(L) (Messager et al.,
2016; Yao et al., 2018), respectively. Subsequently, based on the underwater hypsometric curve f3(L),
the area enclosed by the water level from 0 to the maximum value and fz(L) is defined as the
underwater storage capacity of the wetland depression. Similarly, based on the above-water
hypsometric curve f4(L), the area enclosed by the water level from the minimum value (corresponding
to the maximum value of f3(L)) to the maximum value (the elevation of the spilling point) and f3(L) is
defined as the above-water storage capacity of the wetland depression. The total wetland depression
water storage capacity is then obtained as the sum of both components (represented as V in Eq. 4,

Figure 7).
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Figure 7. Schematic diagram for the estimation of wetland depression water storage capacity. Two

depth-area rating curves are applied for the bathymetric volume and the above-water topographic volume.

3 Validation sites and datasets
3.1 Validation sites

We applied the WetlandSCB to two wetlands in the Nenjiang River Basin (NRB), northeast China,
to validate the framework. Draining a total area of 297,100 km?, the NRB is one of the largest river
basins in north China. In this river basin, agricultural lands and wetlands (lakes and swamps) are
prevalent (Wu et al., 2023). Recognised as critical regulators of the water balance within the NRB,
wetlands are considered more important than other ecosystems in mitigating future hydrological
extremes and increasing water availability for agriculture (Chen et al., 2020, Wu et al., 2020a, Wu et al.,
2020b, Wu et al., 2020c). For method validation and application of the WetlandSCB framework, we
focused on two national nature reserves within the NRB: the Baihe Lake and the Chagan Lake. The
Baihe Lake, characterised as a marsh wetland, covers approximately 40 km?, predominantly
comprising seasonal inundation zones, with an average water depth of less than 1 m. In contrast, The
Chagan Lake is a large lacustrine wetland of about 372 km?, mainly composed of perennial inundation
zones, with an average water depth of 2.5 m. These two validation wetlands represent different
characteristics in terms of type, area, and average water depth to verify the application robustness of
our developed framework. Field measurements of topographic and bathymetric information (elevation
and depth) were conducted for both the Baihe Lake and the Chagan Lake, consisting of 248 and 657
measurement points, respectively (Figure 8). Specifically, we combined an ultrasonic echo sounder

(D390, Chcnav, China) with a Global Positioning System (GPS) positioning system and applied the
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Figure 8. Locations and distribution of elevation and depth measurements across the Baihe Lake and

Chagan Lake in the Nenjiang River basin, northeast China.

3.2 Datasets

The application of the WetlandSCB framework requires the following data: (i) the global DEMs
sourced from SRTM DEM, with water distribution map sourced from the accompanying SRTM Water
Body Data (https://earthexplorer.usgs.gov, Farr and Kobrick, 2000; NASA, 2013); (ii) wetland maps
extracted from the 30-m resolution land cover data for the years 1990-2019
(https://zenodo.org/records/5816591, Yang and Huang, 2021) and 30-m resolution wetland map in 2015
year (http://northeast.geodata. cn/index. html, Mao et al., 2020). This study overlays the data from both
sources to reduce the uncertainties in the wetland maps; (iii) water distribution maps and water
occurrence map obtained from the Global Surface Water datasets (https://earthengine.google.com,
Pekel et al, 2016); (iv) altimetry satellite data sourced from the Sentinel-3A/3B products
(https://scihub.copernicus.eu/). In addition, pre-processing of Sentinel-3 altimetry data is performed
using the geophysical and atmospheric correction method developed by Huang et al. (2019) (Eq. 5 and

Eq. 6) to improve data accuracy:
Hyaterievet = Hatt — R — Cor (5)

where Hyaieriever 18 the water level referenced to the EGM96 geoid, Har is the altitude of the
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altimeter derived from the modeling of satellite trajectory, R is the range computed through the time

duration of the echoes, and Cor is referred to as the geophysical and environmental corrections:

Cor=C

dry

+C

pole

+C,,,+C,. +C

iono solidEarth

+ CEGM 96 (6)

where Cary, Cuwet, Ciono, CsotidEarth, Cpole and Crcumos are the dry tropospheric, wet tropospheric,
ionospheric corrections, the solid Earth tide, polar tide corrections and the EGM96 geoid respectively.
4 Results and discussions
4.1 Performance evaluation of wetland depression spatial delineation and uncertainty analysis

