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Abstract. Accurate quantification of wetland depression water storage capacity (WDWSC) is
imperative for comprehending the wetland hydrological regulation functions to support integrated
water resources management. Considering the challenges posed by the high acquisition cost of
high-resolution LiDAR DEM or the absence of field measurements for most wetland areas, urgent
attention is required to develop an accurate estimation framework for WDWSC using open-source,
low-cost, multi-source remote sensing data. In response, we developed a novel framework,
WetlandSCB, utilizing coarse-resolution terrain data for accurate estimation of WDWSC. This
framework overcame several technical difficulties, including biases in above-water topography,
incompleteness and inaccuracy of wetland depression identification, and the absence of bathymetry.
Validation and application of the framework were conducted in two national nature reserves of
northeast China. The study demonstrated that integrating priority-flood algorithm, morphological
operators and prior information can accurately delineate the wetland depression distribution with
overall accuracy and Kappa coefficient both exceeding 0.95. The use of water occurrence map can
effectively correct numerical biases in above-water topography with Pearson coefficient and R?
increasing by 0.33 and 0.38 respectively. Coupling spatial prediction and modeling with remote sensing
techniques yielded highly accurate bathymetry estimates, with <3% relative error compared to filed

measurements. Overall, the WetlandSCB framework achieved estimation of WDWSC with <10%
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relative error compared to field topographic and bathymetric measurements. The framework and its
concept are transferable to other wetland areas globally where field measurements and/or
high-resolution terrain data are unavailable, contributing to a major technical advancement in
estimating WDWSC in river basins.

Keywords: Wetland depression; Water storage capacity; Hypsometric curve; coarse-resolution

terrain data; wetland hydrological regulation functions

1 Introduction

Wetlands are multifunctional ecosystems considered as nature-based solutions for effective water
management in river basins (Thorslund et al., 2017). They exert a profound influence on watershed
hydrological processes and water resource availability through their hydrological regulation functions,
such as maintaining baseflow, buffering floods, and delaying droughts (Acreman and Holden, 2013;
Wau et al., 2023). These functions are essential for enhancing watershed resilience and ensuring water
security (Cohen et al., 2016; Evenson et al., 2018; Lane et al., 2018). Wetland depression water storage

capacity (hereafter abbreviated as WDWSC) represents a critical component of wetland hydrological

_(Ahmad et al., 2020; Fang et al., 2019; Jones et al., 2018;

Shook et al., 2021). advance scientific insights into wetland hydrological

MIBR[EHTES2]: The quantitative study of the WDWSC to

regulation functions and support integrated water resources

The WDWSC can be defined as the maximum surface water volume that each wetland depression
management

can store without spilling to down-gradient waters (Jones et al., 2018). Previous studies predominantly

employed wetland depression identification algorithms to derive wetland depression topography from

terrain data.

BEMAAAEE] RER

e.g., Haag et al., 2005; Wu and Lane, 2016).

MIBR[EHTES2]: Subsequently, hypsometric curves (area-depth)

Therefore, the key determinants for the accuracy of the WDWSC calculation are the rationality of the are constructed based on the derived topography. Finally, the
integration of the hypsometric curves is solved to determine

1 ion identificati Igorith h isi f i . M holars h:
wetland depression identification algorithms and the precision of terrain data. Many scholars have the WDWSC

conducted research on wetland depression identification algorithms, which can be mainly categorized

into three types: depression filling, depression breaching and hybrid combing both the filling and
2
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breaching approaches — Among these, the priority-flood algorithm within the

depression filling category is widely adopted as a prevalent algorithm for wetland depression
identification (Barnes et al., 2014; Lindsay, 2016; Wu et al., 2019; Zhou et al., 2016). The
priority-flood algorithm works by flooding DEM cells inwards from their edges using a priority queue
to determine the sequence of cells to be flooded. Wu et al. (2019) and Rajib et al. (2019) demonstrated
the feasibility of accurately deriving wetland depression topography using the priority-flood algorithm
in the Pipestem watershed and Upper Mississippi river basin, respectively. Bare-earth high-resolution
airborne light detection and ranging (LiDAR) DEM can provide accurate topographic information of
wetland depressions, significantly improving the estimation accuracy of the WDWSC. For example,
Jones et al. (2018) used high-resolution LiDAR DEM to estimate WDWSC in the Delmarva Peninsula.
However, the high acquisition cost of LIDAR DEM renders it impractical for large-scale estimation of
WDWSC. The global open-access spaceborne-derived DEMs (hereafter referred as global DEMs),
such as Shuttle Radar Topography Mission (SRTM), ALOS Global Digital Surface Model, the Terra
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital
Elevation Model, offer topographic information at a fine spatial scale. However, compared to the
bare-earth LIDAR DEM, the global DEMs exhibit three obvious limitations. First, radar altimetry
cannot penetrate water surfaces, so the global DEMs produced from radar altimetry do not provide any

