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12

Abstract. Accurate quantification of wetland depression water storage capacity (WDWSC) is13

imperative for comprehending the wetland hydrological regulation functions to support integrated14

water resources management. Considering the challenges posed by the high acquisition cost of15

high-resolution LiDAR DEM or the absence of field measurements for most wetland areas, urgent16

attention is required to develop an accurate estimation framework for WDWSC using open-source,17

low-cost, multi-source remote sensing data. In response, we developed a novel framework,18

WetlandSCB, utilizing coarse-resolution terrain data for accurate estimation of WDWSC. This19

framework overcame several technical difficulties, including biases in above-water topography,20

incompleteness and inaccuracy of wetland depression identification, and the absence of bathymetry.21

Validation and application of the framework were conducted in two national nature reserves of22

northeast China. The study demonstrated that integrating priority-flood algorithm, morphological23

operators and prior information can accurately delineate the wetland depression distribution with24

overall accuracy and Kappa coefficient both exceeding 0.95. The use of water occurrence map can25

effectively correct numerical biases in above-water topography with Pearson coefficient and R226

increasing by 0.33 and 0.38 respectively. Coupling spatial prediction and modeling with remote sensing27

techniques yielded highly accurate bathymetry estimates, with <3% relative error compared to filed28

measurements. Overall, the WetlandSCB framework achieved estimation of WDWSC with <10%29
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relative error compared to field topographic and bathymetric measurements. The framework and its30

concept are transferable to other wetland areas globally where field measurements and/or31

high-resolution terrain data are unavailable, contributing to a major technical advancement in32

estimating WDWSC in river basins.33

Keywords: Wetland depression; Water storage capacity; Hypsometric curve; coarse-resolution34

terrain data; wetland hydrological regulation functions35

36

1 Introduction37

Wetlands are multifunctional ecosystems considered as nature-based solutions for effective water38

management in river basins (Thorslund et al., 2017). They exert a profound influence on watershed39

hydrological processes and water resource availability through their hydrological regulation functions,40

such as maintaining baseflow, buffering floods, and delaying droughts (Acreman and Holden, 2013;41

Wu et al., 2023). These functions are essential for enhancing watershed resilience and ensuring water42

security (Cohen et al., 2016; Evenson et al., 2018; Lane et al., 2018). Wetland depression water storage43

capacity (hereafter abbreviated as WDWSC) represents a critical component of wetland hydrological44

regulation functions. The quantitative study of the WDWSC contributes to advancing scientific45

understanding of wetland hydrological regulation functions and to improving integrated water46

resources management at the watershed scale (Ahmad et al., 2020; Fang et al., 2019; Jones et al., 2018;47

Shook et al., 2021).48

The WDWSC can be defined as the maximum surface water volume that each wetland depression49

can store without spilling to down-gradient waters (Jones et al., 2018). Previous studies predominantly50

employed wetland depression identification algorithms to derive wetland depression topography from51

terrain data. In a vector-based contour representation, wetland depressions are shown as nested closed52

contours, with inner contours at lower elevations than the outer ones (Wu and Lane, 2016). Area-depth53

pairs are derived from the contour lines of wetland depressions, and hypsometric curves are constructed54

by applying curve-fitting methods to the obtained pairs (e.g., Haag et al., 2005; Wu and Lane, 2016).55

Therefore, the key determinants for the accuracy of the WDWSC calculation are the rationality of the56

wetland depression identification algorithms and the precision of terrain data. Many scholars have57

conducted research on wetland depression identification algorithms, which can be mainly categorized58

into three types: depression filling, depression breaching and hybrid combing both the filling and59
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breaching approaches (Wu et al., 2019). Among these, the priority-flood algorithm within the60

depression filling category is widely adopted as a prevalent algorithm for wetland depression61

identification (Barnes et al., 2014; Lindsay, 2016; Wu et al., 2019; Zhou et al., 2016). The62

priority-flood algorithm works by flooding DEM cells inwards from their edges using a priority queue63

to determine the sequence of cells to be flooded. Wu et al. (2019) and Rajib et al. (2019) demonstrated64

the feasibility of accurately deriving wetland depression topography using the priority-flood algorithm65

in the Pipestem watershed and Upper Mississippi river basin, respectively. Bare-earth high-resolution66

airborne light detection and ranging (LiDAR) DEM can provide accurate topographic information of67

wetland depressions, significantly improving the estimation accuracy of the WDWSC. For example,68

Jones et al. (2018) used high-resolution LiDAR DEM to estimate WDWSC in the Delmarva Peninsula.69

However, the high acquisition cost of LiDAR DEM renders it impractical for large-scale estimation of70

WDWSC. The global open-access spaceborne-derived DEMs (hereafter referred as global DEMs),71

such as Shuttle Radar Topography Mission (SRTM), ALOS Global Digital Surface Model, the Terra72

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital73

Elevation Model, offer topographic information at a fine spatial scale. However, compared to the74

bare-earth LiDAR DEM, the global DEMs exhibit three obvious limitations. First, radar altimetry75

cannot penetrate water surfaces, so the global DEMs produced from radar altimetry do not provide any76

bathymetric information. Second, in certain regions, there may be substantial numerical discrepancies77

in above-water topography. The above-water DEMs demonstrate systematic overestimation caused by78

canopy height, and their accuracy is significantly influenced by terrain slope (Marešová et al., 2024;79

Simard et al., 2024). Third, the global DEMs often suffer from lower horizontal and vertical resolutions80

