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Abstract 16 

Convection-permitting regional climate models (CPRCMs) have demonstrated enhanced capability in capturing 17 

extreme precipitation compared to regional climate models (RCMs) with convection-parameterization schemes. 18 

Despite this, a comprehensive understanding of their added values in daily or hourly extremes, especially at local 19 

scale, remains limited. In this study, we conduct a thorough comparison of daily and hourly extreme precipitation 20 

from the HARMONIE-Climate (HCLIM) model at 3 km resolution (HCLIM3) and 12 km resolution (HCLIM12) 21 

across Norway’s diverse landscape, divided into five regions, using both gridded and in-situ observations. Our main 22 

focus is to investigate the added value of CPRCMs (i.e., HCLIM3) compared to RCMs (i.e., HCLIM12) for extreme 23 

precipitation from regional to local scales, and quantify to what extend CPRCMs can reproduce the orographic 24 

effect on extreme precipitation at both daily and hourly scales. We find that HCLIM3 better matches observations 25 

than HCLIM12 for daily and hourly extreme precipitation across most grid points in Norway, while HCLIM12 26 

underestimates the extremes, especially for hourly extremes. At the regional scale, HCLIM3 captures the maximum 27 

1-day precipitation (Rx1d) and maximum 1-hour precipitation (Rx1h) more accurately across most regions and 28 

seasons with some exceptions. Specifically, for daily extremes, it shows larger summer biases in the east, south and 29 

west, as well as return levels biases in the east; for hourly extremes, larger biases are observed in the summer and 30 

west, compared to HCLIM12. Besides, for local scale, HCLIM3 also outperforms HCLIM12 in most regions and 31 

seasons, except slightly larger summer bias of daily extreme in the south and west. Overall, HCLIM3 consistently 32 
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demonstrates added value in simulating daily extremes in the middle and north regions at both regional and local 33 

scales, as well as hourly extremes at all 10 stations, compared with HCLIM12. Both HCLIM3 and HCLIM12 34 

capture the seasonality of daily extremes well, while HCLIM3 performs better for the hourly extremes, accurately 35 

representing their frequency and intensity. Additionally, both models capture the reverse orographic effect of Rx1h 36 

at the regional scale with no added value seen in HCLIM3, while at local scale, HCLIM3 shows added value 37 

compared to HCLIM12 in representing the reverse orographic effect of Rx1d in all seasons except summer. This 38 

study highlights the importance of more realistic CPRCMs in providing reliable insights into the characteristics of 39 

precipitation extremes across Norway's five regions. Such information is crucial for effective adaptation 40 

management to mitigate severe hydro-meteorological hazards, especially for the local extremes.   41 

1 Introduction 42 

In recent years, the world has witnessed a surge in both frequency and intensity of floods primarily attributed to the 43 

increasing occurrence of intensive rainfall events (Tabari, 2020). These changes underscore the pressing need to 44 

develop a predictive understanding of precipitation extremes for the upcoming decades, given the ongoing globe 45 

warming. The intensification of precipitation extremes under the influence of global warming has the potential to 46 

trigger severe natural hazards and exert significant socioeconomic impacts (Thackeray et al., 2022), which has 47 

gained substantial attention in recent research endeavors. However, most previous research in this field relied on 48 

coarse-resolution GCMs with grid sizes exceeding 100 km, which struggle to accurately simulate extreme 49 

precipitation events and their frequency due to the limitations of their coarser resolution (Piani et al., 2010; Wang et 50 

al., 2017). Notably, these GCMs tend to produce the largest errors in predicting extreme precipitation, particularly in 51 

cases involving heavier convective activity, as observed in the study by Gervais et al. (2014a). Despite various bias-52 

correction techniques are applied to mitigate these discrepancies on the GCMs, as well as employing them as forcing 53 

data for regional climate models (RCMs) with grid size larger than 10 km, it remains a persistent challenge to 54 

eliminate the transfer of biases from GCMs to RCMs, as noted by studies such as Pontoppidan et al. (2018) and Kim 55 

et al. (2020). The large resolution gap between GCMs or RCMs and localized precipitation extremes further 56 

