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Abstract 17 

Convection-permitting regional climate models (CPRCMs) have demonstrated enhanced capability in capturing 18 

extreme precipitation compared to regional climate models (RCMs) with convection-parameterization schemes. 19 

Despite this, a comprehensive understanding of their added values in daily or sub-daily extremes, especially at local 20 

scale, remains limited. In this study, we conduct a thorough comparison of daily and sub-daily extreme precipitation 21 

from HARMONIE-Climate model, cycle 38 at 3km resolution (HCLIM3) and 12km resolution (HCLIM12) across 22 

Norway’s diverse landscape, divided into eight regions, using both gridded and in-situ observations. Our main focus 23 

is to investigate the added value of CPRCMs (i.e., HCLIM3) compared to RCMs (i.e., HCLIM12) for extreme 24 

precipitation at daily and sub-daily scales from regional to local scales, and quantify to what extend CPRCM can 25 

reproduce the orographic effect on extreme precipitation at daily and sub-daily scale. We find that HCLIM3 better 26 

matches observations than HCLIM12 for daily and sub-daily precipitation extreme indices at regional scale in 27 

Norway. More specifically, HCLIM3 better captures the maximum 1-day precipitation (Rx1d) at most of the regions 28 

except south-western region in Norway. Notably, HCLIM12 shows underestimation in the complex orography for 29 

annual Rx1d. For the maximum 1-hour precipitation (Rx1h), the superiority from HCLIM3 have also been found on 30 

average, although with slightly higher wet-bias in the western, middle-inland and middle-coastal during summer. In 31 

addition, the reverse orography effect on seasonal Rx1h at regional scale can be better reproduced by HCLIM3 than 32 
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HCLIM12 in most seasons except spring. At the local scale, HCLIM3 can better capture the temporal evolution of 33 

Rx1h than HCLIM12 when compared with observations between 1999-2018. However, we see that the benefit from 34 

HCLIM3 in capturing seasonal Rx1d within western region diminishes at local scale. Most interesting finding is that 35 

the added value from HCLIM3 is clearer in Rx1h than in Rx1d at both regional and local scale, especially in the 36 

extreme seasonality. In general, HCLIM3 performs better than HCLIM12 on Rx1d and Rx1h in Norway with the 37 

mean of bias distribution closer to zero, although it varies a bit among regions. Specifically, HCLIM3 performs 38 

slightly poorer in the south-western region. This study highlights the importance of more realistic convection-39 

permitting regional climate simulations in providing reliable insights into the characteristics of precipitation 40 

extremes across Norway's eight regions. Such information is crucial for effective adaptation management to mitigate 41 

severe hydro-meteorological hazards, especially for the local extremes.  42 

1 Introduction 43 

In recent years, the world has witnessed a surge in both frequency and intensity of floods primarily attributed to the 44 

increasing occurrence of intensive rainfall events (Tabari, 2020). These changes underscore the pressing need to 45 

develop a predictive understanding of precipitation extremes for the upcoming decades, given the ongoing globe 46 

warming. The intensification of precipitation extremes under the influence of global warming has the potential to 47 

trigger severe natural hazards and exert significant socioeconomic impacts (Thackeray et al., 2022), which has 48 

gained substantial attention in recent research endeavors. However, most of the previous research in this domain 49 

have been based on the utilization of coarse resolution GCMs with grid sizes exceeding 100 km which have fallen 50 

short in accurately simulating extreme precipitation events and its frequency due to their coarser resolution (Piani et 51 

al., 2010; Wang et al., 2017). Notably, these GCMs tend to produce the largest errors in predicting extreme 52 

precipitation, particularly in cases involving heavier convective activity, as observed in the study by Gervais et al. 53 

(2014a). Despite various bias-correction techniques are applied to mitigate these discrepancies on the GCMs, as well 54 

as employing them as forcing data for regional climate models (RCMs) with grid size larger than 10 km, it remains a 55 

persistent challenge to eliminate the transfer of biases from GCMs to RCMs, as noted by studies such as 56 

Pontoppidan et al. (2018) and Kim et al. (2020). The large resolution gap between GCMs or RCMs and localized 57 

precipitation extremes further constrains the robust simulations of extreme precipitation as highlighted by Li et al. 58 

(2020a). In addition, the reliance on parameterization schemes to represent convection in these coarse resolution 59 

models introduces a significant source of uncertainty in modelling errors (Prein et al., 2015; Kendon et al., 2019). 60 

More frequent and intense precipitation events under global warming stimulate interest in higher resolution and 61 

physics-based models to improve the estimates of short-duration extremes. 62 

Convection-permitting regional climate models (CPRCMs), with grid size of less than 4 km, offer a promising 63 

alternative, which explicitly represent convection, eliminating the need for parameterizations of atmospheric deep 64 

convection. The potential in resolving deep convection and local extremes from CPRCMs lead to the realistic 65 

representation in daily and sub-daily precipitation features, including diurnal cycle, intensity and frequency of heavy 66 

precipitation events, seasonality, spatial-temporal pattern, wet-spell and dry-spell. For instance, CPRCMs have been 67 
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proven to reduce the bias and enhance the representation in precipitation intensity and intensity in the Tibetan 68 

Plateau, the highest highland in the world, as shown in Li et al. (2021). In addition to their capability in capturing 69 

precipitation, Liu et al. (2017) also demonstrated the confidence of CPRCMs in estimating snowfall and snowpack 70 

in the central U.S. Furthermore, the importance of CPRCMs in representing dry spell, dry and wet extremes induced 71 

by local convective activity across Africa has also been found in Kendon et al. (2019), Chapman et al. (2023) further 72 

confirmed its benefit in capturing rare rainfall extreme and local feature. In UK, Kendon et al. (2023) and Kent et al. 73 

(2022) have found the benefit of CPRCMs compared to RCMs with convection parameterization schemes. 74 

Additionally, the superior performance in capturing hourly and daily extreme precipitation including return-level, 75 

frequency and intensity from CPRCMs over Alpine in Europe, has also been highlighted by Adinolfi et al. (2021), 76 

Dallan et al. (2023) and Giordani et al. (2023).  77 

Northern Europe has been reported to experience the most increase in precipitation, as indicated by Dyrrdal et 78 

al., (2023), where a novel CPRCMs have been developed within the Nordic Convection Permitting Climate 79 

Projections project (NorCP) based on the convection-permitting HARMONIE-Climate model, cycle 38 (HCLIM38) 80 

at a resolution of 3 km (HCLIM3) and 12km (HCLIM12). Through comparisons of seasonal precipitation, daily 81 

mean precipitation, higher-intensity daily precipitation, the diurnal of hourly precipitation including frequency and 82 

intensity from HCLIM3 and HCLIM12 over Fenno-Scandinavia, Lind et al. (2020) emphasized the add-value of 83 

CPRCM in reproducing extreme precipitation, primarily over complex terrain, compared to coarser-scale model. 84 