(Chen et al., 2022; Liu et al., 2019; Liu et al., 2024). Due to the limitations in global DEMs, delineation81

of wetland depressional areas using the advanced priority-flood algorithm also suffers from three82

problems: the bias in above-water topography (Fig. 1a and 1b), incompleteness and inaccuracy of83

wetland depressions identification (Fig. 1c), and the absence of bathymetric information (Fig. 1d)84

(Gdulová et al., 2020; Hawker et al., 2019; Li et al., 2011; Liu et al., 2024).85
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86

Figure 1. Wetland depression extraction based on the priority-flood algorithm and global DEMs suffers from the87

bias of above-water topography(Figures 1a-1c illustrate the discrepancies in above-water topography between88

LiDAR DEM and ALOS DEM, where Figure 1a shows the 1m spatial resolution LiDAR DEM, Figure 1b displays89

the LiDAR DEM resampled to 30m spatial resolution using the nearest-neighbor method, and Figure 1c presents90

the 30m spatial resolution ALOS DEM), incompleteness and inaccuracy of wetland depressions identification91

(Figure 1d shows a historical satellite image from 2013, and Figure 1e depicts the spatial distribution of wetland92

depressions extracted using the priority-flood algorithm and ALOS DEM, which exhibits noticeable characteristics93

of incomplete boundaries and spatial fragmentation), and the absence of bathymetric information (Figure 1f, where94

the entire water surface is represented by a single elevation value of 129 m).95

96

In an effort to minimize the impact of the absence of bathymetric information in global DEMs on97

the estimation accuracy of the WDWSC, researchers have conducted studies on the estimation of98

underwater hypsometric relationship of wetland depressions, and the methods can be divided into two99

types: spatial prediction and modeling methods and remote sensing technologies. The spatial prediction100

and modeling methods assume that the bathymetry can be considered as a spatial extension of the101

surrounding exposed terrains due to long-term tectonic and geophysical evolution processes.102

Consequently, the underwater hypsometric relationship is assumed to be fundamentally similar to the103

above-water hypsometric relationship in wetland depressions (e.g., Ahmad et al., 2020; Bonnema et al.,104
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2016; Bonnema and Hossain, 2017; Liu and Song, 2022; Tsai et al., 2010; Vanthof and Kelly, 2019;105

Verones et al., 2013; Wu and Lane, 2016; Xiong et al., 2021). However, the large numerical bias in the106

above-water topography of global DEMs in certain regions can distort the constructed above-water107

hypsometric relationship of wetland depressions, thus introducing significant uncertainty to the108

underwater hypsometric relationship estimated by this method (Khazaei et al., 2022; Zhan et al., 2021).109

Over the past few decades, remote sensing technologies have demonstrated remarkable capabilities in110

estimating underwater hypsometric relationships at large spatial scales, facilitated by the rapid111

emergence of various advanced satellite sensors, including optical, passive microwave, and radar112

instruments (Duan and Bastiaanssen, 2013; Gao et al., 2015; Liu et al., 2022). The commonly113

employed approach for estimating underwater hypsometric relationship requires simultaneous114

observations of water area provided by optical images (e.g., Landsat series) and the corresponding115

water level provided by altimetry satellites (e.g., Sentinel-3, CryoSat-2, ICESat-2, Envisat). However,116

accuracy challenges arise due to numerical biases of altimetry satellites, cloud contamination in some117

optical images, and the occasional occurrence of one water area value corresponding to multiple water118

level values or vice versa (Li et al., 2019a; Liu et al., 2024).119

In summary, previous studies using the global DEMs have overlooked critical issues such as the120

incompleteness and inaccuracy of wetland depression identification, as well as biases in above-water121

topography, leading to significant uncertainties in WDWSC estimation. In addition, insufficient122

attention has been paid to the drawbacks and limitations of both spatial prediction and modeling123

methods and remote sensing technologies in estimating bathymetry. Consequently, a comprehensive124

and systematic solution for the accuracy estimation of WDWSC based on the global DEMs has not yet125

been developed. Therefore, this study aims to develop a framework for accurately estimating WDWSC126

by integrating multi-source remote sensing data and prior knowledge. Specifically, we integrated127

priority-flood algorithm, morphological operators and prior information on water distribution map to128

delineate the spatial extent of wetland depressional areas. We then corrected the bias in above-water129

topography based on water occurrence map. Finally, we utilized remote sensing techniques to couple130

spatial prediction and modeling to estimate bathymetry of wetland depressional areas. The principle131

contribution of this developed framework, termed as WetlandSCB, lies in addressing the challenges132

hindering the improvement of accuracy in estimating WDWSC based on global DEMs.133

2 Methodology134
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The WetlandSCB framework can be summarized in four steps as illustrated in Figure 2. Step 1135

delineation of wetland depressional areas; Step 2 above-water topography reconstruction; Step 3136

bathymetric information estimation; and Step 4 hypsometric curve construction and WDWSC137

calculation. Each of the four steps are described in the following sections.138

139

Figure 2: Flowchart of the WetlandSCB framework for accurate estimation of wetland depression water140

storage capacity (WDWSC) comprising four technical steps. In step 1, spatial distribution of wetland141

depressional areas are delineated. In step 2, wetland above-water topography is reconstruction. In step 3,142

bathymetric information of wetland depressional areas is estimated. In step 4, a hypsometric curve (i.e.143

depth-area relation) is developed andWDWSC is quantified.144

145

2.1 Wetland depression spatial delineation146

We extracted the original wetland depression map from the SRTM DEM based on the priority-flood147

