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12

Abstract. Accurate quantification of wetland depression water storage capacity (WDWSC) is13

imperative for comprehending the wetland hydrological regulation functions to support integrated14

water resources management. Considering the challenges posed by the high acquisition cost of15

high-resolution LiDAR DEM or the absence of field measurements for most wetland areas, urgent16

attention is required to develop an accurate estimation framework for WDWSC using open-source,17

low-cost, multi-source remote sensing data. In response, we developed a novel framework,18

WetlandSCB, utilizing coarse-resolution terrain data for accurate estimation of WDWSC. This19

framework overcame several technical difficulties, including biases in above-water topography,20

incompleteness and inaccuracy of wetland depression identification, and the absence of bathymetry.21

Validation and application of the framework were conducted in two national nature reserves of22

northeast China. The study demonstrated that integrating priority-flood algorithm, morphological23

operators and prior information can accurately delineate the wetland depression distribution with24

overall accuracy and Kappa coefficient both exceeding 0.95. The use of water occurrence map can25

effectively correct numerical biases in above-water topography with Pearson coefficient and R226

increasing by 0.33 and 0.38 respectively. Coupling spatial prediction and modeling with remote sensing27

techniques yielded highly accurate bathymetry estimates, with <3% relative error compared to filed28

measurements. Overall, the WetlandSCB framework achieved estimation of WDWSC with <10%29
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relative error compared to field topographic and bathymetric measurements. The framework and its30

concept are transferable to other wetland areas globally where field measurements and/or31

high-resolution terrain data are unavailable, contributing to a major technical advancement in32

estimating WDWSC in river basins.33

Keywords: Wetland depression; Water storage capacity; Hypsometric curve; coarse-resolution34

terrain data; wetland hydrological regulation functions35

36

1 Introduction37

Wetlands are multifunctional ecosystems considered as nature-based solutions for effective water38

management in river basins (Thorslund et al., 2017). They exert a profound influence on watershed39

hydrological processes and water resource availability through their hydrological regulation functions,40

such as maintaining baseflow, buffering floods, and delaying droughts (Acreman and Holden, 2013;41

Wu et al., 2023). These functions are essential for enhancing watershed resilience and ensuring water42

security (Cohen et al., 2016; Evenson et al., 2018; Lane et al., 2018). Wetland depression water storage43

capacity (hereafter abbreviated as WDWSC) represents a critical component of wetland hydrological44

regulation functions. The quantitative study of the WDWSC to advance scientific insights into wetland45

hydrological regulation functions and support integrated water resources management (Ahmad et al.,46

2020; Fang et al., 2019; Jones et al., 2018; Shook et al., 2021).47

The WDWSC can be defined as the maximum surface water volume that each wetland depression48

can store without spilling to down-gradient waters (Jones et al., 2018). Previous studies predominantly49

employed wetland depression identification algorithms to derive wetland depression topography from50

terrain data. Subsequently, hypsometric curves (area-depth) are constructed based on the derived51

topography. Finally, the integration of the hypsometric curves is solved to determine the WDWSC (e.g.,52

Haag et al., 2005; Wu and Lane, 2016). Therefore, the key determinants for the accuracy of the53

WDWSC calculation are the rationality of the wetland depression identification algorithms and the54

precision of terrain data. Many scholars have conducted research on wetland depression identification55

algorithms, which can be mainly categorized into three types: depression filling, depression breaching56

and hybrid combing both the filling and breaching approaches. Among these, the priority-flood57

algorithm within the depression filling category is widely adopted as a prevalent algorithm for wetland58

depression identification (Barnes et al., 2014; Lindsay, 2016; Wu et al., 2019; Zhou et al., 2016). The59
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priority-flood algorithm works by flooding DEM cells inwards from their edges using a priority queue60

to determine the sequence of cells to be flooded. Wu et al. (2019) and Rajib et al. (2019) demonstrated61

the feasibility of accurately deriving wetland depression topography using the priority-flood algorithm62

in the Pipestem watershed and Upper Mississippi river basin, respectively. Bare-earth high-resolution63

airborne light detection and ranging (LiDAR) DEM can provide accurate topographic information of64

wetland depressions, significantly improving the estimation accuracy of the WDWSC. For example,65