Médus et al. (2022) also noted that the summer diurnal cycle of frequency and intensity of hourly precipitation was 85 

correctly captured in HCLIM3 compared to HCLIM12 in the Nordic region, with HCLIM12 underestimating the 86 

diurnal cycle. However, the evaluation and conclusions from Lind et al. (2020) and Médus et al. (2022) were mainly 87 

focused on the large regional and country scale of Fenno-Scandinavia, overlooking the added values of CPRCM at 88 

local scale. Furthermore, Thomassen et al. (2023) observed that HCLIM3 tends to exhibit underestimations in 89 

monthly precipitation and a later evening peak compared to sub-kilometre models. They found that the advantages 90 

of sub-kilometer models were not outstanding. These evaluations were based on gridded datasets, which introduce 91 

uncertainty at the local scale, especially over complex orography (Lussana et al., 2019). As Chapman et al. (2023) 92 

demonstrated, who underscored the importance of assessing rare extreme rainfall events in eastern African using 93 

convection-permitting models and parameterization convection models at both grid and station scales, that the 94 

extreme from grids representing rainfall averaged over a larger area are damped and hence the return-level will be 95 

smaller than observation. They found that the station-derived shape parameters and return levels are aligned with 96 

observations, and suggested the significance of site-specific analysis and evaluations. The error induced by station 97 

density in gridded dataset has also been indicated in Gervais et al. (2014b), who suggested the source of large errors 98 

in gridded dataset when station density is low. Consequently, a comprehensive evaluation and analysis of the added 99 

value from CPRCMs compared with RCMs that incorporates both regional and local scales is crucial for extreme 100 

precipitations. 101 

We acknowledge that Norway, a Nordic country, is representative of diverse climate features due to its 102 

extended latitude, rugged coastline, plateaus, and complex orography. The dominances of precipitation between the 103 
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coastal and inland regions over Norway are distinctly different, and most of studies focusing on the hydrology and 104 

meteorology over Norway were based on the divided regions (Vormoor et al., 2016; Poujol et al., 2021; Konstali 105 

and Sorteberg, 2022). By dividing region with its characteristics, a more thorough comprehension of add-value of 106 

CPRCM in capturing extreme precipitation can be reached. Therefore, reliable evaluation about analyzing the add-107 

value of CPRCM in capturing extreme precipitation should be scaled to region or local scale. 108 

In the complex mountain areas, extreme precipitation is triggered by the interaction of large-scale atmospheric 109 

activity and local orography property, which may cause severe hydrometeorological hazards, such as flash flooding. 110 

However, understanding the orographic impact in precipitation in complex orography is challenging due to sparse 111 

observations (Rossi et al., 2020). The poor representation of RCMs in capturing local precipitation have been 112 

indicated in Knist et al. (2020). Importantly, CPRCMs shows superior in reproducing precipitation bias over higher 113 

complex orography in the Alpine, as shown in Lind et al. (2016) and Reder at al. (2020). Furthermore, the better 114 

representation of sub-daily and daily heavy precipitation from CPRCMs over the Alpine have also been found in 115 

Ban et al. (2020) and Dallan et al. (2023). Marra et al. (2021) and Dallan et al. (2023) also confirmed the efficiency 116 

of CPRCMs in reproducing the reverse orography effect on hourly extreme precipitation. Conversely, Rossi et al. 117 

(2020) and Mahoney et al. (2015) found the weak depend of subdaily precipitation on elevation in the Colorado, 118 

USA. Opposing the orographic enhance on daily precipitation, Dallan et al. (2023) indicated the no evident relation 119 

of daily precipitation on elevation. It is worth noting that these ambiguous results were based on the annual maxima, 120 

and the added value from CPRCMs than RCMs have not been explored.  Moreover, the dependence on seasonality 121 

for the performance of CPRCMs especially in complex orography need the evaluation based on season. Thus, we fill 122 

this knowledge gap by characterizing orographic impact on hourly and daily extreme precipitation seasonally. 123 

As highlighted by Konstali and Sorteberg (2022),  there can be significant uncertainties associated with the 124 

interpolation of grided precipitation data. Besides, the benefit for precipitation spatial evaluation based on in-situ 125 

observation has also been reported in Thomassen et al. (2023). Therefore, the evaluation of extreme precipitation 126 

from HCLIM3 and HCLIM12 here, is based on both gridded precipitation and in-situ observation. Our study aims to 127 

address the value of CPRCM (HCLIM3) in capturing the characteristics of extreme precipitation in Norway, 128 

comparing it with a coarser resolution model (HCLIM12) as well as both of the in-situ and gridded precipitation 129 

observations. Here, our contribution to the existing literature, e.g., Médus et al. (2022), revolves around the added 130 

value of CPRCM in the extreme precipitation characteristics, encompassing a range of metrics.  131 

The main objectives of this study are (1) enhance understanding of convection-permitting climate models by 132 

comparing their effectiveness in simulating extreme precipitation with that of regional climate models from regional 133 

to local scales, highlighting the added value of CPRCMs; (2) assess HCLIM3's capability in depicting orographic 134 

effects on seasonal extreme precipitation. This research explores whether the benefits provided by CPRCMs hold 135 

consistently in different regions driven by varying physical processes for precipitation. Finally, our study delves into 136 

the analysis of the intensity and frequency of extreme precipitation events, offering insights into local and regional 137 

variations. 138 
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2 Study area and data 139 

2.1 Study area 140 

 141 

 142 

      143 

Figure 1: (a) The division of 8 precipitation regions in Norway. In the legend, the numbers shown in the brackets after 144 
each region represent the available size of hourly / daily stations in the region during 1999 – 2018. For example, Eastern 145 
(4/46) means that there are available data from 4 hourly stations and 46 daily stations in the Eastern region during 1999-146 
2018; (b) Spatial distribution of topography over Norway. 147 

 148 

The different climate regimes between coastal and inland regions over Norway compels the analysis of hydro-149 

meteorology based on divided regions. We divided Norway into eight regions according to similar season cycle 150 

characteristics (Michel et al., 2021): Eastern (E), Southern (S), South-Western (SW), Western (W), Middle-Inland 151 

(MI), Middle-Coastal (MCo), Northern-Coastal (NCo), and Northern-Inland (NI), shown in Fig.1. 152 

The study areas cover the mainland Norway which has unique climate characteristics within different regions. 153 

The eastern region with stratiform precipitation originating from south and south-east is dominant by continental 154 

climate, with convective precipitation in summer. Most of extreme events occurring in the western region with 155 

abrupt topography are mainly related to atmospheric rivers (AR), peaking in winter. The wettest region strongest 156 

affected by the North Atlantic storm track with enhanced precipitation from front systems and land-falling storms 157 

due to the uplift over the Scandes (Poujol et al., 2021), is the west coast of Norway. For the middle-coastal and 158 

northern coastal regions, 59% of extremes are associated with AR, and the precipitation rate decreases moving 159 

inland (Konstali and Sorteberg, 2022). Northern-inland and middle-inland are the driest regions with lower wet-day 160 

intensity (<6 mm/day) and wet-day frequency (<33%), most extremes during summer are linked to AR for the 161 
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northern-inland where largest precipitation is dominant by cyclones. South-western region lies at the end of the 162 

climatological jet and is regularly hit by ARs especially during the Zonal and Atlantic Trough weather regimes 163 

(Michel et al., 2021). The main precipitation in Norway is winter and autumn precipitation. These precipitation 164 

patterns in spatial and seasonality are mainly linked to ARs (Schaller et al., 2020; Benedict et al., 2019).   165 

 166 

2.2 Data 167 

We utilize the outputs of double nesting from HCLIM38 model based on the ALADIN-HIRLAM NWP system, 168 

which include different configuration settings for each spatial resolution: HCLIM3 and HCLIM12 with hydrostatic 169 

dynamics. HCLIM12 covers over most part of Europe with 313 ×349 grid-points using the ERA-Interim reanalysis 170 

~80 km as boundary condition for every 6 h, and HCLIM3 spans over the Fenno-Scandinavia region with 637×853 171 

horizontal grid-points using the HCLIM12 as boundary condition for every 3 h. Importantly, the convection-172 

parameterization scheme was switched-off in HCLIM3, allowing for an explicit representation of convection 173 

processes. The present-day simulations from HCLIM3 and HCLIM12 span over the years 1997-2018. For more 174 

comprehensive information, refer to the work of Lind et al. (2020) and Médus et al. (2022).  175 

This study primarily centers on assessing the performance of HCLIM3 and HCLIM12 in simulating sub-daily 176 

and daily extreme precipitation events in the present-day (1999-2018) in Norway mainland. The models’ outputs are 177 

specifically extracted for Norway mainland. Before analysis, HCLIM3 data was resample to the HCLIM12 grid 178 

(12km) using a bilinear method.  179 

seNorge2018 (SeNorge) covering Norway with 1-day temporal and 1 km spatial resolution (Lussana et al., 180 