algorithm and wetland maps (Fig. 3). The priority-flood algorithm was applied to identify and fill sinks148

in the DEM, resulting in a depressionless DEM. By subtracting the original DEM from the149

depressionless DEM, an elevation difference grid was generated, where each cell value represents the150

depth of the depression. Subsequently, cells with elevation changes greater than zero were extracted151

and identified as topographic depressions. To eliminate the artifact wetland depressions, it was152

necessary to transform the wetland depression map into a binary image consisting of pixels that area153
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labeled as logical ones (wetland depression) and zeros (non-wetland depression). We then employed154

the eight-neighbor connectivity algorithm to extract the spatial extent of each wetland depression from155

the binary image. Artifact wetland depressions (e.g., rivers and channels) typically exhibit low156

circularity (Eq. 1) and high eccentricity (Eq. 2), whereas true wetland depressions generally display157

high circularity and low eccentricity. By iteratively refining the threshold values of these indicators and158

validating the results through visual inspection, the optimal thresholds were established to effectively159

eliminate artifact wetland depressions (Ahmad et al., 2020).160

2
PCircularity
A




(1)161

f

m

DEccentricity
l

 (2)162

where P (m) and A (m2) are the perimeter and area of the wetland depression, respectively. Df (m)163

and Lm (m) represent distance between foci and the length of major axis of wetland depression.164

165

Figure 3. (a) Conceptual diagram of wetland depression profile. (b) representative wetland depressional166
area located in Nenjiang river basin, China. (c) 3-dimensions diagram of wetland depressional areas.167

168

Due to incompleteness and inaccuracy identification of some wetland depressions in the original169

wetland depression map (Figure 4a), morphological operators of erosion and dilation are applied for the170
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initial spatial processes (Figure 4b). The erosion operator erodes away the boundaries of wetland171

depressions to enhance their edges and remove noise. The dilation operator fills up small holes172

(non-wetland depression pixels) surrounded by a group of wetland depression pixels (Pulvirenti et al.,173

2011a). The combined effect of the two operators is to remove noises while preserving the substantive174

features in the image. Specifically, on the Python platform, morphological opening was performed by175

first applying the erosion operator, followed by the dilation operator. These operations require a176

binary-valued kernel, where the output pixel value in the erosion step is determined by the minimum177

value within the kernel. A disk-shaped kernel with a 3-pixel radius was used, which is significantly178

smaller than typical wetland depressions but sufficient to eliminate speckle noise. The water179

distribution map is defined as the maximum water body distribution map, which serves as prior180

information, effectively characterizes the spatial extent of wetland depressions (Figure 4c). Therefore,181

after applying morphological operators, the wetland depression map is merged with the water182

distribution map within the depression boundaries through a union operation, ensuring the creation of a183

comprehensive and finalized wetland depression map (Figure 4d). .184

185

Figure 4. The final wetland depression map derived from morphological operators and prior water distribution186

information. Figure 4a depicts the spatial distribution of the wetland depression before processing, with pink187

indicating wetland depression pixels; Figure 4b shows the spatial distribution of the wetland depression after188

morphological operator processing, represented in white; Figure 4c illustrates the maximum water extent within189

the wetland depression boundaries, highlighted in blue; and Figure 4d presents the refined spatial distribution of190

the wetland depression, obtained by combining Figures 4b and 4c through a union operation. The red dotted191

polygons indicate wetland depression pixels supplemented with prior information.192

193

2.2 Above-water topography reconstruction194

The basic idea is that the greater the water occurrence for a pixel (i.e., the more frequently it is195
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covered by water), the deeper the water (Li et al., 2021). Therefore, if there is a accurate water196

occurrence maps, a close relationship between the water occurrence and the topography for wetland197

depressions can be found. The water occurrence map is generated by summing the times that the pixel198

is detected as water and dividing it by the number of total valid observations. The open-source Global199

Surface Water Mapping Layers produced by the European Commission's Joint Research Centre (JRC)200

contains a water occurrence map, which has been widely used to describe the topography of wetland201

depressions globally or in different regions (Luo et al., 2019; Pickens et al., 2020; Yao et al., 2019; Zou202

et al., 2018). Besides, the Global Surface Water Dynamics, produced by the Global Land Analysis &203

Discovery (GLAD), also includes a water occurrence map (Pickens et al., 2020). However, the204

cloud-free JRC water distribution images have temporal discontinuity. They are more available during205

dry seasons than wet seasons, which leads to deviations in the representation of real topography at the206

scale of individual wetland depression (Chu et al., 2020).207

To address the above issue, this study proposes a method to restore the cloud-contaminated JRC208

water distribution images to improve the accuracy of the JRC water occurrence map. For wetland209

depressional areas, the JRC water distribution images are classified into cloud-free and210

cloud-contaminated images using the cloud screening algorithm (a rudimentary cloud-scoring211

algorithm called simpleCloudScore) of the Google Earth Engine platform (Mullen et al., 2021). The212

Canny edge detection algorithm is used to obtain the water body boundary of the two types of images213

(Canny, 1986). Theoretically, if the water areas are the same, the water body boundary of the cloud-free214

image should overlap with the exposed water body boundary in the cloud-contaminated image (Figure215

5a). Therefore, by overlapping the water body boundaries of the cloud-free images with the216

cloud-contaminated images, the missing spatial extent of water bodies in the cloud-contaminated217

images can be filled. Theoretically, this method can be applicable to wetland depressional areas218

exceeding 0.0144 km2.219

The corrected JRC water occurrence map is utilized to reconstruct above-water topography. This220

is because the water occurrence values within the same wetland depression correspond to elevation221

values of SRTM DEM (Figure 5b and 5c). However, each corrected water occurrence value may222

correspond to multiple elevation values in the global DEMs. Therefore, the median of multiple223

elevation values is used as the unique elevation value corresponding to the water occurrence value.224