bathymetric information. Second, in certain regions, there may be substantial numerical discrepancies

in above-water topography. I ENNN

_Third, the global DEMs often suffer from lower horizontal and vertical resolutions

A(Chen et al., 2022; Liu et al., 2019; Liu et al., 2024). Due to the limitations in global DEMs, delineation

of wetland depressional areas using the advanced priority-flood algorithm also suffers from three
problems: the bias in above-water topography (Fig. la and 1b), incompleteness and inaccuracy of

wetland depressions identification (Fig. 1c), and the absence of bathymetric information (Fig. 1d)

3
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In an effort to minimize the impact of the absence of bathymetric information in global DEMs on
the estimation accuracy of the WDWSC, researchers have conducted studies on the estimation of
underwater hypsometric relationship of wetland depressions, and the methods can be divided into two
types: spatial prediction and modeling methods and remote sensing technologies. The spatial prediction
and modeling methods assume that the bathymetry can be considered as a spatial extension of the
surrounding exposed terrains due to long-term tectonic and geophysical evolution processes.
Consequently, the underwater hypsometric relationship is assumed to be fundamentally similar to the

above-water hypsometric relationship in wetland depressions (e.g., Ahmad et al., 2020; Bonnema et al.,
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2016; Bonnema and Hossain, 2017; Liu and Song, 2022; Tsai et al., 2010; Vanthof and Kelly, 2019;
Verones et al., 2013; Wu and Lane, 2016; Xiong et al., 2021). However, the large numerical bias in the
above-water topography of global DEMs in certain regions can distort the constructed above-water
hypsometric relationship of wetland depressions, thus introducing significant uncertainty to the
underwater hypsometric relationship estimated by this method ——
Over the past few decades, remote sensing technologies have demonstrated remarkable capabilities in
estimating underwater hypsometric relationships at large spatial scales, facilitated by the rapid
emergence of various advanced satellite sensors, including optical, passive microwave, and radar
instruments (Duan and Bastiaanssen, 2013; Gao et al., 2015; Liu et al., 2022). The commonly
employed approach for estimating underwater hypsometric relationship requires simultaneous
observations of water area provided by optical images (e.g., Landsat series) and the corresponding

water level provided by altimetry satellites (e.g., Sentinel-3, CryoSat-2, -Envisat). However,

accuracy challenges arise due to numerical biases of altimetry satellites, cloud contamination in some
optical images, and the occasional occurrence of one water area value corresponding to multiple water

level values or vice versa (Li et al., 2019a; Liu et al., 2024). ,

_Therefore, this study aims to develop a framework for accurately estimating WDWSC
by integrating multi-source remote sensing data and prior knowledge. Specifically, we integrated
priority-flood algorithm, morphological operators and prior information on water distribution map to
delineate the spatial extent of wetland depressional areas. We then corrected the bias in above-water
topography based on water occurrence map. Finally, we utilized remote sensing techniques to couple
spatial prediction and modeling to estimate bathymetry of wetland depressional areas. The principle
contribution of this developed framework, termed as WetlandSCB, lies in addressing the challenges
hindering the improvement of accuracy in estimating WDWSC based on global DEMs.

2 Methodology

| BB SRR

BEEMAHIE]: Rl RN

MIBR[EH 5] In summary, previous studies have mainly
utilized LiDAR DEM data to estimate WDWSC (e.g., Jones et
al., 2018; Huang et al., 2011; Kessler and Gupta, 2015; Land
and D’Amico, 2010; Wu et al., 2016; Wu et al., 2019).
However, these studies have seriously overlooked the issues of
incompleteness and inaccuracy of wetland depression
identification, as well as the bias in above-water topography,
resulting in a high level of uncertainty in the WDWSC
estimation. In addition, insufficient attention has been paid to
the drawbacks and limitations of both spatial prediction and
modeling methods and remote sensing technologies in
estimating bathymetry. Consequently, a comprehensive and
systematic solution for the accuracy estimation of WDWSC

based on the global DEMs has not yet been developed.
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The WetlandSCB framework can be summarized in four steps as illustrated in Figure 2. Step 1
delineation of wetland depressional areas; Step 2 above-water topography reconstruction; Step 3
bathymetric information estimation; and Step 4 hypsometric curve construction and WDWSC

calculation. Each of the four steps are described in the following sections.