The actual topographic and bathymetric information obtained from field measurements, along
with the contour-tree method, provides the actual spatial distribution of wetland depressional areas.
Additionally, two spatial distributions of wetland depressional areas are derived: one using the SRTM
DEM combined with the priority-flood algorithm and the other using the SRTM DEM with the
WetlandSCB framework. A comparative analysis of these three approaches is conducted to assess the
accuracy differences in wetland depression spatial delineation by using four indicators: overall
accuracy, kappa coefficient, producer's accuracy, and user's accuracy (Fig. 9a-f). The confusion matrix,
also known as an error matrix, is a crucial method for evaluating land cover classification accuracy. It
intuitively reflects the classification relationship between the evaluated data and the reference data.
Key evaluation metrics include the above four indicators. For detailed calculation equations, refer to
Liu et al. (2007). The results indicate that the WetlandSCB framework can accurately determine the
spatial distribution of wetland depressions, with all four indicators exceeding 0.95. In contrast, the
user's accuracy is above 0.93 in both validation wetlands (error of commission is 0.07), and the
producer's accuracy is only 0.37 (error of omission is 0.63) in Baihe Lake based on the priority-flood
algorithm. Since the overall accuracy of wetland depression spatial delineation derived using the
priority-flood algorithm exceeds 0.6 for both validation wetland sites, with a peak accuracy of 0.97 for
Chagan Lake, the results demonstrate that the algorithm is highly effective in identifying wetland
depressions, but is limited by the numerical errors of the global DEMs, which leads to lower extraction
accuracy of the spatial distribution of wetland depressions (Zhou et al., 2016). Since the overall
accuracy, Kappa coefficient, and Producer’s accuracy of wetland depression spatial delineation
obtained using the WetlandSCB framework show significant improvements over those derived from the

priority-flood algorithm for both validation wetlands, with a slight increase in User’s accuracy for
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Chagan Lake, the results effectively demonstrate that the WetlandSCB framework outperforms the
priority-flood algorithm in wetland depression spatial delineation..

Uncertainty in wetland depression spatial delineation using the WetlandSCB framework primarily
mainly arises from morphological operators and prior information on water distribution map. Figures
9g and 9h show that, compared with morphological operators, prior information on water distribution
map can significantly alter the performance of wetland depression spatial delineation and is a key
factor in determining the level of uncertainty. For instance, in Baihe Lake, the overall accuracy and
kappa coefficient improved by 0.29 and 0.56, respectively, after processing with prior information on
water distribution map. Similar studies have also found that the type and reliability of prior information
are major factors affecting the spatial filling performance of surface water maps (Aires, 2020;
Pulvirenti et al., 2011b). Therefore, this study compared the wetland depression spatial delineation
results based on three sets of prior information on water distribution map: GLC-FCS30 (from Zhang et
al., 2021), CLCD (from Yang and Huang, 2021), and JRC (Fig. 9i and 9j), where GLC-FCS30 and
CLCD are 30-meter resolution land cover datasets, and JRC provides 30-meter resolution water surface
data.. The overall accuracy differences for the Baihe Lake and Chagan Lake ranged from 0.68 to 0.98
and from 0.93 to 0.99, respectively. In general, the accuracy levels of prior information from high to
low were JRC > GLC-FCS30 > CLCD. This suggests that selecting highly reliable prior information on

water distribution map is an essential way to reduce uncertainty in the WetlandSCB framework.
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Figure 9. (a), (b), and (c) depict the spatial distribution of wetland depressional areas in the Baihe Lake
based on the priority-flood algorithm, WetlandSCB framework, and field measurements (the actual wetland
depression map was derived from field measurements using the contour-tree method), respectively. (d), (e),
and (f) show the corresponding results for the Chagan Lake. The impact of morphological operators and
prior information on water distribution map from the WetlandSCB framework is illustrated in (g) and (h).
The influence of different prior information on water distribution map from the WetlandSCB framework is

presented in (i) and (j).