Therefore, if there is a accurate water

occurrence maps, a close relationship between the water

occurrence and the topography for wetland depressions can be

found (Li et al., 2021).
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225

Figure 5. Above-water topography reconstruction of wetland depressional areas. (a) Restoration method of226

cloud-contaminated satellite images. (b) LiDAR DEM and (c) JRC water occurrence map of Mead Lakes in227

the United States. (d) SRTM DEM and (e) JRC water occurrence map of a representative wetland228

depressional area located in the Nenjiang River Basin. (f) Correlation between elevations and water229

occurrences in the wetland depressional area.230

231

2.3 Bathymetric information estimation232

Using remote sensing technologies, simultaneous observations of water areas provided by optical233

images (e.g., Global Surface Water datasets) and the corresponding water levels from altimetry234

satellites (e.g., Sentinel-3) are employed to obtain underwater area-level pairs. Furthermore, based on235
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the principle of spatial prediction and modeling methods, the continuity of the slope profile between236

the above-water and underwater topography is used as a filtering criterion to refine the underwater237

area-level pairs, enabling precise characterization of the underwater topography of wetland238

depressions.239

Match multi-source altimetry satellites with optical images to construct all area-level pairs for240

wetland depressions. By identifying water surface distributions in global DEMs, filter the area-level241

pairs that represent underwater hypsometric relationships within wetland depressions. Since altimetry242

satellite data are subject to various factors that influence the accuracy of water level monitoring,243

including intrinsic factors such as sensor performance and instrument resolution, as well as extrinsic244

factors like natural elements, the geometry of the wetland water body, boundary conditions, and245

vegetation characteristics (Zhou et al., 2023), some of the derived water level data exhibit substantial246

variability and uncertainty and are regarded as outliers. The outliers in the underwater area-level pairs247

are removed using the 3-sigma rule. Morevoer, DEM errors can be categorized into two types:248

systematic and random errors. To mitigate data noise, it is common practice to smooth the DEM before249

applying it for terrain analysis. Several filters commonly used for smoothing DEMs include median250

and mean filters, Gaussian filter, adaptive filter, and K-Nearest mean filter (Lindsay, 2016). In this251

study, we use the smoothed SRTM DEM derived from Gaussian filter to calculate the slope profile. As252

the slope profile is a crucial indicator reflecting the hypsometric relationship of wetland depressions253

(Clark and Shook, 2022; Sjöberg et al., 2022). Therefore, we first form various combinations of the254

processed underwater area-level pairs (each water area value uniquely corresponds to a water level255

value in each combination), and calculate the slope profile value pu for each combination. Then the256

combination with pu closest to the above-water slope profile pa is taken as the optimal solution, which257

can effectively represent underwater bathymetry of wetland depressions.258

In this study, a logarithmic transformation is applied to the calculation formula for the slope259

profile p of wetland depressions established by Hayashi and Van der Kamp (2000) to obtain Eq. 3. The260

least squares method is used to solve Eq. 3 to obtain the slope profile p value of wetland depressions:261

w d

w d

2 ln( / )
ln( / A )

h hP
A


 (3)262

where h (m), A (m2) represent the depth and area of wetland depressions, and w and d represent263

the different area-depth pairs.264

The remote sensing technologies are used to

estimate the underwater bathymetry of wetland depressions,

and the similarity between the underwater and above-water

hypsometric relationships is served as an evaluation criterion

to seek for the optimal solution within the estimated results

that accurately represents underwater bathymetry based on the

principle of spatial prediction and modeling methods.
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265
Figure 6. Estimation of bathymetric information for wetland depressional areas. (a) Schematic266

representation of a simplified wetland depression profile, where h (m), r (m) and A (m2) represent the depth267

of a wetland depressional area, the distance between the edge and the center of the wetland depression, and268

the area of the wetland depression, respectively. (b) Wetland depression profile for various p values. (c)269

Methods for bathymetric estimation of wetland depressions, where Sentinel, Envisat, and Croysat are270

different altimetry satellites, and the numbers 1, 2, and 3 are selected depth-area pairs.271

272

2.4 Estimation of wetland depression water storage capacity273

We derived the hypsometric relationship from the corrected above-water area-level pairs and274

estimated underwater area-level pairs of wetland depressions. The monotonic cubic spline and power275

function are employed to fit the hypsometric relationships (i.e., depth-area relations) to derive the276

above-water hypsometric curve fA(L) and the underwater hypsometric curve fB(L) (Messager et al.,277

2016; Yao et al., 2018), respectively. Subsequently, based on the underwater hypsometric curve fB(L),278

the area enclosed by the water level from 0 to the maximum value and fB(L) is defined as the279

underwater storage capacity of the wetland depression. Similarly, based on the above-water280

hypsometric curve fA(L), the area enclosed by the water level from the minimum value (corresponding281

to the maximum value of fB(L)) to the maximum value (the elevation of the spilling point) and fB(L) is282

defined as the above-water storage capacity of the wetland depression. The total wetland depression283

water storage capacity is then obtained as the sum of both components (represented as V in Eq. 4,284

Figure 7).285
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max

0
(L) (L)

watersurface

watersurface

h h
A B

h
V f dL f dL   (4)286

287
Figure 7. Schematic diagram for the estimation of wetland depression water storage capacity. Two288

depth-area rating curves are applied for the bathymetric volume and the above-water topographic volume.289