2019) is used as the observation to evaluate the performance of HCLIM3 and HCLIM12 during 1999-2018. 181 

SeNorge2 with 1-hour and 1 km spatial resolution is also applied to evaluate the hourly result during 2010-2018 182 

(Lussana et al., 2018). In addition, in-situ observations including hourly and daily resolution are downloaded from 183 

Norwegian Meteorological Institute Frost API (met.no).   184 

3 Methods 185 

3.1 Evaluation of precipitation  186 

To evaluate the characteristics of precipitation extremes between HCLIM3 and HCLIM12, we compared the 187 

historical simulations with daily SeNorge gridded dataset, hourly SeNorge2 gridded dataset and in-situ observations. 188 

We only keep the stations that have less than 10% of the data missing during 1999-2018 and consider station 189 

distribution uniformity, which give a total of 192 daily stations and 10 hourly stations, respectively, over Norway 190 

(Fig. 1 and Table 1). In this study, the evaluation based on in-situ observation and gridded dataset (SeNorge and 191 

Senorge2) was defined as the local scale and regional scale, respectively.  192 

For the evaluation at regional scale, HCLIM3 and SeNorge, SeNorge2 were resampled to HCLIM12 grid~12 193 

km. Therefore, the observed and simulated extreme indices were calculated at grid scale, and then averaged the 194 

extreme indices within the corresponding region. For the evaluation based on in-situ observation, HCLIM3 and 195 
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HCLIM12 were interpolated to the 192 daily rain-gauges and 10 hourly rain-gauges to calculate the indices using 196 

bilinear interpolation.   197 

For the evaluation of present-day extreme precipitation, we examined the maximum 1-day precipitation 198 

(Rx1d), maximum 1-hour precipitation (Rx1h), return-period-based precipitation amounts at 5, 10, 20, and 50-year 199 

return periods, frequency of daily precipitation exceeding 10, 15, 20 mm, and seasonality of frequency/intensity 200 

from regional to local scales. The calculation of seasonal Rx1d/Rx1h was based on the maximum value within one 201 

season per year. 202 

 203 
Table 1. The information for the ten hourly rain gauges. 204 

Name Station ID Longitude (°E) Latitude (°N) Elevation Region 

Østre Toten - 

Apelsvoll 
SN11500 10.8695 60.7002 264 

Eastern  

Ås - Rustadskogen SN17870 10.8107 59.6703 120 Eastern  

Kise in Hedmark SN12550 10.8055 60.7733 128 Eastern 

The Onion of Volbu SN23500 9.063 61.122 521 Eastern  

Kvithamar SN69150 10.8795 63.4882 27 Middle-Coastal 

Tjøtta SN76530 12.4255 65.8295 21 Middle-Coastal 

Stryn - The Hook SN58900 6.5585 61.9157 208 Western 

Fureneset SN56420 5.0443 61.2928 7 Western 

Særheim SN44300 5.6508 58.7605 87 South-Western 

Tromsø - Holt SN90400 18.9095 69.6538 20 Northern-Coastal 

 205 

3.2 Extreme precipitation indices 206 

Generalized extreme value (GEV) distribution function was used to derive the precipitation at specified return 207 

periods (5, 10, 20, 50-year) from the statistical cumulative distribution functions of the conceptual distributions for 208 

the annual maximum precipitation derived from the precipitation series. GEV distribution has been widely used to 209 

model extreme events in meteorology (Coles et al., 2003). The cumulative distribution function 𝐹(𝑥) and 210 

probability density function 𝑓(𝑥)of GEV were as follows to calculate the return level 𝑍𝑝: 211 

  212 

𝐹(𝑥) = 𝑒𝑥𝑝 {− [1 − 𝑘 (
𝑥 − 𝜉

𝛼
)]

1 𝑘⁄

} , 𝑘 ≠ 0 213 

𝑓(𝑥) =
1

𝛼
[1 − 𝑘 (

𝑥 − 𝜉

𝛼
)]

1 𝑘⁄ −1

𝑒𝑥𝑝 {− [1 − 𝑘 (
𝑥 − 𝜉

𝛼
)]

1 𝑘⁄

} 214 

𝑍𝑝 = 𝜉 −
𝛼

𝑘
{1 − [−𝑙𝑜𝑔⁡(1 − 𝑝)]−𝑘} 215 

 216 
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Where, 𝛼, 𝜉, and 𝑘  indicates the scale, location and shape parameter, respectively. Kolmogorov-Smirnovs, 217 

Anderson-Darlings, and Chi-Square tests were performed to determine if the GEV was accepted to fit the maxima 218 

series. 219 

 220 

3.3 Quantification of the orographic effect 221 

 The orographic effect on Rx1h and Rx1d precipitation was explored by looking at the relationship with elevation of 222 

the annual and seasonal maxima from regional to local scales. A linear regression model (Di Piazza et al., 2011) was 223 

utilized to approximate the relations. The relation of elevation with observation (Rx1h: SeNorge2; Rx1d: SeNorge 224 

and daily in-situ observation) and simulation (HCLIM3 and HCLIM12) was fitted to compute the linear regression 225 

slopes and expressed as an averaged precipitation (mm) per kilometer of elevation. The orographic effect at local 226 

scale was only based on daily in-situ observation due to the limited hourly in-situ observation. At local scale, the 227 

elevation for each rain-gauges was extracted according to the digital elevation model. At regional scale, the grid of 228 

digital elevation model and HCLIM3 was resample to the same grid resolution of 12 km as HCLIM12 before 229 

calculation. Only the grids and stations above sea level of 0 m are included to quantify the orographic effect.  230 

If the precipitation increases with elevation, it means that the orographic effect on extreme precipitation; if the 231 

precipitation decreases with elevation, its means that the reverse orographic effect on extreme precipitation.  232 

 233 

4 Results 234 

4.1 Evaluation of daily extreme with SeNorge 235 

https://doi.org/10.5194/hess-2024-68
Preprint. Discussion started: 5 March 2024
c© Author(s) 2024. CC BY 4.0 License.



9 
 

4.1.1 Rx1d precipitation 236 

 237 

Figure 2: (a) Comparison of annual maximum 1-day precipitation (Rx1d) during 1999-2018; (b) density plot of the bias 238 
distribution from HCLIM3 and HCLIM12 compared to SeNorge for Rx1d during 1999-2018; (c) the bias of seasonal 239 
Rx1d from HCLIM3 and HCLIM12 to SeNorge for eight regions. For each region, the result is the bias is the average bias 240 
of grids within the region. The absolute differences are equal to model simulations minus observations, divided by 241 
observations. 242 

 243 

Figure 2 provides a comprehensive comparison of Rx1d bias from HCLIM3 and HCLMI12 compared to SeNorge. 244 

From Fig. 2 (a), we can see that HCLIM12 has more grids with underestimated Rx1d than HCLMI3 in Norway, 245 

which is confirmed clearly in Fig. 2 (b) showing density plot of the bias distribution from two models compared 246 

with SeNorge. Specifically, more grids from HCLIM3 tend to overestimate Rx1d within the 0-10 mm/day range, 247 

while HCLIM12 leans towards underestimation. In addition, referred to Fig. S1, the spatial distribution of seasonal 248 

Rx1d is also shown. The density curve in Fig. 2 (b) reflects a higher peak at 0 for HCLIM3, indicating a more 249 

accurate representation of Rx1d with an average bias closer to 0.  Conversely, HCLIM12 shows a dry-bias for Rx1d 250 

on average. Compared to the bias of annual precipitation in Fig. S2, we noted that HCLIM12 shows higher wet-bias 251 

for annual precipitation. This could be attributed to the overestimation of low-moderate precipitation (drizzle) in 252 
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HCLIM12, as suggested by Lind et a. (2020), who also highlighted the higher drizzle in HCLIM12, when comparing 253 

the contribution of intense precipitation to total precipitation. 254 

Figure 2 (c) shows the bias of Rx1d from HCLIM3 and HCLIM12 compared to SeNorge for eight regions in 255 

four seasons. HCLIM3 better captures Rx1d in winter for all regions than HCLIM12, while HCLIM12 shows higher 256 

dry-bias across regions except in the south-western region. In autumn, HCLIM3 shows more underestimation of 257 