™ Water
: value L occurrence

consistence

estimation
Tr n 3o cri 1l Aaxs Ninax
Optimal
A, ,
n -5 r:g> water surfaces Hwater surface
Z(xi—x) /n—=1 Solution
i=1 Slope change

Cubic spline fitting i " y
o Tsurface

fitting line /‘_\ V,,=J‘ ()AL *Vb:.[ fs(L)dL |
» surface f( ) + 0 ( )

Above-water storage “Pﬂdf.\:_,-‘i '\ Underwater Bathymetry  Below-water storage capacity

Figure 2: Flowchart of the WetlandSCB framework for accurate estimation of wetland depression water

*. Above-water topography

storage capacity (WDWSC) comprising four technical steps. In step 1, spatial distribution of wetland
depressional areas are delineated. In step 2, wetland above-water topography is reconstruction. In step 3,
bathymetric information of wetland depressional areas is estimated. In step 4, a hypsometric curve (i.e.

depth-area relation) is developed and WDWSC is quantified.

2.1 Wetland depression spatial delineation

We extracted the original wetland depression map from the -based on the priority-flood

agorithm and wetland maps (Fiz 3. [HEENDNO

To eliminate the artifact wetland depressions, it was

necessary to transform the wetland depression map into a binary image consisting of pixels that area

6
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labeled as logical ones (wetland depression) and zeros (non-wetland depression). We then employed

the eight-neighbor connectivity algorithm to extract the spatial extent of each wetland depression from

the binary image. Artifae weland depressions (e, tvers and channels) typically exhibi low

Circularity = P (1)
2N A
Eccentricity = % )

where P (m) and A (m?) are the perimeter and area of the wetland depression, respectively. Dy (m)

and L, (m) represent distance between foci and the length of major axis of wetland depression.

Topographic depression

‘Wetland depression

Phreatic

---- Wetland boundary
---- Wetland depression

Value
High: 167

. Low: 123

Figure 3. (a) Conceptual diagram of wetland depression profile. —

Due to incompleteness and inaccuracy identification of some wetland depressions in the original

wetland depression map (Figure 4a), morphological operators of erosion and dilation are applied for the

| BER A ] KR

MR #1185 ]: Subsequently, the circularity (Eq. 1) and
eccentricity (Eq. 2) indicators were used to exclude the artifact

wetland depressions (Ahmad et al., 2020) as follows:

@

Topograph

Wetland

TR [ 1 521

BRG] R Eor

MIBR[#1H5]: (b) and (c) show the two representative
wetland depressional areas located in South Africa
(modified from De Klerk et al., 2016).
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initial spatial processes (Figure 4b). The erosion operator erodes away the boundaries of wetland
depressions to enhance their edges and remove noise. The dilation operator fills up small holes
(non-wetland depression pixels) surrounded by a group of wetland depression pixels (Pulvirenti et al.,

2011a). The combined effect of the two operators is to remove noises while preserving the substantive

features in the image.

which serves as prior

information, effectively characterizes the spatial extent of wetland depressions (Figure .). Therefore,

_V

Erosion and dilation

E

2.2 Above-water topography reconstruction

| BB SRR

BRG] R SR

| MIBR[#1145]: The water distribution map
| miig): §

| BRI i8R
BRG] R i8R

BB XS] RlER

MIBR[EHTES2]: the wetland depression map, after being
processed by the morphological operators, is then intersected
with the water distribution map to obtain a complete and final

wetland depression map (Figure 4¢)

Two depressions extent Mo
S -t

(b)Y

TR 152 ]

BEMAAESE] 7 DT, REER

MR #1855 ]: The water occurrence map can effectively
describe three-dimensional topography at a large spatial scale