290

3 Validation sites and datasets291

3.1 Validation sites292

We applied the WetlandSCB to two wetlands in the Nenjiang River Basin (NRB), northeast China,293

to validate the framework. Draining a total area of 297,100 km2, the NRB is one of the largest river294

basins in north China. In this river basin, agricultural lands and wetlands (lakes and swamps) are295

prevalent (Wu et al., 2023). Recognised as critical regulators of the water balance within the NRB,296

wetlands are considered more important than other ecosystems in mitigating future hydrological297

extremes and increasing water availability for agriculture (Chen et al., 2020, Wu et al., 2020a, Wu et al.,298

2020b, Wu et al., 2020c). For method validation and application of the WetlandSCB framework, we299

focused on two national nature reserves within the NRB: the Baihe Lake and the Chagan Lake. The300

Baihe Lake, characterised as a marsh wetland, covers approximately 40 km2, predominantly301

comprising seasonal inundation zones, with an average water depth of less than 1 m. In contrast, The302

Chagan Lake is a large lacustrine wetland of about 372 km2, mainly composed of perennial inundation303

zones, with an average water depth of 2.5 m. These two validation wetlands represent different304

characteristics in terms of type, area, and average water depth to verify the application robustness of305

our developed framework. Field measurements of topographic and bathymetric information (elevation306

and depth) were conducted for both the Baihe Lake and the Chagan Lake, consisting of 248 and 657307

measurement points, respectively (Figure 8). Specifically, we combined an ultrasonic echo sounder308

(D390, Chcnav, China) with a Global Positioning System (GPS) positioning system and applied the309

Subsequently, the integration of these two

curves (Figure 7) is performed to calculate the WDWSC,

represented as V in Eq. 4:
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field measurements according to the sectional method. Manned vessels in areas of greater water depth310

and unmanned remotely operated vessels in areas of lower water depth with the aid of water rulers and311

hammers.312

313

Figure 8. Locations and distribution of elevation and depth measurements across the Baihe Lake and314

Chagan Lake in the Nenjiang River basin, northeast China.315

316

3.2 Datasets317

The application of the WetlandSCB framework requires the following data: (i) the global DEMs318

sourced from SRTM DEM, with water distribution map sourced from the accompanying SRTM Water319

Body Data (https://earthexplorer.usgs.gov, Farr and Kobrick, 2000; NASA, 2013); (ii) wetland maps320

extracted from the 30-m resolution land cover data for the years 1990-2019321

(https://zenodo.org/records/5816591, Yang and Huang, 2021) and 30-m resolution wetland map in 2015322

year (http://northeast.geodata. cn/index. html, Mao et al., 2020). This study overlays the data from both323

sources to reduce the uncertainties in the wetland maps; (iii) water distribution maps and water324

occurrence map obtained from the Global Surface Water datasets (https://earthengine.google.com,325

Pekel et al., 2016); (iv) altimetry satellite data sourced from the Sentinel-3A/3B products326

(https://scihub.copernicus.eu/). In addition, pre-processing of Sentinel-3 altimetry data is performed327

using the geophysical and atmospheric correction method developed by Huang et al. (2019) (Eq. 5 and328

Eq. 6) to improve data accuracy:329

waterlevel altH H R Cor   (5)330

where Hwaterlevel is the water level referenced to the EGM96 geoid, Halt is the altitude of the331
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altimeter derived from the modeling of satellite trajectory, R is the range computed through the time332

duration of the echoes, and Cor is referred to as the geophysical and environmental corrections:333

96dry wet iono solidEarth pole EGMCor C C C C C C     
(6)334

where Cdry, Cwet, Ciono, CsolidEarth, Cpole and CEGM96 are the dry tropospheric, wet tropospheric,335

ionospheric corrections, the solid Earth tide, polar tide corrections and the EGM96 geoid respectively.336

4 Results and discussions337

4.1 Performance evaluation of wetland depression spatial delineation and uncertainty analysis338

The actual topographic and bathymetric information obtained from field measurements, along339

with the contour-tree method, provides the actual spatial distribution of wetland depressional areas.340

Additionally, two spatial distributions of wetland depressional areas are derived: one using the SRTM341

DEM combined with the priority-flood algorithm and the other using the SRTM DEM with the342

WetlandSCB framework. A comparative analysis of these three approaches is conducted to assess the343

accuracy differences in wetland depression spatial delineation by using four indicators: overall344

accuracy, kappa coefficient, producer's accuracy, and user's accuracy (Fig. 9a-f). The confusion matrix,345

also known as an error matrix, is a crucial method for evaluating land cover classification accuracy. It346

intuitively reflects the classification relationship between the evaluated data and the reference data.347

Key evaluation metrics include the above four indicators. For detailed calculation equations, refer to348

Liu et al. (2007). The results indicate that the WetlandSCB framework can accurately determine the349

spatial distribution of wetland depressions, with all four indicators exceeding 0.95. In contrast, the350

user's accuracy is above 0.93 in both validation wetlands (error of commission is 0.07), and the351

producer's accuracy is only 0.37 (error of omission is 0.63) in Baihe Lake based on the priority-flood352

algorithm. Since the overall accuracy of wetland depression spatial delineation derived using the353

priority-flood algorithm exceeds 0.6 for both validation wetland sites, with a peak accuracy of 0.97 for354