constrains the robust simulations of extreme precipitation as highlighted by Li et al. (2020a). In addition, the 57 

reliance on parameterization schemes to represent convection in these coarse resolution models introduces a 58 

significant source of uncertainty in modelling errors (Prein et al., 2015; Kendon et al., 2019). More frequent and 59 

intense precipitation events under global warming stimulate interest in higher resolution and physics-based models 60 

to improve the estimation of short-duration extremes. 61 

Convection-permitting regional climate models (CPRCMs), with grid size of less than 4 km, offer a promising 62 

alternative, which explicitly represent convection, eliminating the need for parameterizations of deep atmospheric 63 

convection. The potential in resolving deep convection and local extremes from CPRCMs lead to the realistic 64 

representation in daily and sub-daily precipitation features, including diurnal cycle, intensity and frequency of heavy 65 

precipitation events, seasonality, spatial-temporal pattern, wet-spell and dry-spell. For instance, CPRCMs have been 66 

proven to reduce the bias and enhance the representation in precipitation intensity and intensity in the Tibetan 67 
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Plateau, the highest highland in the world, as shown in Li et al. (2021). In addition to their capability in capturing 68 

precipitation, Liu et al. (2017) also demonstrated the confidence of CPRCMs in estimating snowfall and snowpack 69 

in the central U.S. Furthermore, the importance of CPRCMs in representing dry spell, dry and wet extremes induced 70 

by local convective activity across Africa has also been found in Kendon et al. (2019), Chapman et al. (2023) further 71 

confirmed its benefit in capturing rare rainfall extreme and local feature. In UK, Kendon et al. (2023) and Kent et al. 72 

(2022) have found the benefit of CPRCMs compared to RCMs with convection parameterization schemes. 73 

Additionally, the superior performance in capturing hourly and daily extreme precipitation including return-level, 74 

frequency and intensity from CPRCMs over Alpine in Europe, has also been highlighted by Adinolfi et al. (2021), 75 

Dallan et al. (2023) and Giordani et al. (2023).  76 

Northern Europe has been reported to experience a strong increase in precipitation, as indicated by Dyrrdal et 77 

al., (2023). Thus, a novel CPRCM has been developed within the Nordic Convection Permitting Climate Projections 78 

project (NorCP) based on the HARMONIE-Climate model (HCLIM), cycle 38 (HCLIM38; Belušić et al., 2020) and 79 

applied at a resolution of 3 km (HCLIM3).  To investigate the added value of the convection-permitting resolution, 80 

HCLIM38 has also been run at a (not convection-permitting) resolution of 12 km (HCLIM12). For convenience, 81 

HCLIM3 and HCLIM12 are used in the following to represent the HCLIM38 simulations at the two resolutions, i.e. 82 

the CPRCM and ordinary RCM, respectively. The term HCLIMs indicates the two of them, HCLIM3 and 83 

HCLIM12. 84 

Through comparisons of seasonal precipitation, daily mean precipitation, higher-intensity daily precipitation, 85 

the diurnal of hourly precipitation including frequency and intensity from HCLIM3 and HCLIM12 over Fenno-86 

Scandinavia, Lind et al. (2020) emphasized the added value of CPRCMs in reproducing extreme precipitation, 87 

primarily over complex terrain, compared to a coarser-scale model. Médus et al. (2022) also noted that the summer 88 

diurnal cycle of frequency and intensity of hourly precipitation was correctly captured in HCLIM3 compared to 89 

HCLIM12 in the Nordic region, with HCLIM12 underestimating the diurnal cycle. However, the evaluation and 90 

conclusions from Lind et al. (2020) and Médus et al. (2022) mainly focused on the large regional and country scale 91 

of Fenno-Scandinavia, overlooking the added values of CPRCMs at local scale. Furthermore, Thomassen et al. 92 

(2023) observed that HCLIM3 tends to exhibit underestimations in monthly precipitation and a later evening peak 93 

compared to sub-kilometre models. They found that the advantages of sub-kilometer models were not outstanding. 94 