(Armon et al., 2020; Li et al., 2019b).
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kovered by water), the decper the water (L ot al. 20210 Therelore. it there b o aceurate watce

occurrence maps, a close relationship between the water occurrence and the topography for wetland

depressions can be found. The water occurrence map is generated by summing the times that the pixel

is detected as water and dividing it by the number of total valid observations, The open-source Global

Surface Water Mapping Layers produced by the European Commission's Joint Research Centre (JRC)
contains a water occurrence map, which has been widely used to describe the topography of wetland

depressions globally or in different regions (Luo et al., 2019; Pickens et al., 2020; Yao et al., 2019; Zou

el 2018) Besides,the Global Surface Water Dynanies, produced by the Global Land Analsis &

I . ..., 00

To address the above issue, this study proposes a method to restore the cloud-contaminated JRC
water distribution images to improve the accuracy of the JRC water occurrence map. For wetland

depressional areas, the JRC water distribution images are classified into cloud-free and

cloud-contaminated images using the cloud screening algorithm—r

AR o the Googte Farh Engine plattorm |MIBNMNMNSUN The

Canny edge detection algorithm is used to obtain the water body boundary of the two types of images

—. Theoretically, if the water areas are the same, the water body boundary of the cloud-free

image should overlap with the exposed water body boundary in the cloud-contaminated image (Figure
5a). Therefore, by overlapping the water body boundaries of the cloud-free images with the

cloud-contaminated images, the missing spatial extent of water bodies in the cloud-contaminated

images can be filed. | R

The corrected JRC water occurrence map is utilized to reconstruct above-water topography. This

is because the water occurrence values within the same wetland depression correspond to elevation

values —(Figure 5b and 5c). However, each corrected water occurrence value may

correspond to multiple elevation values in the global DEMs. Therefore, the median of multiple

elevation values is used as the unique elevation value corresponding to the water occurrence value.

MIEE[#HTE 5]  Therefore, if there is a accurate water
occurrence maps, a close relationship between the water
occurrence and the topography for wetland depressions can be

found (Li et al., 2021).

BRG] R Eor

| BB SRR

MIBR[EHTES2]:  However, due to the temporal discontinuity
of cloud-free JRC water distribution images, they are more
available during dry seasons than wet seasons, leading to

deviations in the representation of real topography at the scale

of individual wetland depression
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Figure 5. Above-water topography reconstruction of wetland depressional areas. (a) Restoration method of

cloud-contaminated - (b) LIDAR DEM and lJRC water occurrence map of Mead Lakes in

the United States.

2.3 Bathymetric information estimation
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Match multi-source altimetry satellites with optical images to construct all area-level pairs for

wetland depressions. By identifying water surface distributions in global DEMs, filter the area-level

pairs that represent underwater hypsometric relationships within wetland depressions.-_

are removed using the 3-sigma rule.

As

the slope profile is a crucial indicator reflecting the hypsometric relationship of wetland depressions
(Clark and Shook, 2022; Sjoberg et al., 2022). Therefore, we first form various combinations of the
processed underwater area-level pairs (each water area value uniquely corresponds to a water level
value in each combination), and calculate the slope profile value p, for each combination. Then the
combination with p, closest to the above-water slope profile p. is taken as the optimal solution, which
can effectively represent underwater bathymetry of wetland depressions.

In this study, a logarithmic transformation is applied to the calculation formula for the slope
profile p of wetland depressions established by Hayashi and Van der Kamp (2000) to obtain Eq. 3. The

least squares method is used to solve Eq. 3 to obtain the slope profile p value of wetland depressions:

p_ (i ho

3
In( A/ Ad) @

where & (m), 4 (m?) represent the depth and area of wetland depressions, and w and d represent

the different area-depth pairs.

The outliers in the underwater area-level pairs

MR #1185 ]: The remote sensing technologies are used to
estimate the underwater bathymetry of wetland depressions,
and the similarity between the underwater and above-water
hypsometric relationships is served as an evaluation criterion
to seek for the optimal solution within the estimated results

that accurately represents underwater bathymetry based on the

principle of spatial prediction and modeling methods.
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Figure 6. Estimation of bathymetric information for wetland depressional areas. (a) Schematic
representation of a simplified wetland depression profile, where 4 (m), r (m) and 4 (m?) represent the depth
of a wetland depressional area, the distance between the edge and the center of the wetland depression, and
the area of the wetland depression, respectively. (b) Wetland depression profile for various p values. (c)
Methods for bathymetric estimation of wetland depressions, where Sentinel, Envisat, and Croysat are

different altimetry satellites, and the numbers 1, 2, and 3 are selected depth-area pairs.