Jones et al. (2018) used high-resolution LiDAR DEM to estimate WDWSC in the Delmarva Peninsula.66

However, the high acquisition cost of LiDAR DEM renders it impractical for large-scale estimation of67

WDWSC. The global open-access spaceborne-derived DEMs (hereafter referred as global DEMs),68

such as Shuttle Radar Topography Mission (SRTM), ALOS Global Digital Surface Model, the Terra69

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital70

Elevation Model, offer topographic information at a fine spatial scale. However, compared to the71

bare-earth LiDAR DEM, the global DEMs exhibit three obvious limitations. First, radar altimetry72

cannot penetrate water surfaces, so the global DEMs produced from radar altimetry do not provide any73

bathymetric information. Second, in certain regions, there may be substantial numerical discrepancies74

in above-water topography. Third, the global DEMs often suffer from lower horizontal and vertical75

resolutions. Due to the limitations in global DEMs, delineation of wetland depressional areas using the76

advanced priority-flood algorithm also suffers from three problems: the bias in above-water topography77

(Fig. 1a and 1b), incompleteness and inaccuracy of wetland depressions identification (Fig. 1c), and the78

absence of bathymetric information (Fig. 1d).79
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80

Figure 1: Wetland depression extraction based on the priority-flood algorithm and global DEMs suffers81

from the bias of above-water topography (Figures 1a and 1b show the discrepancies in above-water82

topography obtained from LiDAR DEM and ALOS DEM, respectively, in the Prairie Pothole Region of83

North Dakota), incompleteness and inaccuracy of wetland depressions identification (Fig. 1c), and the84

absence of bathymetric information (Figure 1d, where the entire water surface is represented by a single85

elevation value of 129 m).86

87

In an effort to minimize the impact of the absence of bathymetric information in global DEMs on88

the estimation accuracy of the WDWSC, researchers have conducted studies on the estimation of89

underwater hypsometric relationship of wetland depressions, and the methods can be divided into two90

types: spatial prediction and modeling methods and remote sensing technologies. The spatial prediction91

and modeling methods assume that the bathymetry can be considered as a spatial extension of the92
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surrounding exposed terrains due to long-term tectonic and geophysical evolution processes.93

Consequently, the underwater hypsometric relationship is assumed to be fundamentally similar to the94

above-water hypsometric relationship in wetland depressions (e.g., Ahmad et al., 2020; Bonnema et al.,95

2016; Bonnema and Hossain, 2017; Liu and Song, 2022; Tsai et al., 2010; Vanthof and Kelly, 2019;96

Verones et al., 2013; Wu and Lane, 2016; Xiong et al., 2021). However, the large numerical bias in the97

above-water topography of global DEMs in certain regions can distort the constructed above-water98

hypsometric relationship of wetland depressions, thus introducing significant uncertainty to the99

underwater hypsometric relationship estimated by this method. Over the past few decades, remote100

sensing technologies have demonstrated remarkable capabilities in estimating underwater hypsometric101

relationships at large spatial scales, facilitated by the rapid emergence of various advanced satellite102

sensors, including optical, passive microwave, and radar instruments (Duan and Bastiaanssen, 2013;103

Gao et al., 2015; Liu et al., 2022). The commonly employed approach for estimating underwater104

hypsometric relationship requires simultaneous observations of water area provided by optical images105

(e.g., Landsat series) and the corresponding water level provided by altimetry satellites (e.g., Sentinel-3,106

CryoSat-2, Envisat). However, accuracy challenges arise due to numerical biases of altimetry satellites,107

cloud contamination in some optical images, and the occasional occurrence of one water area value108

corresponding to multiple water level values or vice versa (Li et al., 2019a; Liu et al., 2024). In109

summary, previous studies have mainly utilized LiDAR DEM data to estimate WDWSC (e.g., Jones et110

al., 2018; Huang et al., 2011; Kessler and Gupta, 2015; Land and D’Amico, 2010; Wu et al., 2016; Wu111

et al., 2019). However, these studies have seriously overlooked the issues of incompleteness and112

inaccuracy of wetland depression identification, as well as the bias in above-water topography,113

resulting in a high level of uncertainty in the WDWSC estimation. In addition, insufficient attention has114

been paid to the drawbacks and limitations of both spatial prediction and modeling methods and remote115

sensing technologies in estimating bathymetry. Consequently, a comprehensive and systematic solution116

for the accuracy estimation of WDWSC based on the global DEMs has not yet been developed.117