These evaluations were based on gridded datasets, which introduce uncertainty at the local scale, especially over 95 

complex orography (Lussana et al., 2019). As Chapman et al. (2023) demonstrated, who underscored the importance 96 

of assessing rare extreme rainfall events in eastern African using convection-permitting models and parameterization 97 

convection models at both grid and station scales, the extreme from grids representing rainfall averaged over a larger 98 

area are damped and hence the return-level will be smaller than observation. They found that the station-derived 99 

shape parameters and return levels are aligned with observations and suggested the significance of site-specific 100 

analysis and evaluations. The error induced by station density in gridded dataset has also been indicated in Gervais 101 

et al. (2014b), who suggested the source of large errors in gridded dataset when station density is low. Consequently, 102 
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a comprehensive evaluation and analysis of the added value from CPRCMs compared with RCMs that incorporates 103 

both regional and local scales is crucial for extreme precipitations. 104 

We acknowledge that Norway, a Nordic country, is representative of diverse climate features due to its 105 

extended latitude, rugged coastline, plateaus, and complex orography. The dominances of precipitation between the 106 

coastal and inland regions over Norway are distinctly different, and most of studies focusing on the hydrology and 107 

meteorology over Norway were based on the divided regions (Vormoor et al., 2016; Poujol et al., 2021; Konstali 108 

and Sorteberg, 2022). By dividing region with its characteristics, a more thorough comprehension of added value of 109 

CPRCMs in capturing extreme precipitation can be reached. Therefore, reliable evaluation about analyzing the adder 110 

value of CPRCMs in capturing extreme precipitation should be scaled to region or local scale. 111 

In the complex mountain areas, extreme precipitation is triggered by the interaction of large-scale atmospheric 112 

activity and local orography property, which may cause severe hydrometeorological hazards, such as flash flooding. 113 

However, understanding the orographic impact in precipitation in complex orography is challenging due to sparse 114 

observations (Rossi et al., 2020). The poor representation of RCMs in capturing local precipitation have been 115 

indicated in Knist et al. (2020). Importantly, CPRCMs shows advantage in reproducing precipitation bias over 116 

higher complex orography in the Alpine, as shown in Lind et al. (2016) and Reder at al. (2020). Furthermore, the 117 

better representation of sub-daily and daily heavy precipitation from CPRCMs over the Alpine have also been found 118 

in Ban et al. (2020) and Dallan et al. (2023). Marra et al. (2021) and Dallan et al. (2023) also confirmed the 119 

efficiency of CPRCMs in reproducing the reverse orography effect on hourly extreme precipitation. The relationship 120 

between extreme precipitation and elevation may vary depending on latitude and climate zones (Amponsah et al., 121 

2022). Rossi et al. (2020) and Mahoney et al. (2015) found the weak depend of sub-daily precipitation on elevation 122 

in Colorado, USA. Opposing the orographic enhance on daily precipitation, Dallan et al. (2023) indicated the no 123 

evident relation of daily precipitation on elevation. It is worth noting that the potential added value of CPRCMs in 124 

representing orographic effects compared to RCMs has not been explored. Moreover, the performance of CPRCMs 125 

varies with seasons, which underscores the need to explore the orographic effects on seasonal extremes. Thus, we 126 

fill this knowledge gap by characterizing orographic impact on hourly and daily extreme precipitation seasonally.  127 

As highlighted by Konstali and Sorteberg (2022),  there can be significant uncertainties associated with the 128 

interpolation of grided precipitation data. Besides, the benefit for precipitation spatial evaluation based on in-situ 129 

observation has also been reported in Thomassen et al. (2023). Therefore, the evaluation of extreme precipitation 130 

from HCLIM3 and HCLIM12 here, is based on both gridded precipitation and in-situ observation. Our study aims to 131 

address the value of CPRCMs (HCLIM3) in capturing the characteristics of extreme precipitation in Norway, 132 

comparing it with a coarser resolution model (HCLIM12) as well as both of the in-situ and gridded precipitation 133 

observations. Here, our contribution to the existing literature, e.g., Médus et al. (2022), revolves around the added 134 

value of CPRCMs in the extreme precipitation characteristics, encompassing a range of metrics.  135 