Chagan Lake, the results demonstrate that the algorithm is highly effective in identifying wetland355

depressions, but is limited by the numerical errors of the global DEMs, which leads to lower extraction356

accuracy of the spatial distribution of wetland depressions (Zhou et al., 2016). Since the overall357

accuracy, Kappa coefficient, and Producer’s accuracy of wetland depression spatial delineation358

obtained using the WetlandSCB framework show significant improvements over those derived from the359

priority-flood algorithm for both validation wetlands, with a slight increase in User’s accuracy for360

突出显示设置格式[胡博亭]:

The performance of wetland depression spatial

delineation based on the WetlandSCB framework was

evaluated

删除[胡博亭]:

突出显示设置格式[胡博亭]:

突出显示设置格式[胡博亭]:

The findings suggest that the algorithm can

effectively identify wetland depressions,

删除[胡博亭]:

字体: 10 磅, 突出显示设置格式[胡博亭]:



16

Chagan Lake, the results effectively demonstrate that the WetlandSCB framework outperforms the361

priority-flood algorithm in wetland depression spatial delineation..362

Uncertainty in wetland depression spatial delineation using the WetlandSCB framework primarily363

mainly arises from morphological operators and prior information on water distribution map. Figures364

9g and 9h show that, compared with morphological operators, prior information on water distribution365

map can significantly alter the performance of wetland depression spatial delineation and is a key366

factor in determining the level of uncertainty. For instance, in Baihe Lake, the overall accuracy and367

kappa coefficient improved by 0.29 and 0.56, respectively, after processing with prior information on368

water distribution map. Similar studies have also found that the type and reliability of prior information369

are major factors affecting the spatial filling performance of surface water maps (Aires, 2020;370

Pulvirenti et al., 2011b). Therefore, this study compared the wetland depression spatial delineation371

results based on three sets of prior information on water distribution map: GLC-FCS30 (from Zhang et372

al., 2021), CLCD (from Yang and Huang, 2021), and JRC (Fig. 9i and 9j), where GLC-FCS30 and373

CLCD are 30-meter resolution land cover datasets, and JRC provides 30-meter resolution water surface374

data.. The overall accuracy differences for the Baihe Lake and Chagan Lake ranged from 0.68 to 0.98375

and from 0.93 to 0.99, respectively. In general, the accuracy levels of prior information from high to376

low were JRC > GLC-FCS30 > CLCD. This suggests that selecting highly reliable prior information on377

water distribution map is an essential way to reduce uncertainty in the WetlandSCB framework.378

In comparison, the WetlandSCB framework

outperforms the priority-flood algorithm in wetland depression

spatial delineation
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379

Figure 9. (a), (b), and (c) depict the spatial distribution of wetland depressional areas in the Baihe Lake380

based on the priority-flood algorithm, WetlandSCB framework, and field measurements (the actual wetland381

depression map was derived from field measurements using the contour-tree method), respectively. (d), (e),382

and (f) show the corresponding results for the Chagan Lake. The impact of morphological operators and383

prior information on water distribution map from the WetlandSCB framework is illustrated in (g) and (h).384

The influence of different prior information on water distribution map from the WetlandSCB framework is385

presented in (i) and (j).386

387

4.2 Performance evaluation of above-water topography correction and uncertainty analysis388

The consistency between the original and corrected above-water topography and the actual389

above-water topography obtained from field measurements can be evaluated using Pearson correlation390

coefficients and R2. The results indicate that the consistency between the original (the elevation391

information directly obtained from the SRTM DEM as the original above-water topography) and actual392
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above-water topography is remarkably low, with R2 values less than 0.2 for both validation wetlands.393

Previous studies have also observed significant numerical discrepancies between the original and actual394

above-water topography in some regions (e.g., Mukul et al., 2017; Uuemaa et al., 2020). Compared to395

the original results, the consistency between the corrected and actual above-water topography396

significantly improves. For example, the Pearson correlation coefficient and R2 reach 0.74 and 0.55 in397

the Baihe Lake, respectively, demonstrating that the WetlandSCB framework can effectively correct398

numerical biases in above-water topography.399

400

Figure 10. (a) and (b) Consistency analysis results between the original and corrected above-water401

topography for Baihe Lake. (c) and (d) are corresponding results for Chagan Lake. The elevation values are402

mapped to [0, 1] based on extreme value normalization.403

404

Uncertainty in correcting above-water topography using the WetlandSCB framework depends405

primarily on the accuracy of the water occurrence map. Therefore, due to the negative relationship406

between water occurrence values and elevations in wetland depressions, this study compared the407

correlation differences between two sets of global-scale water occurrence maps, namely GLAD and408

JRC, and the actual above-water topography of two wetland depressions. The results show that the409
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correlation level of GLAD is superior to JRC in the Baihe Lake, while the opposite is observed in the410

Chagan Lake. Additionally, the R2 values for both sets of water occurrence maps are less than 0.4411

(Figure 11c-f), which is significantly lower than the accuracy level of the corrected above-water412

topography. This clearly shows the superiority of the water occurrence map generated by the413

WetlandSCB framework over the GLAD or original JRC map.414

It is to note that the water occurrence map generated by the WetlandSCB framework still has a415

certain level of uncertainty. First, the extraction of a complete and accurate water spatial distribution416

from cloud-free images is constrained by factors such as the classification algorithm (Figure 11a)417