Therefore, this study aims to develop a framework for accurately estimating WDWSC by118

integrating multi-source remote sensing data and prior knowledge. Specifically, we integrated119

priority-flood algorithm, morphological operators and prior information on water distribution map to120

delineate the spatial extent of wetland depressional areas. We then corrected the bias in above-water121

topography based on water occurrence map. Finally, we utilized remote sensing techniques to couple122
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spatial prediction and modeling to estimate bathymetry of wetland depressional areas. The principle123

contribution of this developed framework, termed as WetlandSCB, lies in addressing the challenges124

hindering the improvement of accuracy in estimating WDWSC based on global DEMs.125

2 Methodology126

The WetlandSCB framework can be summarized in four steps as illustrated in Figure 2. Step 1127

delineation of wetland depressional areas; Step 2 above-water topography reconstruction; Step 3128

bathymetric information estimation; and Step 4 hypsometric curve construction and WDWSC129

calculation. Each of the four steps are described in the following sections.130

131

Figure 2: Flowchart of the WetlandSCB framework for accurate estimation of wetland depression water132

storage capacity (WDWSC) comprising four technical steps. In step 1, spatial distribution of wetland133

depressional areas are delineated. In step 2, wetland above-water topography is reconstruction. In step 3,134

bathymetric information of wetland depressional areas is estimated. In step 4, a hypsometric curve (i.e.135

depth-area relation) is developed andWDWSC is quantified.136

137

2.1 Wetland depression spatial delineation138

We extracted the original wetland depression map from the global DEMs based on the139

priority-flood algorithm and wetland maps (Fig. 3). To eliminate the artifact wetland depressions, it140

was necessary to transform the wetland depression map into a binary image consisting of pixels that141
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area labeled as logical ones (wetland depression) and zeros (non-wetland depression). We then142

employed the eight-neighbor connectivity algorithm to extract the spatial extent of each wetland143

depression from the binary image. Subsequently, the circularity (Eq. 1) and eccentricity (Eq. 2)144

indicators were used to exclude the artifact wetland depressions (Ahmad et al., 2020) as follows:145

2
PCircularity
A




(1)146

f

m

DEccentricity
l

 (2)147

where P (m) and A (m2) are the perimeter and area of the wetland depression, respectively. Df (m)148

and Lm (m) represent distance between foci and the length of major axis of wetland depression.149

150

Figure 3. (a) Conceptual diagram of wetland depression profile. (b) and (c) show the two representative151

wetland depressional areas located in South Africa (modified from De Klerk et al., 2016).152

153

Due to incompleteness and inaccuracy identification of some wetland depressions in the original154

wetland depression map (Figure 4a), morphological operators of erosion and dilation are applied for the155

initial spatial processes (Figure 4b). The erosion operator erodes away the boundaries of wetland156

depressions to enhance their edges and remove noise. The dilation operator fills up small holes157

(non-wetland depression pixels) surrounded by a group of wetland depression pixels (Pulvirenti et al.,158
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2011a). The combined effect of the two operators is to remove noises while preserving the substantive159

features in the image. The water distribution map, which serves as prior information, effectively160

characterizes the spatial extent of wetland depressions (Figure 3). Therefore, the wetland depression161

map, after being processed by the morphological operators, is then intersected with the water162

distribution map to obtain a complete and final wetland depression map (Figure 4c).163

164

165

Figure 4. The wetland depression map based on the morphological operators and priori information on the166

water distribution map.167

168

2.2 Above-water topography reconstruction169

The water occurrence map can effectively describe three-dimensional topography at a large spatial170

scale (Armon et al., 2020; Li et al., 2019b). The water occurrence map is generated by summing the171

times that the pixel is detected as water and dividing it by the number of total valid observations.172