4.2 Performance evaluation of above-water topography correction and uncertainty analysis

The consistency between the original and corrected above-water topography and the actual
above-water topography obtained from field measurements can be evaluated using Pearson correlation
coefficients and R2 The results indicate that the consistency between the original (the elevation

information directly obtained from the SRTM DEM as the original above-water topography) and actual
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above-water topography is remarkably low, with R? values less than 0.2 for both validation wetlands.
Previous studies have also observed significant numerical discrepancies between the original and actual
above-water topography in some regions (e.g., Mukul et al., 2017; Uuemaa et al., 2020). Compared to
the original results, the consistency between the corrected and actual above-water topography
significantly improves. For example, the Pearson correlation coefficient and R? reach 0.74 and 0.55 in
the Baihe Lake, respectively, demonstrating that the WetlandSCB framework can effectively correct
numerical biases in above-water topography.
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Figure 10. (a) and (b) Consistency analysis results between the original and corrected above-water
topography for Baihe Lake. (¢) and (d) are corresponding results for Chagan Lake. The elevation values are

mapped to [0, 1] based on extreme value normalization.

Uncertainty in correcting above-water topography using the WetlandSCB framework depends
primarily on the accuracy of the water occurrence map. Therefore, due to the negative relationship
between water occurrence values and elevations in wetland depressions, this study compared the
correlation differences between two sets of global-scale water occurrence maps, namely GLAD and

JRC, and the actual above-water topography of two wetland depressions. The results show that the
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correlation level of GLAD is superior to JRC in the Baihe Lake, while the opposite is observed in the
Chagan Lake. Additionally, the R? values for both sets of water occurrence maps are less than 0.4
(Figure 1lc-f), which is significantly lower than the accuracy level of the corrected above-water
topography. This clearly shows the superiority of the water occurrence map generated by the
WetlandSCB framework over the GLAD or original JRC map.

It is to note that the water occurrence map generated by the WetlandSCB framework still has a
certain level of uncertainty. First, the extraction of a complete and accurate water spatial distribution
from cloud-free images is constrained by factors such as the classification algorithm (Figure 11a)
(Peket et al., 2016), but some correction algorithms have been proposed to enhance raw water
distribution images (Zhao and Gao, 2018). Second, there is currently a lack of high-precision,
temporally and spatially continuous water distribution maps (Figure 11b). Future efforts could include
the use of image fusion methods, such as the Spatial and Temporal Adaptive Reflectance Fusion Mode,
to fuse data from multi-source remote sensing products such as Sentinel-2, MODIS, and Landsat,
which can effectively enhance the accuracy of water occurrence map (He et al., 2020; Wang et al.,

2016).

(h) Cloud-contamination image in June

JRC EACCE XN GLAD
. Pearson=-051 * Pearson =-0.63
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Figure 11. (a) and (b) depict sources of uncertainty in water occurrence map generated by the WetlandSCB
framework. (c), (d), (¢) and (f) illustrate the difference between two water occurrence maps on the

performance of above-water topography correction in the Baihe Lake and the Chagan Lake.

4.3 Performance evaluation of bathymetric information estimation
The slope profile p is used to describe the bathymetry of wetland depressional areas. The

calculated p values for the Baihe lake and the Chagan Lake using the WetlandSCB framework are 7.45

19



435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

and 4.08, respectively. The actual bathymetric information obtained from field measurements is used to
construct area-depth pairs. Subsequently, the actual slope profile p of the wetland depression is
calculated based on the calculation formula established by Hayashi and Van der Kamp (2000). The
relative errors with respect to the actual p values obtained from field measurements are both less than
3%, demonstrating the high accuracy of the framework in estimating underwater bathymetry.