Rx1d in the southern and south-western regions but performs better elsewhere. Both HCLIM3 and HCLIM12 have 258 

dry-bias for spring Rx1d in all regions except northern-inland with almost no-bias, and HCLIM12 has more 259 

underestimation than HCLIM3 except in the southern and south-western regions. In summer, HCLIM3 outperforms 260 

Rx1d in the 5 out of 8 over HCLIM12. Overall, HCLIM3 shows notably added value in Rx1d comparing with 261 

HCLMI12 across regions and seasons although with exception of the south-western region.  262 

 263 

Figure 3: The empirical distribution of annual Rx1d during 1999-2018 in each of the eight Norway regions from SeNorge, 264 
HCLIM3 and HCLIM12.  265 

 266 

Furthermore, Fig. 3 shows the empirical distribution of Rx1d from HCLIM3 and HCLIM12 over all eight 267 

regions during 1999-2018, compared to the SeNorge data. The distribution of Rx1d from HCLIM 3 and HCLIM12 268 

varies among regions with intraregional differences. For example, Rx1d in the western region is overestimated by 269 
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HCLIM3, while underestimated by HCLIM12. Besides, both HCLIMs underestimate the Rx1d in the middle-inland, 270 

northern-coastal and northern-inland generally. HCLIM3 demonstrates overall closer alignment with SeNorge in 271 

four regions, specifically the western, middle-inland, middle-coastal and northern-coastal regions, compared to 272 

HCLIM12. In the eastern region, HCLIM3 tends to overestimate Rx1d when it is above 33.5 mm, while exhibits 273 

better performance when Rx1d is larger than 48.2 mm compared with HCLIM12. In contrast, in the northern-inland, 274 

HCLIM3 can better capture the Rx1d except the severe extremes. In the southern and south-western regions, the 275 

distributions from both HCLIMs are quite similar as SeNorge, posing challenges in discerning superiority. 276 

4.1.2 Return levels  277 

 278 

 279 

Figure 4: The bias of extreme annual Rx1d exceeding the 5-year to 50-year over eight regions between seNorge and 280 
HCLIMs (i.e., HCLIM3 and HCLIM12). 281 

 282 

 283 
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 284 

 285 

 Figure 5: The frequency of daily extreme precipitation exceeding 10, 15, 20mm/day. 286 

 287 

Figure 4 shows the bias in estimated daily precipitation for 5-, 10-, 20-, and 50-year return periods during 1999-2018 288 

across eight regions (compared to SeNorge). The great interregional variation is shown between HCLIM3 and 289 

HCLIM12. Relative to SeNorge, HCLIM3 tends to overestimate return-levels in the eastern, western and northern-290 

coastal regions, while underestimates them in the others. With the exception of the western and northern-coastal 291 

regions, HCLIM12 shows a bias direction similar to HCLIM3. The performance of HCLIMs in capturing extremes 292 

varies across regions. HCLIM3 consistently outperforms HCLIM12 in the southern, western, middle-inland and 293 

middle-coastal regions for all return-periods, but performs less satisfactorily in other regions. As the return period 294 

increases, the bias between HCLIMs and observations increases, except in the northern-inland region.   295 

The frequency of precipitation exceeding 10, 15 and 20 mm is compared between simulations and observations 296 

for eight regions in Fig. 5. The south-western and western regions experience frequent extreme precipitation events 297 

exceeding 10, 15, and 20 mm/day. With exception in the western, middle-coastal and northern-coastal regions, 298 

HCLIM3 can better capture the frequency of extreme precipitation than HCLIM12. HCLIM12 tends to overestimate 299 

the frequency of extreme precipitation in most regions, except the middle-inland region. Both HCLIM3 and 300 

HCLIM12 well capture the frequency as the severity of extremes increases.  301 
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Given the societal impacts of precipitation extremes, understanding how HCLIM3 and HCLIM12 represent 302 

these extremes is crucial. The physical processes driving precipitation in inland and coastal regions, as highlighted 303 

by Konstali and Sorteberg (2022), emphasize the need for a separate evaluation for each region with different 304 

characteristics.  This approach ensures a more robust assessment, providing valuable information for regional 305 

authorities. 306 

4.1.3 Evaluation of hourly extreme with SeNorge2 307 

 308 

 309 

Figure 6: (a) Comparison of annual Rx1h during 2010-2018; (b) density plot of bias distribution from HCLIM3 and 310 
HCLIM12 compared to SeNorge2 during 2010-2018; (c) the bias of seasonal Rx1h from HCLIM3 and HCLIM12 to 311 
SeNorge2 for eight regions. For each region, the result is the bias is the average bias of grids within the region. 312 

 313 

Figure 6 provides a comprehensive comparison of Rx1h bias from HCLIM3 and HCLMI12 comparing with 314 

SeNorge2 during 2010-2018. From Fig. 6 (a), we can see that HCLM3 overestimate the annual Rx1h, while 315 

HCLIM12 underestimate the Rx1h almost over Norway. Furthermore, the density plot of bias in Fig. 6 (b) showing 316 

the bias distribution from two models compared with SeNorge2, further confirmed the overestimation from 317 

HCLIM3 and underestimation from HCLIM12. On average, the annual Rx1h in most grids could be better captured 318 
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by HCLIM3 with an average bias (1.5 mm) closer to 0, than HCLIM12.  Conversely, HCLIM12 underestimate Rx1h 319 

about 4 mm on average.  320 

The bias of Rx1h from HCLIM3 and HCLIM12 compared to SeNorge2 for eight regions in four seasons is 321 

shown in Fig. 6 (c). HCLIM3 performs better in capturing seasonal Rx1h than HCLIM12 in most regions except 322 

western, middle-inland and middle-coastal regions during summer. Besides, the seasonal Rx1h except summer is 323 

better represented by HCLIM3 compared to HCLIM12. In summer, wet-bias in all region is observed from 324 

HCLIM3. HCLIM12 shows dry-bias in all regions and seasons.  325 

 326 

4.2 Evaluation of daily extreme with in-situ data 327 

4.2.1 Rx1d precipitation 328 

 329 

Figure 7: (a) The annual Rx1d of in-situ observation, and the bias of Rx1d from HCLIM3 and HCLIM12 to in-situ 330 
observation during 1999-2018 over 194 stations; (b) density distribution of Rx1d bias between HCLIMs and observations 331 
from 194 stations during 1999-2018; (c) the bias of seasonal Rx1d between HCLIMs and observations across the eight 332 
regions. For each region, it is the averaged bias from all stations in the region. 333 

 334 
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Similar to the regional results in Fig. 2, Fig. 7 shows the annual and seasonal bias of Rx1d from HCLIM3 and 335 

HCLIM12 in comparison to in-situ observations. Notably, a larger difference between HCLIM3 and HCLIM12 can 336 

be seen at local scale compared to regional result: a greater number of grids from HCLIM3 approach zero-bias, and 337 

more grids from HCLIM12 shows a 20 mm dry bias, as shown in Fig. 7 (b). On average, HCLIM12 tends to 338 

underestimate annual Rx1d, while HCLIM3 represents added value in capturing annual Rx1d at local scale. 339 

When examined seasonally, as shown in Fig. 7 (c), excepting the western region with a wet bias, HCLIM3 340 

shows better performance in capturing winter Rx1d. In spring, HCLIM12 falters in representing Rx1d in the 341 

southern, south-western and northern-coastal regions, while HCLIM3 shows beneficial in most regions except the 342 

south-western, western and northern-coastal regions during autumn. Notably, the performance of both HCLIM3 and 343 

HCLIM12 at the local scale differs from the regional results. For example, their performance in the southern and 344 

south-western regions during autumn deteriorates, displaying a more significant dry bias. In contrast, biases in the 345 

eastern region from both HCLIM3 and HCLIM12 decrease in all seasons except winter.  346 