Therefore, if there is a accurate water occurrence maps, a close relationship between the water173

occurrence and the topography for wetland depressions can be found (Li et al., 2021). The open-source174

Global Surface Water Mapping Layers produced by the European Commission's Joint Research Centre175

(JRC) contains a water occurrence map, which has been widely used to describe the topography of176

wetland depressions globally or in different regions (Luo et al., 2019; Pickens et al., 2020; Yao et al.,177

2019; Zou et al., 2018). However, due to the temporal discontinuity of cloud-free JRC water178

distribution images, they are more available during dry seasons than wet seasons, leading to deviations179

in the representation of real topography at the scale of individual wetland depression (Chu et al., 2020).180

To address the above issue, this study proposes a method to restore the cloud-contaminated JRC181
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water distribution images to improve the accuracy of the JRC water occurrence map. For wetland182

depressional areas, the JRC water distribution images are classified into cloud-free and183

cloud-contaminated images using the cloud screening algorithm of the Google Earth Engine platform.184

The Canny edge detection algorithm is used to obtain the water body boundary of the two types of185

images. Theoretically, if the water areas are the same, the water body boundary of the cloud-free image186

should overlap with the exposed water body boundary in the cloud-contaminated image (Figure 5a).187

Therefore, by overlapping the water body boundaries of the cloud-free images with the188

cloud-contaminated images, the missing spatial extent of water bodies in the cloud-contaminated189

images can be filled.190

The corrected JRC water occurrence map is utilized to reconstruct above-water topography. This191

is because the water occurrence values within the same wetland depression correspond to elevation192

values (Figure 5b and 5c). However, each corrected water occurrence value may correspond to multiple193

elevation values in the global DEMs. Therefore, the median of multiple elevation values is used as the194

unique elevation value corresponding to the water occurrence value.195

196

Figure 5. Above-water topography reconstruction of wetland depressional areas. (a) Restoration method of197

cloud-contaminated JRC water distribution images. (b) LiDAR DEM and JRC water occurrence map of198

Mead Lakes in the United States.199

200

2.3 Bathymetric information estimation201
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The remote sensing technologies are used to estimate the underwater bathymetry of wetland202

depressions, and the similarity between the underwater and above-water hypsometric relationships is203

served as an evaluation criterion to seek for the optimal solution within the estimated results that204

accurately represents underwater bathymetry based on the principle of spatial prediction and modeling205

methods.206

The outliers in the underwater are-level pairs are removed using the 3-sigma rule. As the slope207

profile is a crucial indicator reflecting the hypsometric relationship of wetland depressions (Clark and208

Shook, 2022; Sjöberg et al., 2022). Therefore, we first form various combinations of the processed209

underwater area-level pairs (each water area value uniquely corresponds to a water level value in each210

combination), and calculate the slope profile value pu for each combination. Then the combination with211

pu closest to the above-water slope profile pa is taken as the optimal solution, which can effectively212

represent underwater bathymetry of wetland depressions.213

In this study, a logarithmic transformation is applied to the calculation formula for the slope214

profile p of wetland depressions established by Hayashi and Van der Kamp (2000) to obtain Eq. 3. The215

least squares method is used to solve Eq. 3 to obtain the slope profile p value of wetland depressions:216

w d

w d

2 ln( / )
ln( / A )

h hP
A


 (3)217

where h (m), A (m2) represent the depth and area of wetland depressions, and w and d represent218

the different area-depth pairs.219

220
Figure 6. Estimation of bathymetric information for wetland depressional areas. (a) Schematic221

representation of a simplified wetland depression profile, where h (m), r (m) and A (m2) represent the depth222
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of a wetland depressional area, the distance between the edge and the center of the wetland depression, and223

the area of the wetland depression, respectively. (b) Wetland depression profile for various p values. (c)224

Methods for bathymetric estimation of wetland depressions, where Sentinel, Envisat, and Croysat are225

different altimetry satellites, and the numbers 1, 2, and 3 are selected depth-area pairs.226