To further prove the superiority of the WetlandSCB framework in estimating bathymetry, this
study employed spatial prediction and modeling methods, which assumes that the underwater slope
profile is fundamentally similar to the above-water slope profile in wetland depressions, resulting in a p
value of 8.65 for the Baihe Lake and 4.78 for the Chagan Lake. The relative errors with respect to the
actual p values are both greater than 18%, indicating that this method may lead to substantial errors in
some regions, as also reported by Papa et al. (2013) and Vanthof and Kelly. (2019). Furthermore,
previous studies have often applied smoothing methods to the global DEMs to enhance the accuracy of
topographic characterization in wetland depressions (e.g., Jones et al., 2018; Wu et al., 2019). In this
regard, we further used the Gaussian-smoothed global DEMs and the spatial prediction and modelling
methods to calculate p for the Baihe Lake and the Chagan Lake. The resulting values were 8.51 and
4.37, with relative errors of 17.63% and 7.9%, respectively. This underscores that smoothing methods
do indeed contribute to improving the accuracy of topographic information in wetland depressions.
Notably, the relative error for the Chagan Lake is significantly lower than that for the Baihe Lake,
which is consistent with the findings of Liu and Song (2022), who reported that the spatial prediction
and modeling methods are suitable for wetlands with long and narrow shape. In summary, the
comparative analysis reveals that the WetlandSCB framework demonstrates superior performance in
bathymetric estimation for wetland depressional areas. For Baihe Lake, the slope profile p derived from
the WetlandSCB framework (7.45) exhibits closer agreement with the actual measured value (7.29)
than those obtained from the spatial prediction and modeling method (8.65) and its enhanced version
incorporating smoothed SRTM DEM (8.51). Similarly, for Chagan Lake, the WetlandSCB framework
yields a slope profile p (4.08) that more accurately approximates the actual value (4.05) compared to
both the conventional spatial prediction and modeling method (4.78) and its enhanced version (4.37).
These comparative results demonstrate the improved accuracy and reliability of the WetlandSCB

framework in bathymetric characterization of wetland depressional areas relative to the other methods.
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Figure 12. Slope profile p values of wetland depressions for the Baihe Lake (left) and the Chagan Lake
(right), calculated with spatial prediction and modeling methods, and the WetlandSCB framework in

comparison with filed measurements.

4.4  WetlandSCB framework application and implications for integrated water resources
management

Wetland depressions are largely disregarded in many hydrologic modeling practices. Rare studies
exist on how their exclusion can lead to potentially inaccurate model projections and understanding of
hydrologic dynamics across the world's river basins (Rajib et al., 2020). This study applied a novel
framework delineating the topography and bathymetry of wetland depressional areas and focusing on
two distinctive wetlands to estimate WDWSC. Using the field measurements of topography and
bathymetry of the Baihe Lake and the Chagan Lake, the depth-area hypsometric curves were
constructed, and the WDWSC of the Baihe Lake and the Chagan Lake were estimated to be 61 million
m? and 526 million m?, respectively (Fig. 13). The estimation results based on the WetlandSCB
framework were correspondingly 55 million m® and 521 million m*. Furthermore, The use of elevation
(to compute wetland depression depths) and areal extent has emerged as an efficient method to estimate
surface-water storage volume (Gao, 2015). After identifying wetland depressions, previous studies
estimated the area and volume of each depression based on a statistical analysis of the DEM cells
comprising that wetland depression (Rajib et al., 2018; Wu et al., 2019; Wu and Lane, 2016). This
study compared and analyzed the water storage capacity of Baihe Lake and Chagan Lake, calculated
using three medium-resolution 30-m DEM datasets: SRTM DEM, ALOS DEM, and MERIT DEM

(Figure 13c). The results show that the accuracy of WDWSC calculation is highly dependent on the
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DEM data quality, with the MERIT DEM providing the most accurate results, with relative errors
averaging 25.7% compared to the actual WDWSC. In contrast, the WDWSC calculation based on the
WetlandSCB framework had relative errors of less than 10%, which is a good level of accuracy in
estimation precision (Moriasi et al., 2015), demonstrating that the WetlandSCB framework has the
ability to accurately estimate WDWSC, which can be applied to regions lacking field measurement

data for global-scale wetland water storage capacity estimation.
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Figure 13. The dashed line represent the actual hypsometric curve based on field measurements for the
Baihe Lake (a) and the Chagan Lake (b), respectively. The calculation results of WDWSC based on three

DEM datasets in validation wetland sites (c).