Biases from HCLIM3 increase in the western region during winter, spring and autumn. HCLIM12 shows 347 

improvement in capturing Rx1d at local scale compared to regional result except southern and south-western 348 

regions. However, the benefit from HCLIM3 over HCLIM12 diminishes in the western region at local scale relative 349 

to the regional scale. Notably, HCLIM3 fails to capture seasonal Rx1d in the south-western region, which is the 350 

same as from the regional results. Therefore, HCLIM3 and HCLIM12 yield divergent outcomes across different 351 

regions and seasons when examined at local scale compared to the regional scale.  352 

  353 
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 354 

4.2.2 Return-levels 355 

 356 

 357 

Figure 8: Percentage biases of daily precipitation in the present-day for HCLIM3 and HCLIM12 relative to observation 358 
for 5-, 10-, 20-, and 50-year return periods in the 192 daily rain-gauges. Return periods of 5-, 10-, 20-, and 50-year are 359 
calculated on the basis of station-scale GEV. The bias of daily precipitation with different return-levels for each region is 360 
the averaged bias of all stations within the corresponding region. 361 

 362 
Figure 8 shows bias in estimating daily return levels (e.g., 5-, 10-, 20-, and 50-year return periods) from HCLIM3 363 

and HCLIM12 compared to observations during the 1999-2018. This figure illustrates the average bias for return-364 

levels at grids within the corresponding regions. Biases from HCLIM3 and HCLIM12 exhibit variations across 365 

regions and return periods. HCLIM3 has a higher bias in the eastern, western and northern-coastal regions compared 366 

to HCLIM12, similar to the result at regional scale, while HCLIM12 shows larger uncertainty in the eastern region. 367 

Despite exceptions, HCLIM3 generally provides a more accurate representation of the return levels. Notably, in the 368 

northern-coastal, HCLIM3 exhibits lover bias for the return-level under 20-year return-period, but larger bias for the 369 

return-level under 5, 10, and 50-year return-periods. Both HCLIM3 and HCLIM12 perform well in the south-370 

western region. In addition, the range of the return levels from all grids within the corresponding region is shown in 371 
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Fig. S3. In the western and northern-inland regions, HCLIM3 introduces larger uncertainty, as evident by a wider 372 

whisker, in comparison to HCLIM12. Additionally, with longer return periods, both the bias of extremes and its 373 

associated uncertainty estimated by HCLIMs tend to increase. 374 

 375 

 376 

Figure 9: The frequency of daily precipitation exceeding 10, 15, 20mm/day. The frequency for each region is the averaged 377 
frequency of all stations within the corresponding region.   378 

By comparing the frequency of extreme precipitation exceeding 10, 15, 20 mm/day from HCLIM3 and 379 

HCLIM12 to in-situ observation, as shown in Fig. 9, we find HCLIM3 outperforms HCLIM12 in capturing the 380 

frequency of extreme precipitation in the eight regions generally, except the south-western, middle-inland and 381 

middle-coastal regions.  For the frequency of extreme precipitation above 20 mm/day, both HCLIMs capture it well.  382 

Compared to the result in regional scale (Fig. 5), the frequency of daily extreme precipitation between regional 383 

scale and local scale is different. The frequency at local scale is higher than the regional scale across all regions. 384 

Besides, the intraregional difference for the added value of HCLIM3 is also different. For example, the added value 385 

of HCLIM3 is shown in the middle-coastal according to the regional result, while not shown according to local 386 

result. In general, the benefit of HCLIM3 in capturing the frequency of extreme precipitation is seen both in the 387 

regional and local scale. 388 

 389 

 390 
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 391 

 392 

 393 

4.3 Evaluation of hourly extreme with in-situ data 394 

4.3.1 Rx1h intensity 395 

 396 

Figure 10: Time evolution of Rx1h precipitation for each year from observation, HCLIM3 and HCLIM12 during 1999-397 
2018 at 10 rain-gauges. 398 

 399 
The time evolution of annual Rx1d from HCLIM3 and HCLIM12 is compared to in-situ observation during 1999-400 

2018, as shown in Fig. 10. Compared to HCLIM12, HCLIM3 shows distinct superior in capturing the time evolution 401 

of annual Rx1d, even with underestimation and time shifting at some local places. For example, the annual Rx1d 402 

above 25 mm/day at SN69150, SN44300, SN90400, SN76530 and SN23500 is struggle to captured by HCLIM3 and 403 

HCLIM12. However, HCLIM3 well capture the annual Rx1d in other local places, despite of the time deviation of 404 
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annual Rx1d. Taking the site SN11500 as an example to illustrate the time deviation: HCLIM3 simulate that the 405 

annual Rx1d (37 mm) in the past 20 years was in 2001, four years earlier than the in-situ observation (35 mm). 406 

Furthermore, to better assess the annual variability of Rx1h, we extracted grids within a 12 km radius of each station 407 

and calculate the uncertainty range (Fig. S4). A comparison between HCLIM3 and HCLIM12 reveals that the 408 

interpolated local Rx1h precipitation from HCLIM12, particularly over grids with a larger area, tends to be damped, 409 

resulting in smaller return levels and a narrower range than HCLIM3. Importantly, the Rx1h in the past 20 years 410 

(1999-2018) can be well captured by HCLIM3. In the view of station statistics for the mean annual Rx1d in Norway 411 

(Fig.10) using boxplot, the mean annual Rx1d from HCLIM3 is within the range of observation, while HCLIM12 is 412 

all below the minimum value of observation. Despite outperforming than HCLIM12, it is noteworthy that HCLIM3 413 

demonstrates limitations in reproducing the accurate occurrence time and magnitude of annual Rx1h at local-level in 414 

Norway. 415 

  416 
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 417 

4.3.2 Return levels 418 

 419 

Figure 11: The bias of Rx1h precipitation exceeds 5-year, 10-year, 20-year, and 50-year return levels between HCLIMs 420 
and in-situ observations (based on GEV method). 421 

 422 

 423 
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 424 

Figure 12: The frequency of hourly extreme precipitation exceeding 10, 15, 20mm from HCLIM3, HCLIM12 and in-situ 425 
observations. 426 

 427 
At the local and hourly scale, HCLIM3 has better representation of the frequency of hourly extreme events 428 

compared to HCLIM12. Despite both HCLIM3 and HCLIM12 underestimating the Rx1h precipitation for 5, 10, 20, 429 

and 50-year return periods at almost stations (Fig. 11), the bias for ten rain gauges between observations and 430 

interpolated HCLIM3 is consistently lower than that from HCLIM12 at all return periods. There is an exception, at 431 

SN11500, SN69150, SN90400 and SN56420, HCLIM3 shows slight overestimation. Moreover, the bias between 432 

HCLIMs and in-situ observation increased as return period increases. Notably, the return level of hourly extreme 433 

events at SN17870, SN12550, SN90400 and SN56420 is accurately captured by HCLIM3, indicating its ability to 434 

better capture the extreme hourly precipitation at 5,10,20,50-year return periods compared to HCLIM12 in localized 435 
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areas. This result shows the superiority of CPRCM in representing the frequency of extreme precipitation at a very 436 

localized scale, despite the underestimation of return levels from both HCLIM3 and HCLIM12.  437 

In addition, Fig. 12 shows the frequency of hourly precipitation exceeding 10, 15 and 20 mm at ten stations. 438 

The results further confirm the added value of CPRCM in capturing the frequency of extreme precipitation at very 439 

localized scale, despite the tendency to overestimate the frequency.  This added value is more obvious than at the 440 

regional scale, although we acknowledge the uncertainty in the extreme precipitation analysis based on the 441 

stationary GEV method.  442 

 443 

4.4 Evaluation of seasonality  444 

 445 

 446 

 447 

Figure 13: The seasonality of frequency and magnitude of Rx1d precipitation from the SeNorge, HCLIM3 and HCLIM12 448 
during 1999-2018 over different regions: a) Eastern, b) Southern, c) South-Western, d) Western, e) Middle-Inland, f) 449 
Middle-Coastal, g) Northern-Coastal, h) Northern-Inland. 450 
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 451 