The main objectives of this study are to: (1) enhance the understanding of convection-permitting climate 136 

models and highlighting the added value of CPRCMs by comparing their effectiveness in simulating extreme 137 
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precipitation with that of regional climate models from regional to local scales; (2) assess HCLIM3's capability in 138 

depicting orographic effects on seasonal extreme precipitation. This research explores whether the benefits provided 139 

by CPRCMs are consistent in different regions driven by varying physical processes for precipitation. Finally, our 140 

study delves into the analysis of the intensity and frequency of extreme precipitation events, offering insights into 141 

local and regional variations. 142 

2 Study area and data 143 

2.1 Study area 144 

 145 
Figure 1: (a) The division of five regions in Norway. In the legend, the numbers shown in the brackets after each region 146 
represent the available size of hourly / daily stations in the region during 1999 – 2018. For example, East (4/46) means 147 
that there are available data from 4 hourly stations and 46 daily stations in the East during 1999-2018; (b) Spatial 148 
distribution of topography over Norway. 149 

 150 
The different climate regimes between coastal and inland regions over Norway compels the analysis of hydro-151 

meteorology based on divided regions. Based on similar seasonal cycle characteristics, Michel et al. (2021) and 152 

Konstali and Sorteberg (2022) divided the Norwegian continent into eight regions. Taking into account the spatial 153 

distribution of rain gauges and ensuring that each region has at least one hourly rain-gauge, we combined the south 154 

and southwest into the south, and the middle-inland and north into the north. Therefore, mainland Norway in this 155 

study is divided into five regions: East (E), South (S), West (W), Middle (M), and North (N), as shown in Fig. 1. 156 

The study areas cover the mainland Norway which has unique climate characteristics within different regions. 157 

Precipitation in Norway primarily occurs along the coast in late autumn and winter, while inland areas receive more 158 
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precipitation in summer. The east region with stratiform precipitation originating from south is dominant by 159 

continental climate, with convective precipitation in summer. The west coast of Norway is strongly affected by the 160 

North Atlantic storm track, where precipitation from frontal systems and landfalling storms is enhanced due to the 161 

orographic uplift over Scandinavia (Poujol et al., 2021). Most extreme events occurring in the west region with 162 

abrupt topography, are mainly related to atmospheric rivers (AR), which are generally linked to extratropical 163 

cyclones during cooler seasons (Whan et al., 2020). Additionally, in the summer, AR coincides with more frequent 164 

convective activities (Poujol et al., 2021). The south region lies at the end of the climatological jet and is regularly 165 

affected by the AR especially during the Zonal and Atlantic trough weather regimes (Michel et al., 2021), while 166 

convective activities play a crucial role in the south regions in summer (Li et al., 2020b). For the middle and north 167 

regions, 59% of extremes are associated with AR, and the precipitation rate decreases moving inland (Konstali and 168 

Sorteberg, 2022).  169 

2.2 Data 170 

We utilize the outputs of double nested model simulations from the HCLIM38 model, which include different 171 

configuration settings for each spatial resolution: HCLIM3 and HCLIM12. HCLIM12 covers most of Europe with 172 

313 ×349 grid-points using the ERA-Interim reanalysis (~80 km) as the boundary condition, and HCLIM3 spans the 173 

Fenno-Scandinavia region with 637×853 grid-points using the output of the HCLIM12 as the boundary condition for 174 

every 3 h. Importantly, the convection-parameterization scheme was switched-off in HCLIM3, allowing for an 175 

explicit representation of convection processes. The present-day simulations from HCLIM3 and HCLIM12 span the 176 

years 1997-2018. For more comprehensive information, refer to the work of Lind et al. (2020) and Médus et al. 177 

(2022).  178 

This study primarily focuses on assessing the performance of HCLIM3 and HCLIM12 in simulating hourly 179 

and daily extreme precipitation events in mainland Norway for the present-day period (1997-2018, with the first two 180 

years excluded). The model outputs from HCLIM3 and HCLIM12 are specifically extracted for mainland Norway. 181 

Before analysis, HCLIM3 data was remapped to the HCLIM12 grid (12km) using a bilinear interpolation method.  182 