227

2.4 Estimation of wetland depression water storage capacity228

Deriving the area-level hypsometric relationship from the corrected above-water topography and229

estimated underwater bathymetry of wetland depressions. The monotonic cubic spline and power230

function are employed to fit the hypsometric relationships (i.e., depth-area relations) to derive the231

above-water hypsometric curve fA(L) and the underwater hypsometric curve fB(L) (Messager et al.,232

2016; Yao et al., 2018), respectively. Subsequently, the integration of these two curves (Figure 7) is233

performed to calculate the WDWSC, represented as V in Eq. 4:234

max

0
(L) (L)

watersurface

watersurface

h h
A B

h
V f dL f dL   (4)235

236
Figure 7. Schematic diagram for the estimation of wetland depression water storage capacity. Two237

depth-area rating curves are applied for the bathymetric volume and the above-water topographic volume.238

239

3 Validation sites and datasets240

3.1 Validation sites241

We applied the WetlandSCB to two wetlands in the Nenjiang River Basin (NRB), northeast China,242

to validate the framework. Draining a total area of 297,100 km2, the NRB is one of the largest river243

basins in north China. In this river basin, agricultural lands and wetlands (lakes and swamps) are244

prevalent (Wu et al., 2023). Recognised as critical regulators of the water balance within the NRB,245

wetlands are considered more important than other ecosystems in mitigating future hydrological246
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extremes and increasing water availability for agriculture (Chen et al., 2020, Wu et al., 2020a, Wu et al.,247

2020b, Wu et al., 2020c). For method validation and application of the WetlandSCB framework, we248

focused on two national nature reserves within the NRB: the Baihe Lake and the Chagan Lake. The249

Baihe Lake, characterised as a marsh wetland, covers approximately 40 km2, predominantly250

comprising seasonal inundation zones, with an average water depth of less than 1 m. In contrast, The251

Chagan Lake is a large lacustrine wetland of about 372 km2, mainly composed of perennial inundation252

zones, with an average water depth of 2.5 m. These two validation wetlands represent different253

characteristics in terms of type, area, and average water depth to verify the application robustness of254

our developed framework. Field measurements of topographic and bathymetric information (elevation255

and depth) were conducted for both the Baihe Lake and the Chagan Lake, consisting of 248 and 657256

measurement points, respectively (Figure 8).257

258

Figure 8. Locations and distribution of elevation and depth measurements across the Baihe Lake and259

Chagan Lake in the Nenjiang River basin, northeast China.260

261

3.2 Datasets262

The application of the WetlandSCB framework requires the following data: (i) the global DEMs263

sourced from SRTM DEM, with water distribution map sourced from the accompanying SRTM Water264

Body Data (https://earthexplorer.usgs.gov/); (ii) wetland maps extracted from the 30-m resolution land265

cover data for the years 1990-2019 (https://zenodo.org/records/5816591, Yang and Huang, 2021) and266

30-m resolution wetland map in 2015 year (http://northeast.geodata. cn/index. html, Mao et al., 2020).267

This study overlays the data from both sources to reduce the uncertainties in the wetland maps; (iii)268

water distribution maps and water occurrence map obtained from the Global Surface Water datasets269
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(https://earthengine.google.com, Pekel et al., 2016); (iv) altimetry satellite data sourced from the270

Sentinel-3A/3B products (https://scihub.copernicus.eu/). In addition, pre-processing of Sentinel-3271

altimetry data is performed using the geophysical and atmospheric correction method developed by272

Huang et al. (2019) (Eq. 5 and Eq. 6) to improve data accuracy:273

waterlevel altH H R Cor   (5)274

where Hwaterlevel is the water level referenced to the EGM96 geoid, Halt is the altitude of the275

altimeter derived from the modeling of satellite trajectory, R is the range computed through the time276

duration of the echoes, and Cor is referred to as the geophysical and environmental corrections:277

96dry wet iono solidEarth pole EGMCor C C C C C C     
(6)278

where Cdry, Cwet, Ciono, CsolidEarth, Cpole and CEGM96 are the dry tropospheric, wet tropospheric,279

ionospheric corrections, the solid Earth tide, polar tide corrections and the EGM96 geoid respectively.280

