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Abstract 19 

Flash flood disasters are one of the major natural disasters in the world, and rapid and 20 

accurate early identification of flash flood disasters is the key to preventing and controlling 21 

them. In recent years, computer and spatial information technology development has 22 

promoted the advancement of early identification technology for flash floods. However, 23 

previous research has mainly focused on the impact of "water" and neglected the impact of 24 

"sediment" deposition on the rise of water levels. To gain a more comprehensive 25 

understanding of flash floods and improve the accuracy of early identification, this article 26 

first uses bibliometric methods to review the spatiotemporal distribution, internal 27 

relationships, and research hotspots of literature in this field over the past 42 years. Then, the 28 

research practice of considering the impact of sediment on the early identification of flash 29 

floods was introduced from three aspects: mechanism, model, and uncertainty. Finally, the 30 

existing problems in current research were discussed, and future research directions were 31 

proposed. The research results have shown that the number of publications in this field has 32 

been increasing yearly and will continue to increase, but the cooperation between authors is 33 

not close. The coupling effect between sediment replenishment and floods cannot be ignored. 34 

Taking into account multiple uncertainties can greatly improve recognition accuracy. This 35 

study can provide a panoramic literature perspective and practical research experience for 36 

relevant researchers and decision-makers and support further improving flash flood 37 

prevention and control capabilities. 38 

 39 

Keywords: flash floods, early identification, bibliometrics, mechanisms, data driven, 40 

hydrodynamics, conceptual model, uncertainties.  41 
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1 Introduction 42 

The flash flood disaster is a typical global major natural disaster (Duan et al., 2016; 43 

Chinh et al., 2023), and the casualties (Convertino et al., 2019) and socio-economic losses 44 

(Sathya et al., 2021) caused by it every year account for a high proportion of all kinds of 45 

natural disasters. The flash flood events are widely distributed, with the characteristics of 46 

high nonlinearity, randomness, complexity, and concealment (Tu et al., 2020), and will 47 

continue to show an increasing trend in the future (Yan et al., 2021), which puts forward a 48 

strong demand for the study of flash flood disasters. The first phase of flash flood prevention 49 

and control is the early identification of disaster-prone areas (Li et al., 2021), which can be 50 

taken as an economical and effective prevention means of flash flood disasters to estimate the 51 

time, place, and scope of future flash floods (Costache et al., 2020). 52 

In recent decades, researchers have developed various early identification models 53 

based on the mechanism of flash flood disasters and have achieved significant results (Panahi 54 

et al., 2021; Suwanno et al., 2023). Although these early identification techniques are 55 

effective to a certain extent, the study of early identification of flash floods remains 56 

challenging due to the complex formation mechanism of flash flood disasters. Scholars with a 57 

great interest in this field have published many related research papers. Unfortunately, 58 

however, very few review papers are still in this field. Few people can make a systematic 59 

analysis based on bibliometric analysis and research practice, which makes it difficult to 60 

figure out the development process, research hotspots, and future research directions in this 61 

field. Despite this, we made objective statistics on applying GIS and RS in flash floods 62 

through bibliometric analysis (Ding et al., 2021). However, this is only an application 63 

analysis of the two technologies rather than a comprehensive review of early identification 64 

technologies. In 2022 (Yang et al., 2022), we began to focus on the research of early 65 

identification technology of flash floods, roughly sorted out the development process of this 66 

field by combining meta-analysis with visual analysis, initially established the knowledge 67 

framework for the research and provided future research directions. The prevention and 68 

control of most traditional flash flood disasters focus solely on the role of rainstorms in 69 

triggering floods (Liu et al., 2022) but do not consider the factor that local sediment 70 

deposition will raise the water level, resulting in insufficient accuracy in the early 71 

identification of flash flood disasters (Wang et al., 2019). Many cases of flash flood disasters 72 

(Gan et al., 2018) proved that the coupling effect of sediment and flash flood is the key factor 73 

triggering flash floods and often leads to “small floods and big disasters”. For example, a 74 
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mountain flood disaster in Puge is typical. In the same rainstorm, the left mountain gully was 75 

silted up due to excessive sediment deposition, which led to the rise of the water level, and 25 76 

people were killed when the river diverted. However, the mountain ditch on the right did not 77 

cause any disasters due to only floods and no sediment (Wang et al., 2019). Sediment 78 

accumulation raises the water level, causing general (medium and small) floods in 79 

mountainous rivers to suddenly increase sharply to the water level corresponding to floods 80 

that occur once every 50 years or even once every 1000 years, exceeding the local flood 81 

control standards. On the other hand, sediment accumulation causes local river blockage, 82 

leading to a sharp adjustment of the riverbed shape, changing the river regime and water flow 83 

conditions, and causing water and sediment disasters far greater than the effects of floods. 84 

Therefore, sedimentation is crucial for preventing and controlling flash floods. The 85 

significance of mastering this knowledge lies in combining nonengineering measures such as 86 

early identification techniques with engineering measures to reduce mountain flood disasters' 87 

water sediment coupling effect to a controllable range, providing an effective technical 88 

approach for predicting and warning mountain flood disasters. For this purpose, in recent 89 

years, we have carried out a series of systematic studies on the runoff generation and 90 

sediment yield, water-sediment movement, gully bed evolution, disaster-causing mechanism, 91 

and disaster-forming mode of flash floods. As shown in Fig. 1, seen from left to right, the 92 

range and intensity of natural external forces gradually decrease, while the range and 93 

intensity of human actions increase progressively. If each node on this chain can be 94 

controlled well, the losses caused by disasters can be reduced as much as possible (Li et al., 95 

2021). 96 

 97 

Figure 1. Complete chain of disaster caused by coupling of mountain torrents, water and sediment：The 98 

first column represents the triggering factors of flash floods in the weather situation (yellow); the second 99 

column represents environmental factors such as topographic features, rainfall distribution, and river 100 

systems (blue); the third column represents processes such as flood and Surge in sediment supply (green); 101 
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the fourth column represents the response of riverbed such as Sedimentation or Bridge and culvert blockage 102 

(purple); and the fifth column represents losses such as raising of water level and river diversion (red). 103 

Subsequently, the range and intensity of natural external forces gradually decreased, with the sixth column 104 

indicating the impact of disasters, and the range and intensity of human influence increased during this 105 

process. Adapted from Li et al. (2021). 106 

The main objective of this paper is to build an updated and more extensive document 107 

sample database of early identification technology of flash floods, systematically sort out the 108 

internal relations of the documents, objectively analyze the development process and predict 109 

the development trend of this field, improve the research framework, and reveal the potential 110 

mechanisms and early identification methods of flash floods from the perspective of 111 