Precipitation from the seNorge2018 (SeNorge) gridded dataset, covering Norway with 1-day temporal and 1 183 

km spatial resolution since 1957 (Lussana et al., 2019), is used as the observation dataset to evaluate the 184 

performance of HCLIM3 and HCLIM12 during 1999-2018. Precipitation from the SeNorge2 gridded dataset, with 185 

1-hour temporal and 1 km spatial resolution, is also applied to evaluate the hourly result during 2010-2018 (Lussana 186 

et al., 2018). In addition, in-situ precipitation of observations, including both 1-hour and 1-day resolutions, are 187 

downloaded from Norwegian Meteorological Institute Frost API (met.no).    188 

3 Methods 189 

3.1 Evaluation of precipitation  190 

To evaluate the characteristics of precipitation extremes between HCLIM3 and HCLIM12, we compared the 191 

historical simulations with daily SeNorge gridded dataset, hourly SeNorge2 gridded dataset and in-situ observations. 192 

https://frost.met.no/api.html#!/elements
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We only keep the stations that have less than 10% of the data missing during 1999-2018 and consider station 193 

distribution uniformity, which give a total of 192 daily stations and 10 hourly stations, respectively, over Norway 194 

(Fig. 1, Table S1 and Table S2). In this study, the evaluation based on in-situ observation and gridded dataset 195 

(SeNorge and SeNorge2) was defined as the local scale and regional scale, respectively.  196 

Remapping finer-resolution data to a coarser resolution reduces the influence of such artifacts by averaging out 197 

the variability. This approach is consistent with the methodology used by Lind et al. (2020) and Médus et al. (2022), 198 

who also remapped all data to a coarser grid when comparing the performance of HCLIM3 and HCLIM12. Lind et 199 

al. (2020) observed that the differences between HCLIM3 data remapped to the coarser native grid of HCLIM3 and 200 

the HCLIM12 grid were minimal. Importantly, they found that the improvements of HCLIM3 persisted even after 201 

spatial aggregation, indicating that the enhanced resolution of the model offered benefits that were preserved when 202 

viewed on a coarser grid. Therefore, HCLIM3, SeNorge and SeNorge2 were remapped to HCLIM12 grid~12 km for 203 

the evaluation at regional scale. For the SeNorge and SeNorge2 based assessments, the extreme indices are first 204 

calculated at the grid-point level and then the regional averages are computed. For the evaluation based on in-situ 205 

observation, HCLIM3 and HCLIM12 were interpolated to the 192 daily rain-gauges and 10 hourly rain-gauges to 206 

calculate the indices using bilinear interpolation method.   207 

For the evaluation of extreme precipitation, we examined the maximum 1-day precipitation (Rx1d), maximum 208 

1-hour precipitation (Rx1h), return-period-based precipitation amounts at 5, 10, 20, and 50-year return periods, and 209 

seasonality of frequency/intensity from regional to local scales. The calculation of seasonal Rx1d/Rx1h was based 210 

on the maximum value within one season per year. 211 

3.2 Extreme precipitation indices 212 

The Generalized Extreme Value (GEV) distribution was used to estimate precipitation intensity for specific return 213 

periods (e.g., 5, 10, 20, and 50 years). The return levels were calculated by fitting the annual maximum discharge 214 

derived from observed and simulated daily data (both gridded and rain gauges), and hourly data (only 10 rain 215 

gauges), to GEV distribution. Then, the quantile 𝑍! of the GEV distribution with a return period of  "
!
 can be 216 

obtained. GEV distribution has been widely used to model extreme events in meteorology (Coles et al., 2003). The 217 

cumulative distribution function 𝐹(𝑥) and probability density function 𝑓(𝑥)of GEV were as follows to calculate the 218 

return level 𝑍!: 219 

 	220 

𝐹(𝑥) = 𝑒𝑥𝑝 +− -1 − 𝑘 0#$%
&
12
" '⁄
3 , 𝑘 ≠ 0																																																							      (1) 221 

𝑓(𝑥) = "
&
-1 − 𝑘 0#$%

&
12
" '⁄ $"