(Peket et al., 2016), but some correction algorithms have been proposed to enhance raw water418

distribution images (Zhao and Gao, 2018). Second, there is currently a lack of high-precision,419

temporally and spatially continuous water distribution maps (Figure 11b). Future efforts could include420

the use of image fusion methods, such as the Spatial and Temporal Adaptive Reflectance Fusion Mode,421

to fuse data from multi-source remote sensing products such as Sentinel-2, MODIS, and Landsat,422

which can effectively enhance the accuracy of water occurrence map (He et al., 2020; Wang et al.,423

2016).424

425

Figure 11. (a) and (b) depict sources of uncertainty in water occurrence map generated by the WetlandSCB426

framework. (c), (d), (e) and (f) illustrate the difference between two water occurrence maps on the427

performance of above-water topography correction in the Baihe Lake and the Chagan Lake.428

429

4.3 Performance evaluation of bathymetric information estimation430

The slope profile p is used to describe the bathymetry of wetland depressional areas. The431

calculated p values for the Baihe lake and the Chagan Lake using the WetlandSCB framework are 7.45432



20

and 4.08, respectively. The actual bathymetric information obtained from field measurements is used to433

construct area-depth pairs. Subsequently, the actual slope profile p of the wetland depression is434

calculated based on the calculation formula established by Hayashi and Van der Kamp (2000). The435

relative errors with respect to the actual p values obtained from field measurements are both less than436

3%, demonstrating the high accuracy of the framework in estimating underwater bathymetry.437

To further prove the superiority of the WetlandSCB framework in estimating bathymetry, this438

study employed spatial prediction and modeling methods, which assumes that the underwater slope439

profile is fundamentally similar to the above-water slope profile in wetland depressions, resulting in a p440

value of 8.65 for the Baihe Lake and 4.78 for the Chagan Lake. The relative errors with respect to the441

actual p values are both greater than 18%, indicating that this method may lead to substantial errors in442

some regions, as also reported by Papa et al. (2013) and Vanthof and Kelly. (2019). Furthermore,443

previous studies have often applied smoothing methods to the global DEMs to enhance the accuracy of444

topographic characterization in wetland depressions (e.g., Jones et al., 2018; Wu et al., 2019). In this445

regard, we further used the Gaussian-smoothed global DEMs and the spatial prediction and modelling446

methods to calculate p for the Baihe Lake and the Chagan Lake. The resulting values were 8.51 and447

4.37, with relative errors of 17.63% and 7.9%, respectively. This underscores that smoothing methods448

do indeed contribute to improving the accuracy of topographic information in wetland depressions.449

Notably, the relative error for the Chagan Lake is significantly lower than that for the Baihe Lake,450

which is consistent with the findings of Liu and Song (2022), who reported that the spatial prediction451

and modeling methods are suitable for wetlands with long and narrow shape. In summary, the452

comparative analysis reveals that the WetlandSCB framework demonstrates superior performance in453

bathymetric estimation for wetland depressional areas. For Baihe Lake, the slope profile p derived from454

the WetlandSCB framework (7.45) exhibits closer agreement with the actual measured value (7.29)455

than those obtained from the spatial prediction and modeling method (8.65) and its enhanced version456

incorporating smoothed SRTM DEM (8.51). Similarly, for Chagan Lake, the WetlandSCB framework457

yields a slope profile p (4.08) that more accurately approximates the actual value (4.05) compared to458

both the conventional spatial prediction and modeling method (4.78) and its enhanced version (4.37).459

These comparative results demonstrate the improved accuracy and reliability of the WetlandSCB460

framework in bathymetric characterization of wetland depressional areas relative to the other methods.461
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462

Figure 12. Slope profile p values of wetland depressions for the Baihe Lake (left) and the Chagan Lake463

(right), calculated with spatial prediction and modeling methods, and the WetlandSCB framework in464

comparison with filed measurements.465

466

4.4 WetlandSCB framework application and implications for integrated water resources467

management468

Wetland depressions are largely disregarded in many hydrologic modeling practices. Rare studies469

exist on how their exclusion can lead to potentially inaccurate model projections and understanding of470

hydrologic dynamics across the world's river basins (Rajib et al., 2020). This study applied a novel471

framework delineating the topography and bathymetry of wetland depressional areas and focusing on472

two distinctive wetlands to estimate WDWSC. Using the field measurements of topography and473

bathymetry of the Baihe Lake and the Chagan Lake, the depth-area hypsometric curves were474

constructed, and the WDWSC of the Baihe Lake and the Chagan Lake were estimated to be 61 million475

m³ and 526 million m³, respectively (Fig. 13). The estimation results based on the WetlandSCB476

framework were correspondingly 55 million m³ and 521 million m³. Furthermore, The use of elevation477

(to compute wetland depression depths) and areal extent has emerged as an efficient method to estimate478

surface-water storage volume (Gao, 2015). After identifying wetland depressions, previous studies479

estimated the area and volume of each depression based on a statistical analysis of the DEM cells480

comprising that wetland depression (Rajib et al., 2018; Wu et al., 2019; Wu and Lane, 2016). This481

study compared and analyzed the water storage capacity of Baihe Lake and Chagan Lake, calculated482

using three medium-resolution 30-m DEM datasets: SRTM DEM, ALOS DEM, and MERIT DEM483

(Figure 13c). The results show that the accuracy of WDWSC calculation is highly dependent on the484

, and the relative errors with the actual

measured WDWSC were both less than 10%, which is a good

level of accuracy in estimation precision (Moriasi et al., 2015)
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DEM data quality, with the MERIT DEM providing the most accurate results, with relative errors485

averaging 25.7% compared to the actual WDWSC. In contrast, the WDWSC calculation based on the486