“water-sediment” based on our research practice. This paper is organized as follows: The first 112 

part introduces the research background of early identification technology of flash floods; the 113 

second part establishes the document sample database based on Web of Science (WOS for 114 

short) and Scopus platforms, and introduces the bibliometric analysis used; the third part 115 

clarifies the overall trend of documents published, spatial-temporal distribution and key 116 

research directions of this field through document characteristic analysis, co-word analysis 117 

and cluster analysis; the fourth part takes the joint action of flood and sediment as the starting 118 

point to explore the research progress of early identification technology of flash floods based 119 

on our research practice and the impact of sediment on flash floods: i) reveal the flash flood 120 

and sediment coupled disaster-causing mechanism (typical disaster-causing locations: 121 

steep-gentle transition reach, tributary confluence reach, curved reach, bridge and culvert 122 

reach); ii) propose the early identification methods for flash flood disasters (based on 123 

data-driven intelligent models and hydrodynamic models), and increase the coverage of early 124 

identification to over 40%; iii) analyze the uncertainty affecting early identification accuracy. 125 

In the end, this paper discusses the current major challenges and research gaps in this field 126 

and puts forward some suggestions for key issues (e.g., expansion of disaster-causing 127 

mechanisms of wide and narrow reaches, the broad prospect of applying models based on 128 

knowledge mapping, careful consideration of multiple uncertainties) to improve the accuracy 129 

of early identification results. The systematic review and gap identification use bibliometric 130 

tools to analyze the research status of existing literature, and the qualitative or quantitative 131 

research results formed will help improve the knowledge system of mountain flood disasters. 132 

Researchers and decision-makers can identify this article's current research focus and 133 

shortcomings and obtain some suggestions. In addition, a panoramic knowledge integration 134 

service can be brought to save research time. 135 
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2 Establishment of the document database and methodology 136 

To establish a document database, as shown in Fig. 2, the keywords of “flash flood*” 137 

and “identify*” as well as the Boolean search criteria AND were first used to retrieve the core 138 

collections in the online platform of “Web of Science” and the peer-reviewed articles in 139 

“Scoups”. The search range included title, keyword, and abstract, and there was no restriction 140 

on the language. Then, the lists of references in all selected articles were checked and 141 

retrieved repeatedly from July 2022 to August 2023 to obtain a preliminary list of 2,240 142 

articles.  143 

 144 

Figure 2. Construction process of literature sample library. 145 

 146 

Next, the articles in the preliminary list were thoroughly examined, and 718 duplicate 147 

documents with the same DOI and title were removed. A total of 94 uncorrelated or weakly 148 

correlated documents were manually excluded one by one. The keywords in the exclusion 149 

criteria included isotope, disease, microorganism, arsenic concentration and, cytology, etc. 150 

The final document sample database listed 1,424 articles published from January 1,1981 to 151 

August 18, 2023. The literature database uses both text data format (*. ris, *. txt) and table 152 

data format (*. xls) for storage. The text data format is the standard format required by the 153 

metrology software, and the table format can be customized as shown in Table 1. 154 

 155 
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Table 1  156 

Establishment status of the document database. 157 

Type 
Data 

platform 
Authors Article Title Source Title Abstract 

Times 

Cited 

Article WOS 
Prokešová et 

al., 2015 

...: Spatial 

rearrangement of 

runoff-generating ... 

Science of the total 

environment 

Nowadays, rapid 

growths of urban 

areas and 

associated land 

use/land cover 

(LULC)...  

11 

Review Scopus 
Guo et al., 

2017 

Achievements and 

Preliminary Analysis 

on China National 

Flash Flood Disasters 

Investigation and 

Evaluation 

Journal of 

geo-information 

science 

National Flash 

Flood Disasters 

Investigation and 

Evaluation 

project is ... 

23 

Letter WOS 

Schumacher 

and Herman, 

2021 

Reply to “Comments 

on ‘Flash Flood ...’” 
Journal of 

hydrometeorology 

We applaud 

Gourley ... 
3 

Conference 

Paper 
Scopus 

Minea et al., 

2017 

Identification of the 

potential flash floods 

risk areas in Romania 

using physiographic 

method 

International 

multidisciplinary 

scientific 

geoconference 

surveying geology 

and mining ecology 

management, 

SGEM 

In recent decades 

the increase of 

the frequency of 

flash-flood 

conditions 

requires a correct 

identification 

of ... 

1 

... ... ... ... ... ... ... 

 158 

This article comprehensively uses bibliometric analysis tools such as Microsoft 365, 159 

EndNote, Origin, VOSviewer, Citespace, etc. for literature feature analysis, co-word analysis, 160 

and cluster analysis. Firstly, use Microsoft 365 to organize literature data in a unified format 161 

and establish a literature database in conjunction with EndNote. In addition, EndNote is also 162 

used for literature storage, reading, and auxiliary citation of references; Then, use Origin for 163 

statistical calculations and draw a distribution map of literature features. Next, use 164 

VOSviewer to draw a graph of the cooperation between the author and the country. Finally, 165 

use Citespace to create a keyword clustering map. 166 

3 Bibliometric analysis results  167 

3.1 Distribution of publication volume 168 

First, document characteristics analysis was made for 1,424 documents using the 169 

self-installed results analysis and retrieval function of WOS and Scopus. Then, the latest 170 
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version of Excel in Microsoft 365 and Origin 2019 software were used to calculate and draw 171 

the statistical diagram, as shown in Fig. 3. 172 

173 
Figure 3. Number of publications: y is the number of publications, x is the year, the orange bar represents 174 

the number of publications, the light blue dashed line represents the trend of fitting the number of 175 

publications, and y = 2E-130e
0.1503x

 is the formula corresponding to the trend of fitting the number of 176 

publications, R
2
 is the coefficient of determination. 177 

 178 

One conclusion was that the research in this field has shown exponential growth. Judging 179 

from the trend line that shows the predicted trend of documents published in the next four 180 

years, many documents will still be published in this field in the next few years. Another 181 

conclusion was that only 40 review documents were still very limited and accounted for only 182 

2.8% of the sample database. Table 2 clearly shows that 2 of the top 10 highly cited 183 

documents closely related to this paper were review documents, accounting for 20 % of the 184 

top 10 highly cited documents, showing that there is a great demand for review documents, 185 

but the total number of such papers is very few, therefore the review of papers should be 186 

strengthened. 187 
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Table 2  188 