𝑒𝑥𝑝 +− -1 − 𝑘 0#$%
&
12
" '⁄
3																																	   (2) 222 

𝑍! = 𝜉 − &
'
{1 − [−𝑙𝑜𝑔	(1 − 𝑝)]$'}																																																																			    (3) 223 

 224 
Where, 𝛼, 𝜉, and 𝑘  indicates the scale, location and shape parameter, respectively. Kolmogorov-Smirnovs, 225 

Anderson-Darlings, and Chi-Square tests were performed to determine if the GEV was accepted to fit the maxima 226 

series. 227 
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 228 

3.3 Quantification of the orographic effect 229 

 The orographic effect on Rx1h and Rx1d precipitation was explored by looking at the relationship with elevation of 230 

the annual and seasonal maxima from regional to local scales. A linear regression model (Di Piazza et al., 2011) was 231 

utilized to approximate the relations. The relationship of elevation with observation (Rx1h: SeNorge2; Rx1d: 232 

SeNorge and daily in-situ observation) and simulation (HCLIM3 and HCLIM12) was fitted to compute the linear 233 

regression slope. To eliminate the impact of unit (Rx1h and Rx1d), the slope is converted to a relative slope with 234 

respect to the average value of extreme precipitation, expressed as percentage precipitation (%) per kilometer of 235 

elevation. This is done by dividing the mean extreme precipitation value for the entire study region computed 236 

separately for daily and hourly extremes. The orographic effect at local scale was only based on daily in-situ 237 

observation due to the limited hourly in-situ observation. At local scale, the elevation for each rain-gauges was 238 

extracted according to the digital elevation model. At regional scale, the grid of digital elevation model and 239 

HCLIM3 was resample to the same grid resolution of 12 km as HCLIM12 before calculation. Only the grids and 240 

stations above sea level of 0 m are included to quantify the orographic effect.  241 

If the precipitation increases with elevation, there is an orographic effect on extreme precipitation; if the 242 

precipitation decreases with elevation, this means a reverse orographic effect on extreme precipitation.  243 

4 Results 244 

4.1 Evaluation of daily extreme with SeNorge 245 

4.1.1 Maximum 1-day precipitation (Rx1d) 246 

Figure 2 provides a comprehensive comparison of percentage biases of Rx1d from HCLIM3 and HCLMI12 247 

compared to SeNorge. From Fig. 2 (a), we can see that HCLIM12 has more grids with underestimated Rx1d than 248 

HCLMI3 in Norway, which is confirmed clearly in Fig. 2 (b) showing density plot of the percentage bias 249 

distribution from two models compared with SeNorge. Specifically, more grids from HCLIM3 than HCLIM12 tend 250 

to overestimate Rx1d within the 0-25 % range, while HCLIM12 leans towards larger underestimation within the -251 

10-50%. The density curve in Fig. 2 (b) reflects a higher peak at 0 for HCLIM3, indicating a more accurate 252 

representation of Rx1d with an average dry-bias with 1.6%. Conversely, HCLIM12 shows a 7% dry-bias for Rx1d 253 

on average.  254 

Figure 2 (c) shows the absolute percentage bias of annual and seasonal Rx1d from HCLIM3 and HCLIM12 255 

compared to SeNorge for five regions in four seasons. In annual, HCLIM3 exhibit added value in capturing annual 256 

Rx1h in the five regions compared to HCLIM12. HCLIM3 better captures Rx1d in four seasons and annual for five 257 

regions than HCLIM12, while HCLIM12 shows larger bias in most regions except in the east, south and west during 258 

summer. In summer, HCLIM3 only outperforms Rx1d in the middle and north over HCLIM12. Overall, HCLIM3 259 

shows notably added value in Rx1d comparing with HCLMI12 across regions and seasons except in summer.  260 