2.4 Estimation of wetland depression water storage capacity

IR 71 monotonic cubi spline and power

function are employed to fit the hypsometric relationships (i.e., depth-area relations) to derive the

above-water hypsometric curve fy(L) and the underwater hypsometric curve fz(L) (Messager et al.,

2016; Yao et al., 2018), respectively.

—_
\S)

BRI T 10 B, R

MR #1852 ]: Deriving the area-level hypsometric
relationship from the corrected above-water topography and

estimated underwater bathymetry of wetland depressions.
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Figure 7. Schematic diagram for the estimation of wetland depression water storage capacity. Two

depth-area rating curves are applied for the bathymetric volume and the above-water topographic volume.

3 Validation sites and datasets
3.1 Validation sites

We applied the WetlandSCB to two wetlands in the Nenjiang River Basin (NRB), northeast China,
to validate the framework. Draining a total area of 297,100 km?, the NRB is one of the largest river
basins in north China. In this river basin, agricultural lands and wetlands (lakes and swamps) are
prevalent (Wu et al., 2023). Recognised as critical regulators of the water balance within the NRB,
wetlands are considered more important than other ecosystems in mitigating future hydrological
extremes and increasing water availability for agriculture (Chen et al., 2020, Wu et al., 2020a, Wu et al.,
2020b, Wu et al., 2020c). For method validation and application of the WetlandSCB framework, we
focused on two national nature reserves within the NRB: the Baihe Lake and the Chagan Lake. The
Baihe Lake, characterised as a marsh wetland, covers approximately 40 km?, predominantly
comprising seasonal inundation zones, with an average water depth of less than 1 m. In contrast, The
Chagan Lake is a large lacustrine wetland of about 372 km?, mainly composed of perennial inundation
zones, with an average water depth of 2.5 m. These two validation wetlands represent different
characteristics in terms of type, area, and average water depth to verify the application robustness of
our developed framework. Field measurements of topographic and bathymetric information (elevation

and depth) were conducted for both the Baihe Lake and the Chagan Lake, consisting of 248 and 657

measurement points, rspectivly (Figure ) NN UONINUU A

13

MIBR[H1H 5 ]: Subsequently, the integration of these two
curves (Figure 7) is performed to calculate the WDWSC,
represented as V'in Eq. 4:
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Figure 8. Locations and distribution of elevation and depth measurements across the Baihe Lake and

Chagan Lake in the Nenjiang River basin, northeast China.

3.2 Datasets
The application of the WetlandSCB framework requires the following data: (i) the global DEMs

sourced from SRTM DEM, with water distribution map sourced from the accompanying SRTM Water

Body Data (https://earthexplorer.usgs.gov_-); (ii) wetland maps

extracted from the 30-m resolution land cover data for the years 1990-2019
(https://zenodo.org/records/5816591, Yang and Huang, 2021) and 30-m resolution wetland map in 2015
year (http://northeast.geodata. cn/index. html, Mao et al., 2020). This study overlays the data from both
sources to reduce the uncertainties in the wetland maps; (iii) water distribution maps and water
occurrence map obtained from the Global Surface Water datasets (https://earthengine.google.com,
Pekel et al, 2016); (iv) altimetry satellite data sourced from the Sentinel-3A/3B products
(https://scihub.copernicus.eu/). In addition, pre-processing of Sentinel-3 altimetry data is performed
using the geophysical and atmospheric correction method developed by Huang et al. (2019) (Eq. 5 and

Eq. 6) to improve data accuracy:
Hyaterievet = Hatt — R — Cor (5)

where Hyaieriever 18 the water level referenced to the EGM96 geoid, Har is the altitude of the
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altimeter derived from the modeling of satellite trajectory, R is the range computed through the time

duration of the echoes, and Cor is referred to as the geophysical and environmental corrections:

ono

CO’" = Cdry + Cwet + C + CsolidEarth + Cpole + CEGM96 (6)

where Cuary, Cwer, Ciono, Csolidiarm, Cpole and Crgomes are the dry tropospheric, wet tropospheric,
ionospheric corrections, the solid Earth tide, polar tide corrections and the EGM96 geoid respectively.
4 Results and discussions

4.1 Performance evaluation of wetland depression spatial delineation and uncertainty analysis

using four indicators: overall

accuracy, kappa coefficient, producer's accuracy, and user's accuracy (Fig. 9a-f).