Highly cited literature (TOP 10). 189 

NO. 
Cite 

Frequency 
References 

Document 

type 
Research contents 

1 
738 (WOS)  

761 (Scopus)  

Prein, et al., 

2015 
Review  

Convection-permitting mod-Els (CMP) is the main 

source of errors and uncertainties in large-scale 

models (LSM), and this review provides a common 

foundation for the CPM climate simulation theme 

2 
418 (WOS)  

444 (Scopus)  

Marchi  

et al., 2010 
Article 

Summarized the characteristics of past flash floods, 

established methods for archival and statistical data, 

and described the characteristics of flash floods from 

the perspectives of climate and basin morphology 

3 
386 (WOS)  

427 (Scopus)  

Khosravi 

et al., 2018 
Article 

Proving that machine learning can quickly identify 

disaster-prone areas in advance, four decision 

tree-based machine learning models were tested, and 

the results showed that alternating decision 

trees(ADT) have the strongest decision-making 

ability 

4 
301 (WOS)  

312 (Scopus)  

Merz and 

Bloschl 2003 
Article 

Propose a causal mechanism framework for 

identifying flood process types, examine feasibility 

through a large number of events and catchment 

areas, and analyze the statistical characteristics of 

each event type 

5 
273 (WOS)  

293 (Scopus)  

Borga et al., 

2014 
Article 

Developing rainfall estimation and proximity 

forecasting plans, consolidating datasets, and 

integrating methods  

6 
267 (WOS)  

296 (Scopus)  

Youssef  

 et al. 2011 
Article 

Using morphological analysis to estimate the flood 

risk level within a sub basin 

7 
162 (WOS)  

182 (Scopus)  

Islam 

 et al. 2021 
Article 

Two hybrid ensemble models were applied and 

evaluated, demonstrating the ability to use advanced 

machine learning models for early identification of 

flash flood prone points 

8 
136 (WOS)  

142 (Scopus)  

Hampton 

et al. 2007 
Review Summarized the sheet flow process and explored the 

possibility of controlling its origin.  

9 
130 (WOS)  

134 (Scopus)  

Blöschl 

et al. 2008 
Article 

A distributed model was proposed to predict 

mountain torrents, and the problems encountered in 

modeling and modeling strategies were discussed 

10 
126 (WOS)  

133（Scopus)  

Špitalar 

et al. 2014 
Article 

Adopting interdisciplinary sociohydrological analysis 

of historical flash floods, the analytical framework 

for analyzing flash flood data and several factors 

affecting humans were discussed 

 190 

3.2 Cooperation situation 191 

VOSviewer 1.6.16 was adopted for the scientometric analysis , helping to discover key 192 

researchers and countries. Fig. 4 shows the co-word network diagram of the authors and the 193 

countries or regions. Fig. 4 (a) and 4 (b) show the spatial distribution of the authors and the 194 

countries or regions, and the color of the legend below represents the time when the paper 195 

was published. It can be seen that over the past 40 years, compared with the cooperation 196 
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between countries, the distribution of authors is more discrete, and the connections between 197 

nodes are not close. Wang, z., Li, q., Liu, c., et al. are relatively active authors in recent years, 198 

while Jordan, Finland, Tanzania, and others are countries that have emerged in this field in 199 

recent years. Therefore, the research they carried out can be further followed up in the future. 200 

Fig. 4 (c) and 4 (d) show the authors' and countries' research heat maps, representing the 201 

strength of influence. It is not difficult to find that in Fig. 4 (c), authors Bodoque, j.m., Zhang, 202 

x., Borga, m., etc. are more influential authors, especially Borga, m., a highly cited author in 203 

Table 1. In Fig. 4 (d), USA, France, China, and India are the most influential countries. 204 

 205 

 206 

b) 

a) 
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 207 

 208 

 209 

Figure 4. Visual network co-word analysis: a) author distribution label view, b) country or region 210 

distribution label view, c) author thermal diagram, d) country or region thermal diagram. 211 

3.3 Research topic clustering results 212 

CiteSpace R6.2.4 was used for cluster analysis, and 34 clusters were obtained. The 213 

network modularity of the cluster Q=0.4591>0.3 indicates that each cluster's network 214 

correlation structure is more prominent. Fig. 5 shows the first 11 clusters, of which #0 215 

(weather forecasting) is the largest cluster. This is because short-duration heavy rainfall 216 

d) 

c) 
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triggers flash floods and can provide a powerful driving force and rapid and strong water 217 

supply. The terms and documents involved in the cluster #9 (sediment transport) are most 218 

closely related to the research contents of this paper, and the keywords are enlarged and 219 

displayed in the circle on the right side of Fig. 5. It can be intuitively found that the keywords 220 

of “rivers” and “sediment transport” are most prominent, showing that the evolution law of 221 

sediment transport in the rivers is the content of the cluster that has the longest research 222 

history and is most important. 223 

224 

Figure 5. Research topic clustering results. 225 

The cluster details were sorted by the number of co-cited publications, as shown in Table 226 

3. The cluster #9 has the highest Silhouette value, indicating that the cluster has the best 227 

structure and more reasonable internal similarity. The top five terms were listed in the table. It 228 

is obvious that “bedload transport”, “desert”, “grain size” and “dynamics” are the key 229 

research contents of cluster #9. 230 

 231 

Table 3  232 

Clustering of literature co-citation profiles. 233 

Cluster 

ID 
Size Silhouette 

Mean

（year） 
LLR-based TOP5 term 

0 178 0.61 2010 
flash flood; soil water content; headwater catchment; 

tracking algorithm; watershed 

1 139 0.572 2013 
flash flood; water conveyance system; southern italy; 

flow-like landslide; predicting property 

2 86 0.795 2008 flooding; floods; article; disaster; human 

3 78 0.732 2005 
flash flood; hengduan mountains; spatiotemporal 

variation; heavy rainfall; risk assessment 

4 77 0.797 2012 flash flood; ANN; SVM; RF; deep learning 

5 76 0.881 2002 flash flood; floods; flooding; backwater; romania 
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6 58 0.83 2000 
flash flood; mini disk tension infiltrometers; soil 

infiltration; hydrologic scaling 

7 52 0.921 1992 
geomorphology; hydrology; flow of water; water levels; 

statistical methods 

8 51 0.901 1996 
drylands; fractional exponential decay; precipitation; 

acacia pachyceras; arava valley 

9 46 0.943 2007 
sediment transport; bedload transport; desert; grain size; 

dynamics 

10 39 0.869 2009 
geomorphology; hydrology; frequency analysis; return 

period; water levels 

 234 

4 Research practice on flash floods considering sediment effects  235 

Through the previous bibliometric analysis, we have learned that the research on 236 

disasters caused by the joint action of water and sediment is one of the important directions in 237 

this field. Therefore, this section focuses on exploratory research from the perspective of 238 