 261 



9 
 

 262 
Figure 2: (a) The annual Rx1d of SeNorge, and the percentage bias of Rx1d from HCLIM3 and HCLIM12 to SeNorge 263 
during 1999-2018; (b) density plot of the percentage bias distribution for annual Rx1d from HCLIM3 and HCLIM12 264 
compared to SeNorge for Rx1d during 1999-2018 (The dashed lines represent the mean bias); (c) the absolute percentage 265 
bias of annual and seasonal Rx1d from HCLIM3 and HCLIM12 to SeNorge for five regions. The bias is first calculated at 266 
the grid-point level, and then regional averages are computed. For (a) and (b), the percentage bias is equal to model 267 
simulations minus observations, divided by observations. For (c), the absolute percentage bias is calculated as the absolute 268 
difference between simulations and observations, divided by observations. 269 

 270 
Furthermore, as shown in Fig. 3, a comparison of the Rx1h percentage biases of HCLIM3 and HCLIM12 with 271 

SeNorge2 for the period 2010-2018 demonstrates that HCLIM3 has a clearly added value in simulating the annual 272 

Rx1h in Norway, with smaller wet biases on average, while HCLIM12 shows larger dry biases over the whole of 273 

mainland Norway. At the regional scale, HCLIM3 also shows added value in capturing annual and seasonal Rx1h 274 

than HCLIM12 in five regions except west and middle regions. Specifically, in the west region, HCLIM3 exhibits 275 

larger absolute percentage biases than HCLIM12 in annual Rx1h and seasonal Rx1h than HCLIM12, except in 276 

spring. In summer, only in the south and north regions, the Rx1h bias of HCLIM3 is smaller than that of HCLIM12. 277 

 278 
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 279 
Figure 3: (a) The annual Rx1h of SeNorge2, and the percentage bias of Rx1h from HCLIM3 and HCLIM12 to SeNorge2 280 
during 2010-2018; (b) density plot of percentage bias for annual Rx1h distribution from HCLIM3 and HCLIM12 281 
compared to SeNorge2 during 2010-2018 (The dashed lines represent the mean bias); (c) the absolute percentage bias of 282 
seasonal Rx1h from HCLIM3 and HCLIM12 to SeNorge2 for five regions. For (a) and (b), the percentage bias is equal to 283 
model simulations minus observations, divided by observations. For (c), the absolute percentage bias is calculated as the 284 
absolute difference between simulations and observations, divided by observations. 285 

4.1.2 Return levels  286 

Figure 4 shows the bias in estimated daily precipitation for 5-, 10-, 20-, and 50-year return periods during 1999-2018 287 

across five regions (compared to SeNorge). The great interregional variation is shown between HCLIM3 and 288 

HCLIM12. Relative to SeNorge, HCLIM3 tends to overestimate return-levels in the east and west regions, while 289 

underestimates them in the others. By comparison, except for the east region where HCLIM12 shows 290 

overestimation, the extreme precipitation estimates in most other regions are underestimated. The performance of 291 

HCLIM3 in capturing extremes varies across regions. HCLIM3 and HCLIM12 exhibit percentage biases of opposite 292 

sign in simulating return level precipitation in the west region, where HCLIM3 overestimates and HCLIM12 293 

underestimates precipitation at different return periods. In the west, middle, and north regions, HCLIM3 294 

outperforms HCLIM12 in all return periods, but the performance is less satisfactory in the east region.  295 



11 
 

Given the societal impacts of precipitation extremes, understanding how HCLIM3 and HCLIM12 represent 296 

these extremes is crucial. The physical processes driving precipitation in inland and coastal regions, as highlighted 297 

by Konstali and Sorteberg (2022), emphasize the need for a separate evaluation for each region with different 298 

characteristics. This approach ensures a more robust assessment, providing valuable information for regional 299 

authorities. 300 

 301 
Figure 4: Percentage bias of extreme daily precipitation exceeding the 5-year to 50-year return periods over five regions 302 
between SeNorge and HCLIMs (i.e., HCLIM3 and HCLIM12). Return periods of 5-, 10-, 20-, and 50-year are calculated 303 
on the basis of GEV. 304 
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4.2 Evaluation of daily extreme with in-situ data 305 