4 Results and discussions281

4.1 Performance evaluation of wetland depression spatial delineation and uncertainty analysis282

The performance of wetland depression spatial delineation based on the WetlandSCB framework283

was evaluated using four indicators: overall accuracy, kappa coefficient, producer's accuracy, and user's284

accuracy (Fig. 9a-f). The results indicate that the WetlandSCB framework can accurately determine the285

spatial distribution of wetland depressions, with all four indicators exceeding 0.95. In contrast, the286

user's accuracy is above 0.93 in both validation wetlands (error of commission is 0.07), and the287

producer's accuracy is only 0.37 (error of omission is 0.63) in Baihe Lake based on the priority-flood288

algorithm. The findings suggest that the algorithm can effectively identify wetland depressions, but is289

limited by the numerical errors of the global DEMs, which leads to lower extraction accuracy of the290

spatial distribution of wetland depressions (Zhou et al., 2016). In comparison, the WetlandSCB291

framework outperforms the priority-flood algorithm in wetland depression spatial delineation.292

Uncertainty in wetland depression spatial delineation using the WetlandSCB framework primarily293

mainly arises from morphological operators and prior information on water distribution map. Figures294

9g and 9h show that, compared with morphological operators, prior information on water distribution295

map can significantly alter the performance of wetland depression spatial delineation and is a key296

factor in determining the level of uncertainty. For instance, in Baihe Lake, the overall accuracy and297

kappa coefficient improved by 0.29 and 0.56, respectively, after processing with prior information on298
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water distribution map. Similar studies have also found that the type and reliability of prior information299

are major factors affecting the spatial filling performance of surface water maps (Aires, 2020;300

Pulvirenti et al., 2011b). Therefore, this study compared the wetland depression spatial delineation301

results based on three sets of prior information on water distribution map: GLC-FCS30 (from Zhang et302

al., 2021), CLCD (from Yang and Huang, 2021), and JRC (Fig. 9i and 9j). The overall accuracy303

differences for the Baihe Lake and Chagan Lake ranged from 0.68 to 0.98 and from 0.93 to 0.99,304

respectively. In general, the accuracy levels of prior information from high to low were JRC >305

GLC-FCS30 > CLCD. This suggests that selecting highly reliable prior information on water306

distribution map is an essential way to reduce uncertainty in the WetlandSCB framework.307

308

Figure 9. (a), (b), and (c) depict the spatial distribution of wetland depressional areas in the Baihe Lake309

based on the priority-flood algorithm, WetlandSCB framework, and field measurements, respectively. (d),310

(e), and (f) show the corresponding results for the Chagan Lake. The impact of morphological operators and311

prior information on water distribution map from the WetlandSCB framework is illustrated in (g) and (h).312

The influence of different prior information on water distribution map from the WetlandSCB framework is313
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presented in (i) and (j).314

315

4.2 Performance evaluation of above-water topography correction and uncertainty analysis316

The consistency between the original and corrected above-water topography and the actual317

above-water topography obtained from field measurements can be evaluated using Pearson correlation318

coefficients and R2. The results indicate that the consistency between the original and actual319

above-water topography is remarkably low, with R2 values less than 0.2 for both validation wetlands.320

Previous studies have also observed significant numerical discrepancies between the original and actual321

above-water topography in some regions (e.g., Mukul et al., 2017; Uuemaa et al., 2020). Compared to322

the original results, the consistency between the corrected and actual above-water topography323

significantly improves. For example, the Pearson correlation coefficient and R2 reach -0.74 and 0.55 in324

the Baihe Lake, respectively, demonstrating that the WetlandSCB framework can effectively correct325

numerical biases in above-water topography.326

327

Figure 10. (a) and (b) Consistency analysis results between the original and corrected above-water328

topography for Baihe Lake. (c) and (d) are corresponding results for Chagan Lake.329