“water-sediment”, devoted to establishing an early identification model of a flash flood, water 239 

and sediment disaster-prone areas based on data-driven and water-sediment dynamics by 240 

revealing the flash flood and sediment coupled disaster-causing mechanism, and analyzes 241 

several sources of uncertainty affecting the evaluation results. 242 

4.1 Mechanisms 243 

Based on the documents and survey results (Li et al., 2022b), flash flood and sediment 244 

disasters usually occur in steep-gentle transition reach (Li et al., 2022a), tributary confluence 245 

reach (Li et al., 2022), curved reach (Yuan et al., 2022), and bridge and culvert reach (Li et al., 246 

2022c), which are mainly manifested in various disaster-causing modes such as the sharp rise 247 

of water level due to sediment deposition, river diversion and bridge and culvert clogging. 248 

The disaster-causing mechanism of flash floods and sediment disasters shows that the 249 

flood carries great loads of sediment downstream, which leads to the sharp adjustment of the 250 

gully bed and the rise of the water level, thus causing disasters. In Fig. 6 (a), when the flash 251 

flood carries large amounts of sediment to move to the steep-to-gentle gully section, loads of 252 

coarse sediment are deposited to drive the rapid uplift of the riverbed. When the sediment in 253 

the flash flood gully flows into the next river channel, the sedimentation and the sharp rise of 254 

the water level will occur in the confluence area, causing disasters, as shown in Fig. 6 (b). 255 

When the sediment moves to the gentle slope curved section of the gully, the sediment will 256 

deposit, which could easily induce river diversion and cause disasters, as shown in Fig. 6 (c). 257 

Suppose water-blocking facilities such as cross-ditch bridges and culverts are in the gully. In 258 
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that case, the rise of the local water level will result in decreased flow velocity, reduced 259 

sediment-carrying capacity of flow, culvert clogging due to sediment deposit, raised water 260 

level or induced river diversion, thus causing disasters, as shown in Fig.6 (d). 261 

    
a) b) c) d) 

Figure 6. The frequent occurrence of mountain flood, water and sand coupling disasters in Sichuan 262 

Province, China, based on the national historical flash flood disaster database, on-site research on typical 263 

mountain flood, water and sand disasters, and model experiments, it was found that flash flood and sand 264 

disasters usually occur in these areas: a) steep and gently connected river sections, b) tributary and 265 

confluence river sections, c) curved river sections, d) bridge and culvert river sections (photo taken by 266 

author). 267 

Based on field investigation (Hu et al., 2022), laboratory tests (Zhou et al., 2021b) and 268 

theoretical analysis (Zhou et al., 2021a), researchers have analyzed the change of scouring 269 

and siltation in the river channel caused by the change of water and sediment conditions. Li et 270 

al. (2021b) discovered that the chain characteristics of flash flood and sediment disasters can 271 

be summarized as orderly predictability of chain nodes, amplification of water and sediment 272 

variation disasters and coupling of disaster-causing factors at the watershed scale. The details 273 

are as follows: 274 

 Orderly predictability of chain nodes 275 

In the chain of rainstorms, flash floods and sediment disasters, according to the time 276 

development process and the influence of the spatial combination of disaster-causing factors, 277 

the chain nodes such as weather situation, rainfall distribution, topography, river system, 278 

water and sediment process, submergence, loss and disaster impact are orderly and 279 

predictable. 280 

 Amplification of water and sediment variation disasters 281 

Rainstorms, flash floods and sediment disasters are orderly and predictable. However, in 282 

the actual rainstorm and flash flood process, due to the special distribution and coupling of 283 

various wading structures, sediments, and disaster-bearing bodies in the watershed, there will 284 
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be abnormal variations in sediment yield and runoff generation, which is caused by the bridge 285 

and culvert blocking or outburst, the sediment erosion and deposition and the combined 286 

effects of various factors. Also, serious disasters may occur even if the rainfall is relatively 287 

common. Therefore, the variation of water and sediment has obvious disaster amplification 288 

effects. 289 

 Coupling of disaster-causing factors at the watershed scale 290 

As a triggering factor, with strong kinetic energy, the rainstorms in mountainous regions 291 

can make the material and energy in the watershed increase sharply in a short time, 292 

destroying the watershed's equilibrium state before rain (Ye et al., 2021). Different disasters 293 

will occur if the flood submergence area is inhabited or equipped with disaster-bearing bodies 294 

such as transportation, communication, factories and mines, enterprises, etc. Regarding the 295 

occurrence process, water and sediment disasters have nodes such as weather situation, 296 

rainfall distribution, topography, river system, water and sediment process, submergence and 297 

loss, etc (Li et al., 2023). However, the chain characteristics of water and sediment disasters 298 

reflect that various disaster-causing factors are coupled at the watershed scale (Liu et al., 299 

2021; Ran et al., 2022). For the intersection of the gullies, the coupling of disaster-causing 300 

factors in the higher-level watersheds of water and sediment deposits should be provided as 301 

well. 302 

 303 

4.2 Early identification models 304 

The factors of flash flood and sediment coupling include rainfall and topography, river 305 

dynamics-related factors such as river channel type and sediment movement. The traditional 306 

method of predicting the evolution of flash floods based on hydrological models may 307 

misestimate the degree of disaster or underestimate the risk of disaster when rainstorms and 308 

flash floods occur. In particular, it cannot effectively identify and predict the “small floods 309 

and big disasters” caused by the uplift of the river channel. To solve the problem of wide 310 

distribution and strong concealment of flash flood disasters, we proposed early identification 311 

methods for flash flood and sediment disaster-prone areas at the regional and reach scales, 312 

respectively.  313 

4.2.1 Data-driven based intelligent model 314 

Due to a lack of consideration of sediment factors, the traditional data-driven 315 

identification methods for flash flood disaster-prone areas make it difficult to identify the 316 

flash flood and sediment disaster-prone areas induced by heavy rainfall and sediment deposits. 317 
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The fast and accurate acquisition of the spatial distribution and area of the landslide areas can 318 

provide important support for the early identification (Zhang et al., 2022). He et al. (2020) 319 

proposed a regional landslide extraction method. Bai et al. (2023) applied a landslide area 320 

extraction technology based on UAV image and deep learning to effectively combine deep 321 

learning in the computer field. Yuan et al. (2022) incorporated landslide deposits into the 322 

data-driven model as a deposit factor. They combined traditional flash flood disaster 323 

predictive factors such as topographic data, geological data, and hydrological data to 324 

construct a model of influencing factor contribution-ensemble learning coupling to obtain the 325 

data-driven early identification methods. The technical flowchart is shown in Fig. 7. 326 