Figure 14: The seasonality of frequency and magnitude of Rx1d precipitation from the in-situ observation, HCLIM3 and 452 
HCLIM12 during 1999-2018 over different regions: a) Eastern, b) Southern, c) South-Western, d) Western, e) Middle-453 
Inland, f) Middle-Coastal, g) Northern-Coastal, h) Northern-Inland. 454 

 455 

 456 

 457 
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 458 

Figure 15: Seasonality of the frequency and magnitude of Rx1h precipitation from the in-situ, HCLIM3 and HCLIM12 459 
during 1999-2018 at 10 rain gauge stations (Table 1), i.e., a) SN11500, b) SN69150, c) SN58900, d) SN17870, e) SN44300, f) 460 
SN12550, g) SN90400, h) SN76530, i) SN56420, j) SN23500. 461 

 462 

Figure13 and Figure 14 show the comparison of seasonality (e.g., frequency and magnitude) of Rx1d from HCLIMs 463 

compared to SeNorge and in-situ observation, respectively. From the seasonality of daily extreme precipitation in 464 

Fig. 13, we can see that winter-autumn precipitation is dominant in almost all regions, except the Middle-Inland and 465 

Northern-Inland regions where spring-summer precipitation is dominant, similar results can be found in HCLIM3. 466 

However, the spring-summer dominant precipitation is observed in the Eastern region from HCLIM12.  Heavy 467 

precipitation over 50 mm/day occurs mainly in the Southern, South-Western, and Western regions which is also 468 

simulated by both HCLIM3 and HCLIM12. In general, both HCLIM3 and HCLIM12 demonstrate competence in 469 

capturing the magnitude of extreme daily precipitation seasonally across all regions. Particularly noteworthy is the 470 

enhanced capability of HCLIM3 in capturing the seasonality of extreme precipitation frequency over the eastern, 471 
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south-western, middle-inland, middle-coastal, and northern-coastal regions compared to HCLIM12. This superior 472 

representation of the frequency of extreme daily precipitation in HCLIM3 is consistently evident on a seasonal basis 473 

relative to HCLIM12. The performance of the seasonality of Rx1d from HCLIM3 and HCLIM12 in the regional 474 

scale is also confirmed by the in-situ observation (Fig. 14). 475 

Examining the seasonality of Rx1h at local scale in Fig. 15, we can see that HCLIM3 provides a more accurate 476 

representation of the seasonality of Rx1h in comparison to HCLIM12, which fails to produce the Rx1h. However, 477 

comparing with in-situ observations, HCLIM3 tends to overestimate the frequency. For example, in SN58900 and 478 

SN56420 located in the Western region, HCLIM3 simulates more frequent events, although the magnitude of 479 

precipitation is underestimated. Both observations and HCLIM3 indicate that winter-autumn is dominant in the 480 

Western region. The CPRCM excels in reproducing the Rx1h, surpassing the RCM in both regional and station 481 

scales, particularly at localized scale.  482 

4.5 Orographic effect on seasonal extreme precipitation 483 

4.5.1 Seasonal Rx1d at regional scale 484 

 485 
Figure 16: Relation of (a) winter, (b) spring, (c) summer, and (d) autumn Rx1d from SeNorge and HCLIMs (i.e., 486 
HCLIM3 and HCLIM12) with elevation over Norway between during 1999-2018. 487 
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         488 

The relationship of seasonal Rx1d with elevation from SeNorge, HCLIM3 and HCLIM12 is shown in Fig. 16. We 489 

can see that HCLIM3 more accurately captures the no evident linear relation (indicated by zero coefficient of 490 

determination) of seasonal Rx1d with elevation, similar to SeNorge, though it depicts a more pronounced increase 491 

with elevation than SeNorge during summer. For example, both HCLIM3 and HCLIM12 simulate a large average 492 

elevation-related increase in summer Rx1d (over 2.8 mm/km). Conversely, HCLIM12 reflects the reverse 493 

orographic effect in winter and autumn Rx1d, showing a more significant decrease in Rx1d with elevation than 494 

observation. The variation of Rx1d with elevation in HCLIM12 is consistently larger than observation, as indicated 495 

by the larger absolute slope values. 496 

4.5.2 Seasonal Rx1d at local scale 497 

 498 

 499 

Figure 17: Relation of (a) winter, (b) spring, (c) summer, and (d) autumn Rx1d from daily in-situ observation and 500 
HCLIMs (i.e., HCLIM3 and HCLIM12) with elevation over Norway between during 1999-2018. 501 

 502 
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Figure 17 represents the relationship of the seasonal Rx1d from in-situ observation, HCLIM3 and HCLIM12 with 503 

elevation at local scale. The observed reverse orographic effect, seasonal Rx1d decrease with elevation, clearly 504 

depicts with an average decrease of winter, spring, summer and autumn Rx1d of more than 29.8, 16.2, 8.6 and 27.6 505 

mm/km. HCLIM3, although with smaller slope than observation, shows improvement in capturing the orographic 506 

effect on winter Rx1d than HCLIM12. Moreover, HCLIM12 displays a more pronounced decline in Rx1d with 507 

elevation, as evidenced by a steeper slope, across all seasons except summer, when compared to observation. 508 

Despite of this, HCLIM12 more accurately represents the orographic influences on Rx1d in all seasons except 509 

winter. Furthermore, as depicts in Fig. 17, the decreasing density of stations with increasing elevation complicates 510 

the assessment of orography’s impact, thereby challenging the reliability of our evaluations in elevated terrains. 511 

 512 

4.5.3 Seasonal Rx1h at regional scale 513 

 514 

Figure 18: Relation of (a) winter, (b) spring, (c) summer, and (d) autumn Rx1h from SeNorge2 and HCLIMs (i.e., 515 
HCLIM3 and HCLIM12) with elevation over Norway between during 2010-2018. 516 

 517 
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The relationship of seasonal Rx1h with elevation from gridded observation and simulation is further explored, as 518 

shown in Fig. 18. Different with seasonal Rx1d at regional scale, the reverse orography effect on Rx1h from 519 

SeNorge2 clearly emerges in all seasons, with an average decrease of more than 1.3, 0.5, 1.3 and 1.3 mm/km in 520 

winter, spring, summer and autumn, respectively. HCLIM3 more accurately captures the pronounced decrease in 521 

seasonal Rx1h with elevation during winter, summer and autumn, though it still underestimates the decrease relative 522 

to actual observation. By contrast, HCLIM12 can only reflect the similar reverse orographic on Rx1h with 523 

observation in spring. The density plots of Rx1h reveal a significant dry bias in HCLIM12, particularly noticeable in 524 

summer, where it inversely correlates Rx1h with elevation. HCLIM3 more effectively represents the reverse 525 

orographic impact on hourly precipitation than on daily, as seen by comparing the slope and precipitation 526 

distribution in the Fig. 16 and Fig. 18.   527 

 528 

5 Discussion 529 

5.1 Added value of CPRCM at regional scale 530 

The comparison between HCLIM3 and HCLIM12 reveals distinct biases in the representation of Rx1d, particularly 531 

marked by an orographic effect. HCLIM3, on average, exhibits lower bias compared to HCLIM12, with notable 532 

overestimation of precipitation along coastal areas. Converse to the wet-bias from HCLIM3, HCLIM12 shows 533 

underestimation in the complex orography for the annual Rx1d. This discrepancy is attributed to unrealistic cloud 534 

concentration nuclei numbers, while complex terrain areas also experience overestimation of precipitation from 535 