330

Uncertainty in correcting above-water topography using the WetlandSCB framework depends331

primarily on the accuracy of the water occurrence map. Therefore, this study analyzed the correlation332
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between two sets of global-scale water occurrence maps, namely GLAD (Pickens et al., 2020) and JRC,333

with actual above-water topography. The results show that the correlation level of GLAD is superior to334

JRC in the Baihe Lake, while the opposite is observed in the Chagan Lake. Additionally, the R2 values335

for both sets of water occurrence maps are less than 0.4 (Figure 11c-f), which is significantly lower336

than the accuracy level of the corrected above-water topography. This clearly shows the superiority of337

the water occurrence map generated by the WetlandSCB framework over the GLAD or original JRC338

map.339

It is to note that the water occurrence map generated by the WetlandSCB framework still has a340

certain level of uncertainty. First, the extraction of a complete and accurate water spatial distribution341

from cloud-free images is constrained by factors such as the classification algorithm (Figure 11a)342

(Peket et al., 2016), but some correction algorithms have been proposed to enhance raw water343

distribution images (Zhao and Gao, 2018). Second, there is currently a lack of high-precision,344

temporally and spatially continuous water distribution maps (Figure 11b). Future efforts could include345

the use of image fusion methods, such as the Spatial and Temporal Adaptive Reflectance Fusion Mode,346

to fuse data from multi-source remote sensing products such as Sentinel-2, MODIS, and Landsat,347

which can effectively enhance the accuracy of water occurrence map (He et al., 2020; Wang et al.,348

2016).349

350

Figure 11. (a) and (b) depict sources of uncertainty in water occurrence map generated by the WetlandSCB351

framework. (c), (d), (e) and (f) illustrate the difference between two water occurrence maps on the352

performance of above-water topography correction in the Baihe Lake and the Chagan Lake.353

354

4.3 Performance evaluation of bathymetric information estimation355
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The slope profile p is used to describe the bathymetry of wetland depressional areas. The356

calculated p values for the Baihe lake and the Chagan Lake using the WetlandSCB framework are 7.45357

and 4.08, respectively. The relative errors with respect to the actual p values obtained from field358

measurements are both less than 3%, demonstrating the high accuracy of the framework in estimating359

underwater bathymetry.360

To further prove the superiority of the WetlandSCB framework in estimating bathymetry, this361

study employed spatial prediction and modeling methods, resulting in a p value of 8.65 for the Baihe362

Lake and 4.78 for the Chagan Lake. The relative errors with respect to the actual p values are both363

greater than 18%, indicating that this method may lead to substantial errors in some regions, as also364

reported by Papa et al. (2013) and Vanthof and Kelly. (2019). Furthermore, previous studies have often365

applied smoothing methods to the global DEMs to enhance the accuracy of topographic366

characterization in wetland depressions (e.g., Jones et al., 2018; Wu et al., 2019). In this regard, we367

further used the Gaussian-smoothed global DEMs and the spatial prediction and modelling methods to368

calculate p for the Baihe Lake and the Chagan Lake. The resulting values were 8.51 and 4.37, with369

relative errors of 17.63% and 7.9%, respectively. This underscores that smoothing methods do indeed370

contribute to improving the accuracy of topographic information in wetland depressions. Notably, the371

relative error for the Chagan Lake is significantly lower than that for the Baihe Lake, which is372

consistent with the findings of Liu and Song (2022), who reported that the spatial prediction and373

modeling methods are suitable for wetlands with long and narrow shape. In summary, it can be seen374

that the WetlandSCB framework excels in the accuracy of estimating bathymetry in wetland375

depressional areas when compared to other methods.376

377

Figure 12. Slope profile p values of wetland depressions for the Baihe Lake (left) and the Chagan Lake378
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(right), calculated with spatial prediction and modeling methods, and the WetlandSCB framework in379

comparison with filed measurements.380

381

4.4 WetlandSCB framework application and implications for integrated water resources382

management383

Wetland depressions are largely disregarded in many hydrologic modeling practices. Rare studies384

exist on how their exclusion can lead to potentially inaccurate model projections and understanding of385

hydrologic dynamics across the world's river basins (Rajib et al., 2020). This study applied a novel386