Wetlands play a pivotal role in mitigating flood and drought risks, as well as addressing water
scarcity challenge within a river basin. Previous studies underscore the significant impact of wetlands
in attenuating future flood characteristics, including peak flows, mean flows, duration, and flow
volume for various return period floods (Wu et al., 2023). Concurrently, wetlands contribute to
enhancing baseflow during both summer and winter seasons in the NRB (Wu et al., 2020c). Given the
NRB is a agriculture-dominated river basin, wetlands serves as the main water supply nodes by
collecting the flash flood and storing and purifying irrigation return flows. This reclaimed water can be
efficiently reused for irrigation purposes in the NRB (Meng et al., 2019; Smiley and Allred, 2011; Zou
et al., 2018). The WDWSC is a key parameter for evaluating the flood control and water supply
capacity of wetlands, also as a important prerequisite for understanding the impact of wetlands on
extreme hydrological events (Acreman and Holden, 2013). Therefore, the developed WetlandSCB
framework, which can provide accurate estimation of the WDWSC, contributes to the management of
food and water security in the NRB. Against the backdrop of global environmental change,

characterized by an escalation in the intensity and frequency of extreme hydrological events, and the
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increasing disparity between water resource supply and demand, there is an urgent need for a novel
integrated water resources management approach based on natural solutions (Rodell and Li, 2023;
Thorslund et al., 2017; Yin et al., 2018). Wetlands have emerged as a nature-based solution in various
water resources management practices (Ferreira et al.,, 2023). Taking advantage of the wetland
hydrological regulation functions is instrumental in addressing the risks of flood and drought disasters
arising from global climate change, land use change, as well as the water scarcity risks stemming from
agricultural-ecological water competition. This can help develop effective adaptation strategies and
decisions for integrated water resources management.

Additionally, using the WetlandSCB framework, raster-scale wetland depression topographic
information can be accurately reconstructed. Through flow direction analysis and watershed delineation
methods, key parameters such as wetland inflow and outflow locations, wetland catchment boundaries,
and other related characteristics can be identified (these steps can be performed using QGIS software).
By integrating the hypsometric curve, water surface distribution data, and morphological characteristics
of the wetland derived from the WetlandSCB framework, the initial wetland water level, the number of
wetland layers, and the corresponding area-level pairs can be determined. Field surveys provide
essential data on wetland soil and vegetation properties as well as inflow volumes within the study area.
Finally, the hydrological model, coupled with the wetland module, can be implemented to support

wetland eco-hydrological research and integrated water resources management.
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Figure 14. Integration process and application outputs of the WetlandSCB framework with VIC

hydrological model.
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5 Conclusions

This study developed a novel framework to accurately quantify wetland depression water storage
capacity using coarse-resolution terrain data. The developed framework, WetlandSCB integrates
multi-source remote sensing data, historical maps and prior knowledge, and achieved a high prediction
of wetland depressional distribution and water storage capacity. This is achieved through four steps: 1)
integrating priority-flood algorithm, morphological operators and prior information on water
distribution maps to delineate spatial extent of wetland depressional areas; 2) correcting numerical
biases in above-water topography with water occurrence map; 3) coupling spatial prediction and
modeling with remote sensing techniques to estimate bathymetric information, and 4) quantifying
depressional area water storage capacity based on depth-area rating curves. The conclusions are listed
below:

(1) Processing by the morphological operators and prior information on water distribution map
can accurately delineate the spatial extent of wetland depressions. The derived wetland depression map
shows high spatial agreement with the true wetland depression map, achieving an overall accuracy and
kappa coefficient both exceeding 0.95. The performance of the WetlandSCB framework is superior to
the priority-flood algorithm in wetland depression spatial delineation.

(2) The water occurrence map can effectively correct numerical biases in above-water topography.
Compared to original results, the corrected topography exhibits high consistency with true above-water
topography, with average increases of 0.33 and 0.38 in Pearson coefficient and R2, respectively.

(3) The coupling of spatial prediction and modeling methods with remote sensing techniques
achieves high-precision estimation of underwater bathymetry of wetland depressions, demonstrating
relative errors below 3% when compared to field measurements. The results prove that the superiority
of the WetlandSCB framework over spatial prediction and modeling methods in underwater bathymetry
estimation.

(4) The WetlandSCB framework accurately estimates WDWSC with relative errors less than 10%
compared to calculations based on field topography and bathymetry.

The concept and technical approaches are applicable to large-scale wetland depression water
storage estimation, as well as to the regions where field measurements and/or high-resolution data are

not available. Application of the WetlandSCB framework provides accurate distribution and depth-area
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relations of wetland depressional areas which can be incorporated into wetland modules of
hydrological models (e.g., HYDROTEL, SWAT, HYPE, CHRM) to improve the accuracy of flow and

storage predictions in river basins.

Data Availability.
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