 327 

Figure 7. Data driven model technology flowchart. 328 

The spatial superposition analysis was made for the spatial distribution of the frequency 329 

ratio of the positive and negative sample influencing factors in the research area. The 330 

frequency ratio, amount of information, and certainty coefficient of the influencing factors 331 

were output to the disaster susceptibility interval ([0, 1]) as the input item of two ensemble 332 

learning classification algorithms in the form of a one-dimensional vector through the 333 

ensemble learning classification algorithm tool in the MeteoInfo integration framework (Liu 334 
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et al., 2022). By comparing output results and existing flash flood risk investigation and 335 

assessment results, the national flash flood risk investigation and assessment research (FFIA) 336 

has become a more recognized research result in the field. Taking FFIA as the reference 337 

object and the coverage rate of disasters in high-risk areas as the evaluation index, the results 338 

in Aba area were evaluated (Yuan et al., 2022), as shown in Fig. 8. The results are as follows: 339 

 340 

 341 
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 342 

Figure 8. The identification results of this high-risk area: a) frequency ratio adaptive 343 

enhancement model, (b) frequency ratio random forest model, (c) information quantity 344 

adaptive enhancement model, (d) information quantity random forest model, (e) certainty 345 

coefficient adaptive enhancement model, (f) certainty coefficient random forest model, and (g) 346 

FFIA data. 347 

Compared with the FFIA data, the coverage in high-prone areas increased by 348 

23.2%-45.4% in the data-driven results. Specifically, the coverage rate of the frequency 349 

ratio-adaptive enhancement model in high-prone areas increased by 40.5% compared with the 350 

FFIA result; the coverage rate of the frequency ratio-random forest model in high-prone areas 351 

increased by 41.2% compared with the FFIA result; the coverage rate of the information 352 

amount-adaptive enhancement model in high-prone areas increased by 23.7% compared with 353 

the FFIA result; the coverage rate of the information amount-random forest model in 354 

high-prone areas increased by 23.2% compared with the FFIA result; the coverage rate of the 355 

certainty coefficient-adaptive enhancement model in high-prone areas increased by 42.7% 356 

compared with the FFIA result; the coverage rate of the certainty coefficient-random forest 357 

model in high-prone areas increased by 45.4% compared with the FFIA result. 358 

4.2.2 Hydrodynamic model 359 

Due to the complex topography and wide coverage of the mountainous watersheds 360 
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(Faisal et al., 2023), water-sediment dynamic models can be used to simulate the target 361 

object's water-sediment coupled movement to accurately identify the early disaster-prone 362 

areas (Imaizumi et al., 2008). Many scenarios need to be simulated in the early stage, 363 

including different conditions of rainfall, flow and sediment movement. However, the 364 

workload is huge and the cost of workforce and material resources is too high. Meanwhile, 365 

the rivers in mountainous areas have complex geometry (Lin et al., 2023), and 366 

flood-obstructing buildings such as steep-gentle transition reaches, tributary confluences, 367 

curved reaches, bridges and culverts are widely distributed, which can easily lead to spatial 368 

heterogeneity distribution (Deal et al., 2023). We have constructed a set of quantitative 369 

methods based on hydrodynamic methods propose the determination conditions of 370 

danger-hidden reaches such as steep-gentle transition reach, tributary confluence reach, 371 

curved reach, bridge and culvert reach. 372 

 Steep-gentle transition reach 373 

Under the condition of saturated sediment transport, if the sediment transport capacity of 374 

the upper reach is greater than that of the lower reach, it will lead to sedimentation in the 375 

lower reach, raise the riverbed, and sharply increase the water level. Moreover, it will reduce 376 

the gradient of the lower gully bed, further widen the sediment transport capacity gap 377 

between the upper and lower reaches, and result in more serious sedimentation and raised 378 

water levels. Flash flood and sediment disasters such as silting and submergence can easily 379 

occur during this process. For the steep-gentle transition reaches, due to the different riverbed 380 

gradients, the bed load transport rate will change near the transition reach. The sediment 381 

transport-gradient empirical formula of the steep-gentle transition reach is as follows: 382 

𝑔𝑠1

𝑔𝑠2
∼ (

𝑆1

𝑆2
)
3/2

                             (1) 383 

Where gs is the saturated bed load transport rate, S is the bed gradient, Subscript 1 is the 384 

upper reach and Subscript 2 is the lower reach. 385 

 Tributary confluence reach 386 

In the tributary confluence of the mountainous rivers, affected by the characteristics of 387 

incoming water and sediment of the major tributary, the disaster is mainly due to the mutual 388 

backwatering between main stream and tributary and the large gradient of tributaries. If the 389 

water flow meets in the confluence, the upper reach forms the backwater area, the lower 390 

reach forms the flow separation area, which is easy to cause sediment deposition. Meanwhile, 391 

the cross-section of the river is reduced, and the conveyance capacity is reduced. The large 392 

tributary gradient and excessive incoming sediment will also lead to siltation and 393 
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submergence in the confluence area, thus inducing major flash floods and sediment disasters. 394 

The momentum expression formula of the tributary confluence reach based on river width 395 

and gradient was proposed as follows: 396 

𝑀1

𝑀2
=

𝐵1

𝐵2

𝐽1

𝐽2
                                 (2) 397 

Where M is the water flow momentum, B is the river width, J is the gradient, Subscript 1 398 

is the tributary, and Subscript 2 is the main stream.  399 

 Curved reach 400 

The mechanism of disasters in the curved reach is multifaceted (Yuan et al., 2021). First, 401 

the tortuous river channel and the unevenly distributed water velocity are easy to form 402 

high-velocity and low-velocity flow areas, resulting in the local intensification of flood 403 

disasters. Then, the curvature of the river channel and the inertia effect of the fluid will lead 404 

to streamlined bending and twisting, and whirlpools and vortexes, and further raise the local 405 

water level of the river channel to form clogging and poor flood discharge. In addition, the 406 

curvature of the river channel will also affect the transport of sediment and result in 407 

sedimentation, inadequate dredging and narrowing of the river channel, thus affecting the 408 

river channel's carrying capacity and drainage capacity and increasing the risk of flood 409 

disasters. We have found that the ratio of the disaster-causing water depth between the curved 410 

reach and the lower reach should meet Formula (3), that is, whether it is a criterion for 411 

determining the flash flood disaster-prone areas: 412 

ℎ1

ℎ2
= (

𝐵2

𝐵1
)
3/5

(
𝐽2

𝐽1
)
3/10

≥
ℎ1beach+ℎ0

ℎ1beach
                       (3) 413 

Where B is the average river width, J is the riverbed gradient, h1beach is the flood land 414 

line water level when the curved reach is submerged and h0 is the water depth required for 415 

disaster prevention. 416 

 Bridge and culvert reach 417 

Bridges and culverts are often built on the gullies of the mountainous rivers for local 418 

residents to pass through. However, due to the simple structure and low building standards 419 