The results indicate that the WetlandSCB framework can accurately determine the
spatial distribution of wetland depressions, with all four indicators exceeding 0.95. In contrast, the
user's accuracy is above 0.93 in both validation wetlands (error of commission is 0.07), and the

producer's accuracy is only 0.37 (error of omission is 0.63) in Baihe Lake based on the priority-flood

=
ag
[}
=.
=
=

ut is limited by the numerical errors of the global DEMs, which leads to lower extraction

accuracy of the spatial distribution of wetland depressions (Zhou et al., 2016).
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MIBR[#18%]: In comparison, the WetlandSCB framework

Uncertainty in wetland depression spatial delineation using the WetlandSCB framework primarily outperforms the priority-flood algorithm in wetland depression
spatial delineation
mainly arises from morphological operators and prior information on water distribution map. Figures
9g and 9h show that, compared with morphological operators, prior information on water distribution
map can significantly alter the performance of wetland depression spatial delineation and is a key
factor in determining the level of uncertainty. For instance, in Baihe Lake, the overall accuracy and
kappa coefficient improved by 0.29 and 0.56, respectively, after processing with prior information on
water distribution map. Similar studies have also found that the type and reliability of prior information
are major factors affecting the spatial filling performance of surface water maps (Aires, 2020;

Pulvirenti et al., 2011b). Therefore, this study compared the wetland depression spatial delineation

results based on three sets of prior information on water distribution map: GLC-FCS30 (from Zhang et

al., 2021), CLCD (from Yang and Huang, 2021), and JRC (Fig. 91 and 9j)— ‘ VR[S Se B
ol AN NIZZZN

.. The overall accuracy differences for the Baihe Lake and Chagan Lake ranged from 0.68 to 0.98
and from 0.93 to 0.99, respectively. In general, the accuracy levels of prior information from high to
low were JRC > GLC-FCS30 > CLCD. This suggests that selecting highly reliable prior information on

water distribution map is an essential way to reduce uncertainty in the WetlandSCB framework.
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Figure 9. (a), (b), and (c) depict the spatial distribution of wetland depressional areas in the Baihe Lake
based on the priority-flood algorithm, WetlandSCB framework, and field measurements —
depresion map was derived from feld mesurements using the contour-tree metho), rspectiely (), 5.
and (f) show the corresponding results for the Chagan Lake. The impact of morphological operators and
prior information on water distribution map from the WetlandSCB framework is illustrated in (g) and (h).
The influence of different prior information on water distribution map from the WetlandSCB framework is

presented in (i) and (j).

4.2 Performance evaluation of above-water topography correction and uncertainty analysis
The consistency between the original and corrected above-water topography and the actual
above-water topography obtained from field measurements can be evaluated using Pearson correlation

coefficients and R?. The results indicate that the consistency between the original _

information directy obtained from the SRTM DEM as th original bove-wate topography) and uctus
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above-water topography is remarkably low, with R? values less than 0.2 for both validation wetlands.
Previous studies have also observed significant numerical discrepancies between the original and actual
above-water topography in some regions (e.g., Mukul et al., 2017; Uuemaa et al., 2020). Compared to
the original results, the consistency between the corrected and actual above-water topography
significantly improves. For example, the Pearson correlation coefficient and R? reach. and 0.55 in
the Baihe Lake, respectively, demonstrating that the WetlandSCB framework can effectively correct

numerical biases in above-water topography.
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Figure 10. (a) and (b) Consistency analysis results between the original and corrected above-water

topography for Baihe Lake. (c) and (d) are corresponding results for Chagan Lake. —

Uncertainty in correcting above-water topography using the WetlandSCB framework depends

primarily on the accuracy of the water occurrence map. Therefore, —
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correlation level of GLAD is superior to JRC in the Baihe Lake, while the opposite is observed in the
Chagan Lake. Additionally, the R? values for both sets of water occurrence maps are less than 0.4
(Figure 1lc-f), which is significantly lower than the accuracy level of the corrected above-water
topography. This clearly shows the superiority of the water occurrence map generated by the
WetlandSCB framework over the GLAD or original JRC map.