framework delineating the topography and bathymetry of wetland depressional areas and focusing on387

two distinctive wetlands to estimate WDWSC. Using the field measurements of topography and388

bathymetry of the Baihe Lake and the Chagan Lake, the depth-area hypsometric curves were389

constructed, and the WDWSC of the Baihe Lake and the Chagan Lake were estimated to be 61 million390

m³ and 526 million m³, respectively (Fig. 13). The estimation results based on the WetlandSCB391

framework were correspondingly 55 million m³ and 521 million m³, and the relative errors with the392

actual measured WDWSC were both less than 10%, which is a good level of accuracy in estimation393

precision (Moriasi et al., 2015). These results demonstrate the ability of the framework to accurately394

estimate WDWSC, which can be applied to regions lacking field measurement data for global-scale395

wetland water storage capacity estimation.396

397

Figure 13. The dashed line and blue cylinder represent the actual hypsometric curve and the corresponding398

actual WDWSC based on field measurements, respectively. The red cylinder indicates the estimated399

WDWSC from the WetlandSCD framework for the Baihe Lake (a) and the Chagan Lake (b).400

401
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Wetlands play a pivotal role in mitigating flood and drought risks, as well as addressing water402

scarcity challenge within a river basin. Previous studies underscore the significant impact of wetlands403

in attenuating future flood characteristics, including peak flows, mean flows, duration, and flow404

volume for various return period floods (Wu et al., 2023). Concurrently, wetlands contribute to405

enhancing baseflow during both summer and winter seasons in the NRB (Wu et al., 2020c). Given the406

NRB is a agriculture-dominated river basin, wetlands serves as the main water supply nodes by407

collecting the flash flood and storing and purifying irrigation return flows. This reclaimed water can be408

efficiently reused for irrigation purposes in the NRB (Meng et al., 2019; Smiley and Allred, 2011; Zou409

et al., 2018). The WDWSC is a key parameter for evaluating the flood control and water supply410

capacity of wetlands, also as a important prerequisite for understanding the impact of wetlands on411

extreme hydrological events (Acreman and Holden, 2013). Therefore, the developed WetlandSCB412

framework, which can provide accurate estimation of the WDWSC, contributes to the management of413

food and water security in the NRB. Against the backdrop of global environmental change,414

characterized by an escalation in the intensity and frequency of extreme hydrological events, and the415

increasing disparity between water resource supply and demand, there is an urgent need for a novel416

integrated water resources management approach based on natural solutions (Rodell and Li, 2023;417

Thorslund et al., 2017; Yin et al., 2018). Wetlands have emerged as a nature-based solution in various418

water resources management practices (Ferreira et al., 2023). Taking advantage of the wetland419

hydrological regulation functions is instrumental in addressing the risks of flood and drought disasters420

arising from global climate change, land use change, as well as the water scarcity risks stemming from421

agricultural-ecological water competition. This can help develop effective adaptation strategies and422

decisions for integrated water resources management.423

5 Conclusions424

This study developed a novel framework to accurately quantify wetland depression water storage425

capacity using coarse-resolution terrain data. The developed framework, WetlandSCB integrates426

multi-source remote sensing data, historical maps and prior knowledge, and achieved a high prediction427

of wetland depressional distribution and water storage capacity. This is achieved through four steps: 1)428

integrating priority-flood algorithm, morphological operators and prior information on water429

distribution maps to delineate spatial extent of wetland depressional areas; 2) correcting numerical430

biases in above-water topography with water occurrence map; 3) coupling spatial prediction and431
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modeling with remote sensing techniques to estimate bathymetric information, and 4) quantifying432

depressional area water storage capacity based on depth-area rating curves. The concept and technical433

approaches are applicable to large-scale wetland depression water storage estimation, as well as to the434

regions where field measurements and/or high-resolution data are not available. Application of the435

WetlandSCB framework provides accurate distribution and depth-area relations of wetland436

depressional areas which can be incorporated into wetland modules of hydrological models (e.g.,437

HYDROTEL, SWAT, HYPE, CHRM) to improve the accuracy of flow and storage predictions in river438

basins.439
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