(low flood control standards), these bridges and culverts play a role in obstructing floods 420 

when flash floods occur. In recent years, it has been found that clogging occurs when coarse 421 

sediments and floating woods pass through these low-standard bridges and culverts (Brussee 422 

Anneroos et al., 2021). Therefore, building low-standard bridges and culverts is also an 423 

important factor in early disaster identification. In the process of identification, if it is found 424 

that the bridge and culvert foundations occupy the conveyance channel of the gully, it is 425 

determined as a disaster-prone area. 426 
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We applied the method based on hydrodynamic methods to the risk identification in Aba 427 

Prefecture, drew the flash flood disaster point distribution map of Aba Prefecture via ArcGIS 428 

and set the FFIA results as the base map for comparison, as shown in Fig. 9. Taking the 429 

coverage rate of disasters in high-risk areas as the evaluation index, the disaster coverage rate 430 

in the results of FFIA was 16.5%. Compared with the results of FFIA, the methods increased 431 

by 52.3%. Many flash flood disasters in low and medium risk areas were successfully 432 

identified. 433 

 434 

Figure 9. Comparison of research results based on hydrodynamic methods and national flash 435 

flood risk investigation and assessment. 436 

4.3 Uncertainties 437 

Previous studies have shown that the uncertainties of influencing factors, multi-source 438 

spatiotemporal data, models, and evaluation units will affect the reliability and accuracy of 439 

the evaluation results, as shown in Table 4. This section analyzes the sources of uncertainty 440 

based on the model evaluation results, and the details are as follows. 441 

 442 

Table 4  443 

Typical cases that have an impact on evaluation results. 444 

No. Influencing factors 
Case  

Studies 
Description 

1 
Uncertainty of 

influencing factors 
Zhang et al., 2022 

Heavy rainfall is the main driving factor for triggering 

flash floods 
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2 

Uncertainty of 

multi-source 

spatiotemporal data 

Emery et al., 2016 

The evaluation results of the model largely depend on the 

selected parameters and influence range, and different 

data may lead to different sensitivity indices 

3 model uncertainty Majhi et al.,  2022 

The uncertainty of Global Climate Model(GCM) is the 

most sensitive to regional rainfall characteristics, followed 

by elevation 

4 
Uncertainty of 

evaluation units 

Lee 

et al., 2004 

Using a GIS data platform to evaluate the impact of 

evaluation units on prediction results 

... ... ... ... 

 445 

4.3.1 Uncertainty of influencing factors 446 

Typical flash flood disaster events have shown the characteristics of high coupling of 447 

various disaster-causing factors (Špitalar et al., 2012). Therefore, the in-depth analysis of the 448 

uncertainty of early identification and influencing factors of flash floods is of great 449 

significance for improving the identification accuracy. There is still no unified view on the 450 

causes of flash flood and sediment disasters due to the complexity of the environment and the 451 

different development stages. We developed a method to predict the uncertainty of “rainfall 452 

process-flood process-water and sediment coupling process” stage by stage, studied the 453 

relationship between rainfall and sediment transport rate under different rainfall conditions to 454 

identify rainfall patterns, and compared the relationship between the evaluation factors of 455 

FSDS (Flood and Sediment Disasters Susceptibility) and the disasters fitted by different 456 

algorithms to draw maps by the most reasonable and efficient methods. To improve the 457 

accuracy of early identification, it is recommended to consider the evaluation factors related 458 

to the occurrence of disasters as much as possible and adopt multi-source data obtained from 459 

multiple channels for analysis. 460 

4.3.2 Uncertainty of multi-source spatiotemporal data 461 

The data involved of flash flood disasters include real-time rainfall, soil water content, 462 

field investigation, disaster analysis and evaluation, prediction model, early warning model, 463 

document data, etc. (AL-Areeq et al., 2023). These data have strong multi-source 464 

heterogeneity and highly dynamic spatiotemporal characteristics, which challenges disaster 465 

data collection, storage, and calculation (Li et al., 2022). In investigating and studying early 466 

flash flood and sediment disasters, researchers conducted on-the-spot investigations on the 467 

disaster occurrence sites to obtain geological, topographic, and geomorphological factors. 468 

They completed early identification under the condition of early multi-source data according 469 

to the geological and topographical maps. Chen et al. (2021) realized the raw data acquisition 470 

of sensors and various sources and carried out preprocessing such as storage, cleaning, 471 
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conversion, and dimension reduction to construct the associated database. Currently, the data 472 

is mainly acquired through the field investigation of researchers (Siebert et al., 2016) and the 473 

measurement of relevant information on the disaster areas by satellite remote sensing (He et 474 

al., 2020). The topographical map, vegetation coverage, rainfall, and other related data can be 475 

obtained through the above measurement methods to constitute a data set for early 476 

identification. Establishing a deep learning sample database and verifying deep learning 477 

automatic interpretation accuracy can provide data guarantee. We conducted spatial analysis 478 

and integrated multi-source data based on the GIS platform to form basic data for early 479 

identification. Since different methods and means measure multi-source data and have 480 

differences in format, spatial resolution, coordinate system, etc., it is suggested that the basic 481 

data should be unified to the same standard before being used in the early model construction. 482 

4.3.3 Uncertainty of models 483 

In addition to the uncertain influencing factors and multi-source spatio-temporal data, 484 

inconsistent input parameters, inaccurate initialization, and uncertain model structures will all 485 

lead to the uncertainty of early identification models (Jafarzadegan et al., 2021). In view of 486 

the strong uncertainty, further research and reliability evaluation of the models are needed to 487 

reduce the uncertainty of the model results (Abbaszadeh et al., 2021). It is particularly 488 

important to carefully select the identification models in the calculation process. Under equal 489 

identification accuracy, different models will have other distribution characteristics. 490 