It is to note that the water occurrence map generated by the WetlandSCB framework still has a
certain level of uncertainty. First, the extraction of a complete and accurate water spatial distribution
from cloud-free images is constrained by factors such as the classification algorithm (Figure 11a)
(Peket et al., 2016), but some correction algorithms have been proposed to enhance raw water
distribution images (Zhao and Gao, 2018). Second, there is currently a lack of high-precision,
temporally and spatially continuous water distribution maps (Figure 11b). Future efforts could include
the use of image fusion methods, such as the Spatial and Temporal Adaptive Reflectance Fusion Mode,
to fuse data from multi-source remote sensing products such as Sentinel-2, MODIS, and Landsat,
which can effectively enhance the accuracy of water occurrence map (He et al., 2020; Wang et al.,

2016).

(h) Cloud-contamination image in June.
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Figure 11. (a) and (b) depict sources of uncertainty in water occurrence map generated by the WetlandSCB
framework. (c), (d), (¢) and (f) illustrate the difference between two water occurrence maps on the

performance of above-water topography correction in the Baihe Lake and the Chagan Lake.

4.3 Performance evaluation of bathymetric information estimation
The slope profile p is used to describe the bathymetry of wetland depressional areas. The

calculated p values for the Baihe lake and the Chagan Lake using the WetlandSCB framework are 7.45
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and 4.08, respectively.

The
relative errors with respect to the actual p values obtained from field measurements are both less than
3%, demonstrating the high accuracy of the framework in estimating underwater bathymetry.

To further prove the superiority of the WetlandSCB framework in estimating bathymetry, this

study employed spatial prediction and modeling methods

, resulting in a p
value of 8.65 for the Baihe Lake and 4.78 for the Chagan Lake. The relative errors with respect to the
actual p values are both greater than 18%, indicating that this method may lead to substantial errors in
some regions, as also reported by Papa et al. (2013) and Vanthof and Kelly. (2019). Furthermore,
previous studies have often applied smoothing methods to the global DEMs to enhance the accuracy of
topographic characterization in wetland depressions (e.g., Jones et al., 2018; Wu et al., 2019). In this
regard, we further used the Gaussian-smoothed global DEMs and the spatial prediction and modelling
methods to calculate p for the Baihe Lake and the Chagan Lake. The resulting values were 8.51 and
4.37, with relative errors of 17.63% and 7.9%, respectively. This underscores that smoothing methods
do indeed contribute to improving the accuracy of topographic information in wetland depressions.
Notably, the relative error for the Chagan Lake is significantly lower than that for the Baihe Lake,
which is consistent with the findings of Liu and Song (2022), who reported that the spatial prediction

and modeling methods are suitable for wetlands with long and narrow shape.

20

s U SN S HEIT R

| WEMAIG ] R Eor

BRG] R SR

MR #1852 ]: In summary, it can be seen that the
WetlandSCB framework excels in the accuracy of estimating
bathymetry in wetland depressional areas when compared to

other methods.



462
463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

« = = Spatial prediction and modeling-Global DEM (p = 8.65) Tole . Spatial prediction and modeling-Global DEM (p = 4.78)
— — Remote sensing technology-WetlandSCB (p = 7.45) — =— Remote sensing technology-WetlandSCB (p = 4.08)

——— True situation based on in-situ measurement (p = 7.29) ——— True situation based on in-situ measurement (p = 4.05),

0.8 o 084

= £
=
=
=
,, 01 S e ] :
gt = ;6 07 o
024 L 2 % 0.2 1 it \‘ "
R i | i
0.0 . . — T 0.0 T — r T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 06 0.8 1.0
T/, rg/ 1,

Figure 12. Slope profile p values of wetland depressions for the Baihe Lake (left) and the Chagan Lake
(right), calculated with spatial prediction and modeling methods, and the WetlandSCB framework in

comparison with filed measurements.