WetlandSCB framework had relative errors of less than 10%, which is a good level of accuracy in487

estimation precision (Moriasi et al., 2015), demonstrating that the WetlandSCB framework has the488

ability to accurately estimate WDWSC, which can be applied to regions lacking field measurement489

data for global-scale wetland water storage capacity estimation.490

491

Figure 13. The dashed line represent the actual hypsometric curve based on field measurements for the492

Baihe Lake (a) and the Chagan Lake (b), respectively. The calculation results of WDWSC based on three493

DEM datasets in validation wetland sites (c).494

495

Wetlands play a pivotal role in mitigating flood and drought risks, as well as addressing water496

scarcity challenge within a river basin. Previous studies underscore the significant impact of wetlands497

in attenuating future flood characteristics, including peak flows, mean flows, duration, and flow498

volume for various return period floods (Wu et al., 2023). Concurrently, wetlands contribute to499

enhancing baseflow during both summer and winter seasons in the NRB (Wu et al., 2020c). Given the500

NRB is a agriculture-dominated river basin, wetlands serves as the main water supply nodes by501

collecting the flash flood and storing and purifying irrigation return flows. This reclaimed water can be502

efficiently reused for irrigation purposes in the NRB (Meng et al., 2019; Smiley and Allred, 2011; Zou503

et al., 2018). The WDWSC is a key parameter for evaluating the flood control and water supply504

capacity of wetlands, also as a important prerequisite for understanding the impact of wetlands on505

extreme hydrological events (Acreman and Holden, 2013). Therefore, the developed WetlandSCB506

framework, which can provide accurate estimation of the WDWSC, contributes to the management of507

food and water security in the NRB. Against the backdrop of global environmental change,508

characterized by an escalation in the intensity and frequency of extreme hydrological events, and the509

These results demonstrate the ability of the

framework to accurately estimate WDWSC
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increasing disparity between water resource supply and demand, there is an urgent need for a novel510

integrated water resources management approach based on natural solutions (Rodell and Li, 2023;511

Thorslund et al., 2017; Yin et al., 2018). Wetlands have emerged as a nature-based solution in various512

water resources management practices (Ferreira et al., 2023). Taking advantage of the wetland513

hydrological regulation functions is instrumental in addressing the risks of flood and drought disasters514

arising from global climate change, land use change, as well as the water scarcity risks stemming from515

agricultural-ecological water competition. This can help develop effective adaptation strategies and516

decisions for integrated water resources management.517

Additionally, using the WetlandSCB framework, raster-scale wetland depression topographic518

information can be accurately reconstructed. Through flow direction analysis and watershed delineation519

methods, key parameters such as wetland inflow and outflow locations, wetland catchment boundaries,520

and other related characteristics can be identified (these steps can be performed using QGIS software).521

By integrating the hypsometric curve, water surface distribution data, and morphological characteristics522

of the wetland derived from the WetlandSCB framework, the initial wetland water level, the number of523

wetland layers, and the corresponding area-level pairs can be determined. Field surveys provide524

essential data on wetland soil and vegetation properties as well as inflow volumes within the study area.525

Finally, the hydrological model, coupled with the wetland module, can be implemented to support526

wetland eco-hydrological research and integrated water resources management.527

528

Figure 14. Integration process and application outputs of the WetlandSCB framework with VIC529

hydrological model.530
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531

5 Conclusions532

This study developed a novel framework to accurately quantify wetland depression water storage533

capacity using coarse-resolution terrain data. The developed framework, WetlandSCB integrates534

multi-source remote sensing data, historical maps and prior knowledge, and achieved a high prediction535

of wetland depressional distribution and water storage capacity. This is achieved through four steps: 1)536

integrating priority-flood algorithm, morphological operators and prior information on water537

distribution maps to delineate spatial extent of wetland depressional areas; 2) correcting numerical538

biases in above-water topography with water occurrence map; 3) coupling spatial prediction and539

modeling with remote sensing techniques to estimate bathymetric information, and 4) quantifying540

depressional area water storage capacity based on depth-area rating curves. The conclusions are listed541

below:542

(1) Processing by the morphological operators and prior information on water distribution map543

can accurately delineate the spatial extent of wetland depressions. The derived wetland depression map544

shows high spatial agreement with the true wetland depression map, achieving an overall accuracy and545

kappa coefficient both exceeding 0.95. The performance of the WetlandSCB framework is superior to546

the priority-flood algorithm in wetland depression spatial delineation.547

(2) The water occurrence map can effectively correct numerical biases in above-water topography.548

Compared to original results, the corrected topography exhibits high consistency with true above-water549

topography, with average increases of 0.33 and 0.38 in Pearson coefficient and R2, respectively.550

(3) The coupling of spatial prediction and modeling methods with remote sensing techniques551

achieves high-precision estimation of underwater bathymetry of wetland depressions, demonstrating552

relative errors below 3% when compared to field measurements. The results prove that the superiority553

of the WetlandSCB framework over spatial prediction and modeling methods in underwater bathymetry554

estimation.555

(4) The WetlandSCB framework accurately estimates WDWSC with relative errors less than 10%556

compared to calculations based on field topography and bathymetry.557

The concept and technical approaches are applicable to large-scale wetland depression water558

storage estimation, as well as to the regions where field measurements and/or high-resolution data are559

not available. Application of the WetlandSCB framework provides accurate distribution and depth-area560
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relations of wetland depressional areas which can be incorporated into wetland modules of561

hydrological models (e.g., HYDROTEL, SWAT, HYPE, CHRM) to improve the accuracy of flow and562

storage predictions in river basins.563
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