Therefore, it is still difficult to conclude which identification model is more conducive to 491 

modeling. Previous studies have shown that compared with a single model, based on 492 

balancing the model identification accuracy and computational burden as much as possible, 493 

various coupling models (Ahmadisharaf et al., 2018), integrated models (Tehrany et al., 2014) 494 

and hybrid models (Moftakhari et al., 2019) have more advantages in model fitting and 495 

prediction performance. 496 

4.3.4 Uncertainty of evaluation units 497 

The reasonable selection of evaluation units is very important to reduce the uncertainty of 498 

evaluation units. In previous studies, the grid unit was directly used as the evaluation unit. 499 

Different susceptibility zones were often divided in a single watershed, but the integrity of 500 

disaster occurrence was ignored, which is inconsistent with the actual environment and not 501 

conducive to accurately identifying flash flood disasters (Sun et al., 2019; Duan et al., 2022). 502 

To solve the zone differences in a single watershed, we divided the susceptibility results 503 

calculated by the grid units in the form of watershed units, took the average value of 504 
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susceptibility in each sub-watershed as the unit value of the sub-watershed in the research 505 

area, and divided it into four levels by natural discontinuity methods to obtain the 506 

susceptibility classification of flash flood and sediment disasters based on watershed units. 507 

5 Discussion 508 

5.1 The potential of bibliometric methods 509 

Based on the previous bibliometric analysis, this paper further analyzes the evolution 510 

law of keywords in this field. It applies Citespace to obtain the time zone map of the 511 

evolution law of the main keywords related to the “sediment transport” over time. Fig. 10 512 

reflects the evolution of flash flood and sediment transport research from sporadic research in 513 

hydrology (flash floods and floods) in 1981 to intensive research in natural disasters (debris 514 

flows, erosion, infiltration, etc.) after 1990. Subsequently, the research shifts its focus to 515 

underlying surface correlations (e.g., digital elevation model, lithology) and then to the 516 

characteristics of the river channel (e.g., bank erosion, rivers, fluvial morphology, etc.). 517 

Through these evolution processes, it is not difficult to find that the field is gradually paid 518 

attention to the impact of sediment and shifted the previous focus from the single research to 519 

the integrated research of multiple disciplines and from the influence of single factors to the 520 

comprehensive influence of multiple factors. 521 

 522 

Figure 10. Research time zone map: the red five pointed star marks the theme keyword "sediment 523 

transport", and the lines connect the related keywords. The thicker the lines, the closer the connection 524 
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between the keyword and "sediment transport". The size of the keyword font on the graph represents the 525 

frequency of occurrence, and the more frequent the occurrence, the more font the keyword has. . 526 

In addition, due to the difficulty of processing mass data, this study only considers 527 

peer-reviewed papers, but not other materials in this field, such as government reports, news 528 

reports, webpage information, and other non-academic documents. Meanwhile, the initially 529 

set keywords may not cover all articles in the field, and measurement software can only be 530 

used to identify important nodes, which may ignore some valuable documents. Therefore, the 531 

document sample database needs to be constantly updated in future research to conduct more 532 

extensive and in-depth research. 533 

 534 

5.2 Research on Expanding Wide and Narrow River Sections 535 

Documents show that the research on the disaster-causing mechanism of flash floods has 536 

gradually developed from qualitative analysis to quantitative analysis (Chen et al., 2020; 537 

Ding et al., 2023; Chen et al., 2023). However, the field still need to be studied thoroughly 538 

and continuously to enhance the understanding of the water and sediment coupled 539 

disaster-causing law. For example, the research on the coupled disaster-causing mechanism of 540 

water and sediment in wide and narrow rivers must be expanded. Due to the influence of 541 

hydrological characteristics, geological structure, and other factors, the river is generally 542 

characterized by a plane shape consisting of a narrowed valley section and a widened 543 

non-valley section. The wide and narrow river channel is the most common river pattern in 544 

mountainous rivers. The narrowed section of the river channel usually has an obvious 545 

bayonet effect. The restricted section in the non-flood period is characterized by the drop, 546 

with shallow water depth, large flow velocity (Yan et al., 2022). The drop effect of the 547 

narrowed section in the flood period should be weakened, the flow velocity should be slowed 548 

down, and the sediment transport rate should be greatly reduced. We verified the water level 549 

along the research reach in the laboratory test (Yan et al., 2021). The preliminary findings 550 

show that in the wide and narrow river channel, a large amount of sediment from the upper 551 

reach will cause sedimentation in the widened section and scouring in the narrowed section, 552 

forming typical shoal and step-pool bed forms and uplifting the riverbed. It can be seen that 553 

the change in river width is one of the key factors affecting flood discharge in mountainous 554 

rivers, and the mechanism research of this kind of reach should be strengthened in the future. 555 

 556 

5.3. Early identification model based on knowledge graph 557 
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In summary, the early identification models of flash floods mainly include hydrological 558 

information-based models (Guo et al., 2022), data-driven models (Ge et al., 2023), 559 

hydrodynamics-based models (Bonnifait et al., 2002), knowledge mapping-based models 560 

(Chen et al., 2023), etc. Among them, the knowledge mapping-based model is a relatively 561 

cutting-edge model that has recently attracted much attention in geoscience (Zhang et al., 562 

2022). The mapping refers to the atlas compiled by type, including pictures or photos, text 563 

descriptions, etc. (Paulheim et al., 2017), a form to better understand things by describing 564 

images and texts. Knowledge mapping is an identification method that forms knowledge 565 

discovery by aggregating various information(Ma et al., 2021). Chen et al. (2020) used 566 

knowledge mapping to construct the landslide semantic network, showing that the model can 567 

make an effective prediction in the case of small amounts of data. Zhang et al. (2023) 568 

presented the types and characteristics of regional fluvial facies in the form of knowledge 569 

mapping to construct the knowledge system of fluvial facies. Xu et al. (2023) systematically 570 

combed the technical methods and processes of constructing landslide knowledge mapping. 571 