HCLIM3 due to micro-physics, confirming findings from Lind et al. (2020). The comparison in Fig. S2 for annual 536 

precipitation also represents large difference, particularly marked by a coastal-mountain-inland division. HCLIM3, 537 

on average, exhibits a slightly larger wet-bias compared to HCLIM12 over the complex terrain, which could be 538 

related to the model physics confirmed by Lind et al. (2020). 539 

Notably, CPRCM (i.e., HCLIM3) demonstrates more significant benefits in capturing Rx1d at numerous grids 540 

in Norway compared to SeNorge. Spatial variations in precipitation patterns across eight regions in Norway further 541 

highlight the nuanced performance of HCLIM3, particularly in complex topography areas. Consistent with the 542 

observation from Dyrrdal et al. (2015), HCLIM3 also displays a lower bias than HCLIM12 on average, aligning 543 

with the observed strong west-east gradient of precipitation over complex terrain. Dyrrdal et al. (2015) and Poujol et 544 

al. (2021) emphasize the diverse mechanisms driving precipitation in different regions of Norway. For instance, 545 

extreme precipitation in the western region is dominated by frontal systems and orography during autumn and 546 

winter, while convective activity plays a crucial role in the southern regions during summer (Li et al., 2020b). 547 

HCLIM3, however, slightly overestimates annual Rx1d in complex terrain, indicating challenges in convection 548 

parameterization schemes.  549 

The study by Thomassen et al. (2023) utilizing SPHEAR with a 2.2 km resolution echoes challenges in 550 

accurately simulating extreme precipitation over complex terrain in the northern Italy. Our findings confirm the 551 
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benefit of convection-permitting models in capturing spatial distribution in complex terrain, even though slight 552 

positive biases persist when compared with SeNorge data.  553 

A potential reason for the observed biases is related to the limitations of pseudo-observation SeNorge, which 554 

may inadequately represent steep valleys at the 3 km grid space (Thomassen et al., 2023). Sparse station distribution 555 

in complex mountain areas may contribute to unrealistic observations, concealing the benefits from HCLIM3. The 556 

future work should delve into biases introduced by SeNorge and its potential impact on observed precipitation 557 

patterns. Comparisons between SeNorge and HCLIM3 in data-sparse areas should be approached with caution due 558 

to uncertainties associated with the SeNorge dataset. 559 

The comparison of HCLIM3 and HCLIM12 in terms of seasonal Rx1d reveals better representation by 560 

HCLIM3, except for a dry bias in the southwest region. This dry bias could be attributed to the limitations of 561 

HCLIM3 in capturing specific precipitation mechanisms in this region.  562 

Furthermore, HCLIM3 shows obvious benefit in capturing Rx1h on average than HCLIM12, even with wet-563 

bias from HCLIM3 compared to hourly SeNorge2 over Norway. Most grids from HCLIM12 underestimate the 564 

Rx1h, indicating the misrepresentation from parameterization schemes, confirming the finding from Lind et al. 565 

(2020), more “drizzle” in HCLIM12. The uniformed spatial variation for the annual Rx1h may be attributed to the 566 

too sparse station distribution (Lind et al., 2020), resulting in the damping for local storms. The station density 567 

induced error from gridded dataset has also been indicated in Gervais et al. (2014b), who suggested the source for 568 

large errors in gridded dataset when station density is low. 569 

In summary, HCLIM3 demonstrates better agreement with observations at regional scales in Norway 570 

compared to HCLIM12. This is consistent with previous studies highlighting the superiority of convection-571 

permitting models, especially in capturing extreme precipitation events over complex terrain.  572 

 573 

5.2 Added value of CPRCM at local scale 574 

The examination of CPRCM at the local scale reveals its superiority representation of extreme precipitation. Our 575 

analysis focuses on in-situ observations (at local scale), recognizing the limitations of aggregation, regional average 576 

or pooling techniques at grid scale, as highlighted by Kendon et al. (2023).  577 

Chapman et al. (2023) compared return-levels between an Africa convection-permitting climate model with 578 

4.5 km grid-spacing (CP4A) and observation at station-level and grid and found large differences. CP4A closely 579 

aligns with station return-levels but exhibits a slight undercatch for the precipitation. Our results at station scale 580 

corroborates these results, as return levels consistently underestimate extreme precipitation in HCLIM3. In line with 581 

findings in Malawi, where regional-climate-model (P25) overestimated return levels with increasing return periods. 582 

The damped extremes from averaged precipitation within the gridbox may cause smaller return-level at grid scale. 583 

Therefore, significant bias of HCLIM3 and HCLIM12 relative to observation between local scale (station-level) and 584 

regional scale may also be attributed to the damped extremes. The hourly and daily precipitation extremes from 585 

HCLIM3 at most stations show more realistic results than at the regional scale, supporting the hypothesis of damped 586 

extremes at regional scale weakening the superior, even though more bias is observed than regional result.  587 
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Despite the higher uncertainty associated with extremes from CPRCM at local scale (Chan et al., 2020; 588 

Cannon et al., 2019), our results demonstrate smaller biases in HCLIM3. The higher extreme damping in HCLIM12, 589 

averaging over coarse resolutions (~12km), may contribute to its higher dry bias. Furthermore, the credibility of 590 

CPRCM in providing reliable representation for extremes may attribute to resolve deeply convective activities at 591 

sub-grid scale, while the deficiency in the convection-parameterization scheme (HCLIM12) may bring uncertainty. 592 

In contrast to the numerical instability in RCMs noted by Kendon et al. (2023), we note underestimation of 593 

extremes, including return-level and time evolution in HCLIM12 at local scale, attributable to its convection-594 

parameterization scheme. In summary, the added value of HCLIM3 in capturing the frequency of extreme 595 

precipitation at station scales, especially at highly localized local scale, is evident when compared to HCLIM12.  596 

Few studies have compared sub-daily and daily rainfall in RCMs due to its unreliable prediction at sub-daily 597 

scale. Following Ban et al. (2014), we recognize that the added value of CPRCM in capturing sub-daily or daily 598 

precipitation extremes is different. The performance of RCM ~10 km in representing sub-daily rainfall was limited, 599 

which has been proved hard to capturing sub-daily extreme rainfall in the southwestern United States (Jiang et al., 600 

2013).  601 

Contrary to sub-daily extremes, HCLIM12 demonstrates higher merit in capturing daily extreme precipitation, 602 

with biases less than 50%. By comparing the Rx1d/Rx1h at local scale, we also note that the added value of 603 

HCLIM3 in capturing the Rx1h is more obvious. The superior performance at hourly scale is consistent with 604 

findings by Médus et al. (2022) and Ban et al. (2014), emphasizing the significantly better sub-daily precipitation 605 

characteristics of CPRCM, including spatial distribution and duration-intensity features.  606 

5.3 Seasonality of extreme precipitation 607 

The performance of CPRCM in capturing the seasonality of precipitation driven by different physical process has 608 

been a subject of investigation in previous studies. Moustakis et al. (2021) highlighted the adequacy of CPRCM 609 

(CTL-WRF~4 km) in capturing observed seasonality in the United States. Prein et al. (2013) also emphasized 610 

CPRCM's ability to better reflect summer precipitation due to stronger deep convective activity. They found there 611 

was less difference between RCM and CPRCM in capturing winter precipitation.  612 

In our comparison between HCLIM12 and HCLIM3, we observe superior representation of hourly 613 

precipitation seasonality in HCLIM3. The frequency and intensity of Rx1d in regional scale and Rx1h at station-614 

level can be better captured by HCLIM3, especially for local scale. The varying response to seasonal extreme 615 

precipitation across different regions with distinct climate characteristics suggests that CPRCM tends to perform 616 

better in specific regions or seasons with more convective precipitation. This aligns with finding from Prein et al. 617 