44  WetlandSCB framework application and implications for integrated water resources
management

Wetland depressions are largely disregarded in many hydrologic modeling practices. Rare studies
exist on how their exclusion can lead to potentially inaccurate model projections and understanding of
hydrologic dynamics across the world's river basins (Rajib et al., 2020). This study applied a novel
framework delineating the topography and bathymetry of wetland depressional areas and focusing on
two distinctive wetlands to estimate WDWSC. Using the field measurements of topography and
bathymetry of the Baihe Lake and the Chagan Lake, the depth-area hypsometric curves were
constructed, and the WDWSC of the Baihe Lake and the Chagan Lake were estimated to be 61 million

m® and 526 million m?, respectively (Fig. 13). The estimation results based on the WetlandSCB

framework were correspondingly 55 million m* and 521 million m3,
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_ which can be applied to regions lacking field measurement

data for global-scale wetland water storage capacity estimation.
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resectives. The eaeulation results of WDWSC based an thee

Wetlands play a pivotal role in mitigating flood and drought risks, as well as addressing water
scarcity challenge within a river basin. Previous studies underscore the significant impact of wetlands
in attenuating future flood characteristics, including peak flows, mean flows, duration, and flow
volume for various return period floods (Wu et al.,, 2023). Concurrently, wetlands contribute to
enhancing baseflow during both summer and winter seasons in the NRB (Wu et al., 2020c). Given the
NRB is a agriculture-dominated river basin, wetlands serves as the main water supply nodes by
collecting the flash flood and storing and purifying irrigation return flows. This reclaimed water can be
efficiently reused for irrigation purposes in the NRB (Meng et al., 2019; Smiley and Allred, 2011; Zou
et al.,, 2018). The WDWSC is a key parameter for evaluating the flood control and water supply
capacity of wetlands, also as a important prerequisite for understanding the impact of wetlands on
extreme hydrological events (Acreman and Holden, 2013). Therefore, the developed WetlandSCB
framework, which can provide accurate estimation of the WDWSC, contributes to the management of
food and water security in the NRB. Against the backdrop of global environmental change,

characterized by an escalation in the intensity and frequency of extreme hydrological events, and the
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increasing disparity between water resource supply and demand, there is an urgent need for a novel
integrated water resources management approach based on natural solutions (Rodell and Li, 2023;
Thorslund et al., 2017; Yin et al., 2018). Wetlands have emerged as a nature-based solution in various
water resources management practices (Ferreira et al., 2023). Taking advantage of the wetland
hydrological regulation functions is instrumental in addressing the risks of flood and drought disasters
arising from global climate change, land use change, as well as the water scarcity risks stemming from
agricultural-ecological water competition. This can help develop effective adaptation strategies and
decisions for integrated water resources management.

Additionally, using the WetlandSCB framework, raster-scale wetland depression topographic

information can be accurately reconstructed. Through flow direction analysis and watershed delineation

methods, key parameters such as wetland inflow and outflow locations, wetland catchment boundaries,

and other related characteristics can be identified (these steps can be performed using QGIS software).

By integrating the hypsometric curve, water surface distribution data, and morphological characteristics

of the wetland derived from the WetlandSCB framework. the initial wetland water level, the number of

wetland layers, and the corresponding area-level pairs can be determined. Field surveys provide

essential data on wetland soil and vegetation properties as well as inflow volumes within the study area.

Finally, the hydrological model, coupled with the wetland module, can be implemented to support

wetland eco-hydrological research and integrated water resources management.
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Figure 14. Integration process and application outputs of the WetlandSCB framework with VIC

hydrological model.
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5 Conclusions

This study developed a novel framework to accurately quantify wetland depression water storage
capacity using coarse-resolution terrain data. The developed framework, WetlandSCB integrates
multi-source remote sensing data, historical maps and prior knowledge, and achieved a high prediction
of wetland depressional distribution and water storage capacity. This is achieved through four steps: 1)
integrating priority-flood algorithm, morphological operators and prior information on water
distribution maps to delineate spatial extent of wetland depressional areas; 2) correcting numerical
biases in above-water topography with water occurrence map; 3) coupling spatial prediction and

modeling with remote sensing techniques to estimate bathymetric information, and 4) quantifying

depressional area water storage capacity based on depth-area rating curves.

The concept and technical approaches are applicable to large-scale wetland depression water
storage estimation, as well as to the regions where field measurements and/or high-resolution data are

not available. Application of the WetlandSCB framework provides accurate distribution and depth-area
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relations of wetland depressional areas which can be incorporated into wetland modules of
hydrological models (e.g., HYDROTEL, SWAT, HYPE, CHRM) to improve the accuracy of flow and

storage predictions in river basins.
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