They proposed that the process of constructing landslide knowledge mapping can be 572 

extended to other types of disasters. 573 

The knowledge mapping for early identification of flash flood disasters requires b574 

oth pictures and texts, that is, it can not only clearly understand the evolution process575 

 and corresponding characteristics of flash floods according to the pictures but also ac576 

curately identify them according to the text descriptions. At present, although the cons577 

truction of knowledge mapping, especially for flash flood, is still blank, we can try t578 

o analyze it in combination with several other models in future research and propose 579 

a more scientific fusion model to provide new ideas for the construction of early iden580 

tification models. Recently, we have simplified and concluded the three aspects of dis581 

aster-causing factors, disaster-causing reasons and damage modes and summarized eigh582 

t typical disaster-causing modes of water and sediment disasters as follows: rainstorm-583 

flood-flooding mode, rainstorm-flood-blocking-backwatering mode, rainstorm-flood-outbu584 

rst-flooding mode, rainstorm-flood-upper outburst and lower blocking-backwatering mod585 

e, rainstorm-flood-sediment deposition-flooding mode, rainstorm-flood-sediment depositi586 

on-diversion-flooding mode, rainstorm-flood-sediment deposition-submergence mode and587 

 rainstorm-flood-upper outburst and lower blocking-sediment deposition-backwatering m588 

ode (Table 5). In the future, we will consider preparing each typical disaster-causing 589 

mode into knowledge mapping and specify the identification criteria to distinguish the590 

 types of flash flood disasters intuitively and conveniently. 591 
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Table 5 Typical disaster mode. 592 

No. Mode name 
Disaster causing  

factors 

Characteristics of water 

and sediment anomalies 
Hazard mode 

1 
Rainstorm-flood -flood 

model 
Rainstorm, flood 

Runoff surge caused by 

rainstorm 
Flood inundation 

2 
Rainstorm-flood-block

age- flood model 

Rainstorm, flood, 

river blockage 

Runoff surge caused by 

rainstorm, rapid rise of 

water level due to backwater 

Flood inundation 

3 
Rainstorm-flood-break

-flood model 

Rainstorm, flood, 

collapse of water 

retaining structures 

Collapse leading to a surge 

in runoff 

Flood impact, 

flushing and 

flooding 

4 

Rainstorm-flood-upper 

burst lower blockage- 

overflow model 

Rainstorm, flood, 

collapse of water 

retaining structures 

river blockage 

Collapse leading to a surge 

in runoff 

Flood impact, 

inundation 

5 

Rainstorm-flood-sedim

ent deposition- 

overflow model 

Rainstorm, flood, 

sediment 

Coupling of water and 

sediment leads to a surge in 

runoff 

Water and sand 

flushing and 

flooding 

6 

Rainstorm-flood-sedim

ent deposition- 

diversion -inundation 

model 

Rainstorm, flood, 

sediment 

Channel siltation and filling, 

diversion of water flow 

Water and sand 

flushing and 

flooding 

7 

Rainstorm-flood-sedim

ent deposition- 

submergence model 

Rainstorm, flood, 

sediment 

Runoff surge caused by 

rainstorm, sediment 

scouring and silting 

Water and sand 

flushing and 

flooding, cover 

with silt 

8 

Rainstorm-flood-upwar

d collapse and 

downward blockage- 

sedimentation- 

overflow mode 

Rainstorm, flood, 

sediment, collapse of 

water retaining 

structures, river 

blockage 

Collapse leading to a surge 

in runoff, sediment scouring 

and silting 

Water sand 

impact, flushing 

and flooding、
Inundation 

 593 

5.4. Reduce model uncertainty 594 

Although many scholars have researched and discussed the uncertainty of flash flood 595 

disasters, such as random set theory, fuzzy set theory, possibility theory, etc., these methods 596 

and theories have certain limitations. The complex of flash flood, uncertain models, and 597 

diversified influencing factors, etc., make the accuracy of early identification difficult to meet 598 

the needs, and there is a lack of the theories and methods of quantitative combination. For 599 

example, it is a challenge to establish the criteria for determining typical disaster-prone 600 

reaches. At present, the parameters in the empirical formula still need to be optimized. In the 601 

future model construction process, it is necessary to consider the uncertainty of parameters 602 

and structures, such as underlying surface conditions and fully integrate multi-source 603 

spatiotemporal data to improve the model's reliability and identification accuracy. 604 

 605 
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6 Conclusions 606 

The development of the field can not only effectively predict and warn in advance, 607 

reduce casualties and property losses, but also provide scientific basis and favorable support 608 

for flash floods' prevention and control strategies. Given the suddenness, complexity, 609 

difference, and uncertainty of flash flood disasters, this paper summarizes the results in the 610 

field of early identification of flash floods based on bibliometric analysis and research 611 

practice and lists as follows: 612 

(1) Bibliometrics: as a very active research field, it has attracted more and more attention 613 

from the academic circle in the past 40 years, and the number of documents published will 614 

continue to show an exponential upward trend in the future; the review papers are cited more 615 

times, but the total number of citations is too small to meet the demand, so the intensity of 616 

document review and research should be strengthened; the cooperation between authors is 617 

less, the author cluster is not obvious, but there is relatively more cooperation between 618 

countries; weather forecasting is the largest cluster, and keywords considering sediment 619 

factors also form a cluster, but the number of papers published is scarce. 620 

(2) Water and sediment coupled disaster-causing mechanism: flash flood and sediment 621 

disasters usually occur in locations such as steep-gentle transition reach, curved reach, 622 

tributary confluence reach, bridge, and culvert reach; flash flood and sediment disasters have 623 

three chain characteristics, that is, orderly predictability of chain nodes, amplification of 624 

water and sediment variation disasters and coupling of disaster-causing factors at the 625 

watershed scale. 626 

(3) Early identification model of flash floods: the deposits identified by remote sensing 627 

methods are incorporated into the data-driven intelligent model as a deposit factor. For 628 

sediment-laden watersheds, the model can improve the identification coverage of 629 

disaster-prone areas compared with the traditional models. Meanwhile, the hydrodynamic 630 

model suitable for the river scale is proposed, and the main controlling factors for sediment 631 

deposition and uplift in typical reaches are discovered based on the theoretical analysis of 632 

water and sediment dynamic processes in distinct reaches. 633 

(4) Flash flood uncertainty: the influence of uncertainty reduction on the field is 634 

summarized from five aspects: influencing factors, data, models, evaluation units, and 635 

evaluation results. Carefully considering the influence of various uncertainties is the key to 636 

improving identification accuracy. 637 
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In conclusion, the research on the field is still in its infancy, and there are still a lot of 638 

gaps that urgently need to be studied. This paper enriches the document sample database, 639 

summarizes the research progress in this field, reveals the flash flood and sediment coupled 640 

disaster-causing mechanism, establishes early identification methods based on data-driven 641 

and water-sand dynamics, and analyzes the uncertainty sources of the model evaluation 642 

results and the suggestions for improving identification accuracy, so as to provide some 643 

reference for the early identification of flash flood disasters in the future. 644 

 645 
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