(2013), emphasizing CPRCM's strength in capturing convective processes.  618 

Further investigation of CPRCM and RCM performance in different regions regarding extreme precipitation 619 

reveals the added value of HCLIM3, especially when assessing precipitation frequency and intensity on a seasonal 620 

basis. This advantage is more pronounced at the local scale compared to the regional scale. However, investigating 621 

daily precipitation intensify and frequency at local scale reveals unexpected results, notably the intensify of Rx1d 622 

during winter is better captured, while the southern and south-western regions with more convective activity during 623 
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summer are poor represented by HCLIM3. This suggests that HCLIM3's performance is not solely constrained by 624 

specified convective precipitation, and the consistent underestimation of Rx1d intensity during summer in 625 

HCLIM12 may be attributed to higher uncertainty from its convective parameterization scheme or numerical 626 

uncertainties at the local scale. 627 

5.4 Added value of CPRCM in reproducing orographic effect 628 

At the local scale, seasonal Rx1d decrease with elevation, known as reverse orographic effect, is captured by 629 

HCLIMs in all seasons. Compared to HCLIM12, HCLIM3 shows added value in representation of reverse 630 

orographic effect during winter. In other seasons, however, HCLIM12 shows more improvement in the relation of 631 

extreme precipitation with elevation than HCLIM3. It is noteworthy that the differences in how seasonal Rx1d 632 

relates to elevation are more pronounced at a regional scale than at a local scale.  633 

At regional scale, no evident relation of Rx1d with elevation is found from observation in all seasons, which 634 

have also been shown from HCLIMs except summer. Furthermore, the unclearly relation of seasonal Rx1d with 635 

elevation at regional scale was also seen from the study of Dallan et al. (2023), in which, they analyzed annual Rx1d 636 

based on CPRCMs and in-situ observation over Alpine. In summer, HCLIMs shows the orographic effect on Rx1d, 637 

which may be explained by the overestimated orographic precipitation from HCLIMs. Different to the unclearly 638 

orographic impact on Rx1d at regional scale, steeper slope is clearly seen than that from the local scale. Conversely, 639 

the so-called “orographic enhancement” (Avanzi et al., 2021), precipitation increase on the windward side induced 640 

by the lifting of air masses, and decrease along the leeward side due to air descent and drying is not found here at the 641 

regional or local scales. 642 

For hourly extremes, the results of reverse orography effect on seasonal Rx1h are consistent with previous 643 

study of Dallan et al. (2023), which also found the weak decrease of annual Rx1d from CPRCMs to elevation than 644 

in-situ observation over Alpine. HCLIM3 and HCLIM12 well capture the reverse orography effect on Rx1h, 645 

especially in HCLIM3, although a stronger decrease of Rx1h with elevation is observed from SeNorge2 except 646 

spring. Besides, lower Rx1h and weak reverse orography effect is found in HCLIM12 in all seasons. The orographic 647 

effect on hourly and daily extremes seasonally suggests the influence of orography on extreme precipitation at 648 

different timescales, and highlights the reliable simulation of extreme precipitation over complex orography. Our 649 

findings confirm the reverse orographic effect on Rx1h, as previously observed for hourly precipitation (Marra et al., 650 

2021). 651 

In summer, the poor performance from HCLIM3 and HCLIM12 in capturing orography effect and extreme 652 

precipitation may be related to the intense orographically-sustained convection affected by atmospheric, aerosol 653 

conditions, local terrain slope and shadowing effects, which failed to be captured by 3 km CPRCMs (Dallan et al., 654 

2023; Poujol et al., 2021). Moreover, Marra et al. (2021) also confirmed that the reverse orography effect on short-655 

duration precipitation extremes could be attributed to a weaking of updrafts of moist air over mountain ridge by 656 

orographic turbulence. However, another major source resulting in the bias between HCLIMs and observation could 657 

be related to the observation uncertainty. Sparseness of hourly stations and undercatch problems could also lead to 658 
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underestimation and underestimation of precipitation, especially in the complex orography (Lussana et al., 2018, 659 

2019).  660 

Furthermore, we acknowledged that the linear regression method is closely related to the distribution of data 661 

point. More specifically, the different relationship between seasonal Rx1d and elevation may be attributed to the 662 

uncertainty from the observed data. For example, there is limited rain gauges over the complex orography, the 663 

highest rain-gauges are located about 1000 m. Importantly, several land surface characteristics could influence the 664 

precipitation, a multiple linear regression model should be considered to quantify the orographic effect more realism 665 

(Zhang et al., 2018). Besides, there might be uncertainty from SeNorge gridded dataset. Therefore, the relationship 666 

between Rx1d and elevation remains inconclusive. Besides, the reverse orographic effect from Rx1h also needs to 667 

be improved due to the lack of sufficiently long data records. Enhanced observation and more comprehensive 668 

datasets are necessary to solidify our understanding of this connection. 669 

 670 

6 Conclusions 671 

In this study, we conducted a comprehensive evaluation of extreme precipitation characteristics from regional to 672 

local scale in Norway, focusing on eight distinct regions, utilizing a convection-permitting regional climate model 673 

(HCLIM3) and comparing it with its convection-parameterized regional climate model (HCLIM12) forced by ERA-674 

Interim data during 1999-2018. 675 

The key conclusions drawn from this study are as follows: 676 

a) For daily extreme precipitation at regional scale, HCLIM3 shows benefit in capturing Rx1d compared to 677 

HCLIM12, showcasing improved representation of Rx1d in all seasons in the most of regions except 678 

south-western. The added value of HCLIM3 varies across regions, demonstrating its superiority in 679 

capturing return levels and daily extreme precipitation frequency, particularly in the southern, middle-680 

inland, middle-coastal, and northern-inland regions based on both SeNorge and in-situ data. HCLIM3 681 

shows greater potential in reproducing the frequency of daily extreme precipitation exceeding 10, 15, and 682 

20 mm.  683 

b) For hourly extreme precipitation at regional scale, HCLIM3 also shows superiority on average, with wet-684 

bias based on SeNorge2, compared to HCLIM12. Furthermore, the added value from HCLIM3 in 685 

capturing seasonal Rx1h is also observed than HCLIM12 in all seasons and regions except western, 686 

middle-inland and middle-coastal regions during summer. In contrast, the overestimation of Rx1h from 687 

HCLIM12 across eight regions in Norway is found.  688 

c) For daily extreme precipitation at local scale, the Rx1d feature including frequency, intensity and return 689 

level in most regions can be better captured by HCLIM3 than HCLIM12, although the benefit from 690 

HCLIM3 over HCLIM12 diminishes in western region at local scale compared to that at regional scale. 691 

Except south-western, HCLIM3 also have not superiority in capturing Rx1d in the western region.  692 

d) For hourly extreme precipitation at the local scale, HCLIM3 outperforms HCLIM12 in capturing the 693 

annual variability of Rx1h during 1999-2018, although the shifting of peak occurrence or magnitude is 694 
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observed than observation at some stations. Compared to HCLIM12, the add-value of HCLIM3 in 695 

capturing Rx1h is more obvious at local scale than regional scale. The extreme precipitation characteristics 696 

including frequency, intensity and return-level from HCLIM2 at local scale are underestimated seriously. 697 

Besides, HCLIM3 also shows more added value in capturing Rx1h than Rx1d from regional to local scale. 698 

e) For the seasonality of extremes, our analysis reveals no substantial difference between HCLIM3 and 699 

HCLIM12 when it comes to daily extremes. However, a distinct advantage emerges with HCLIM3 for 700 

hourly extremes, where it accurately reflects both the occurrence and intensity of these events across 701 

different seasons. On the other hand, HCLIM12 tends to underestimate these aspects, demonstrating a 702 

significant bias in capturing the frequency and magnitude of hourly extreme  703 

f) The reserve orographic effect on seasonal Rx1h at regional scale emerge in Norway and can be better 704 

captured by HCLIM3 than HCLIM12 except spring, although a stronger decrease is found in observation. 705 

Additionally, a significant reverse orographic effect on seasonal Rx1d at the local scale has been observed, 706 

with HCLIM3 providing added value, especially in capturing winter Rx1d. However, the relationship 707 

between seasonal Rx1d and elevation at the regional scale remains ambiguous. 708 
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