4.2.1 Maximum 1-day precipitation (Rx1d) 306 

 307 
Figure 5: (a) The annual Rx1d of in-situ observation, and the percentage bias of Rx1d from HCLIM3 and HCLIM12 to 308 
in-situ observation during 1999-2018 over 194 stations; (b) density distribution of percentage bias for annual Rx1d 309 
between HCLIMs and observations from 194 stations during 1999-2018 (The dashed lines represent the mean bias); (c) 310 
the absolute percentage bias of seasonal Rx1d between HCLIMs and observations across the five regions. For (a) and (b), 311 
the percentage bias is equal to model simulations minus observations, divided by observations. For (c), the absolute 312 
percentage bias is calculated as the absolute difference between simulations and observations, divided by observations. 313 

 314 
Similar to the regional results in Fig. 2, Fig. 5 shows the percentage bias of annual and seasonal Rx1d from 315 

HCLIM3 and HCLIM12 in comparison to in-situ observations. Notably, a difference between HCLIM3 and 316 

HCLIM12 can be seen at local scale compared to regional result: a greater number of sites from HCLIM3 approach 317 

zero-bias, and more grids from HCLIM12 shows a dry bias about 10-40%, as shown in Fig. 5 (b). On average, 318 

HCLIM12 with 4.5% dry-bias tends to underestimate annual Rx1d, while HCLIM3 represents added value in 319 

capturing annual Rx1d with 1% wet-bias on average at local scale. Furthermore, HCLIM3 shows added value in 320 

simulating the annual Rx1h at local scale in all regions. 321 

From a seasonal perspective, as shown in Fig. 5 (c), overall, HCLIM3 shows added value in capturing the 322 

seasonal Rx1d in most regions and seasons, except for summer. Specifically, HCLIM3 performs better than 323 
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HCLIM12, except for the west and south region, where HCLIM3 exhibits a larger bias in summer Rx1d. In 324 

particular, the added value of HCLIM3 in simulating autumn Rx1d in the east and west is not as obvious when 325 

compared to HCLIM12.  326 

It is noteworthy that at the local scale, HCLIM3 and HCLIM12 perform similarly to the regional results in most 327 

regions. There are some exceptions, such as, HCLIM3 shows larger biases in summer Rx1d in the south and west 328 

compared with HCLIM12 at both regional and local scales. In contrast to the clearly larger bias in Rx1h at the 329 

regional scale for both HCLIM3 and HCLIM12, a relatively smaller bias in Rx1d is demonstrated at both regional 330 

and local scales. At the regional scale, HCLIM3 exhibits added value in all seasons except summer, while at the 331 

local scale, HCLIM3 and HCLIM12 show similar biases in autumn Rx1d in the east and west, which means that the 332 

advantage of HCLIM3 over HCLIM12 at the local scale in autumn weakens in the west and east compared with the 333 

regional scale.  334 

 4.2.2 Return-levels 335 

 336 
Figure 6: Percentage bias of extreme daily precipitation exceeding the 5-year to 50-year return periods over five regions 337 
between HCLIMs (i.e., HCLIM3 and HCLIM12) and in-situ observation in the 192 daily rain-gauges. Return periods of 338 
5-, 10-, 20-, and 50-year are calculated on the basis of station-scale GEV. 339 
 340 
Figure 6 shows the percentage bias of the estimated daily return levels (e.g., 5-, 10-, 20-, and 50-year return periods) 341 

from HCLIM3 and HCLIM12 compared to observations for the period 1999-2018. The figure illustrates the average 342 

bias of return-levels for the stations in the corresponding regions. Compared with the in-situ observation, HCLIM3 343 

overestimates the return levels in the east and west for all return periods (5-, 10-, 20-, and 50-year) and 344 

underestimates return levels in the south and north for 20- and 5-year return periods, while HCLIM12 345 

underestimates the return levels in all regions. Generally, HCLIM3 can more accurately represent the return levels in 346 

most regions compared to HCLIM12. The biases of HCLIM3 and HCLIM12 vary across regions and return periods. 347 
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HCLIM3 has lower biases than HCLIM12 in most regions, except for the east and west regions. Both HCLIM3 and 348 

HCLIM12 perform well in the south region. In addition, Fig. S1 shows the range of the return levels for all stations 349 

in the corresponding region, and HCLIM3 introduces larger variations in the west and south regions compared with 350 

HCLIM12, as indicated by the wider whiskers.  351 

4.3 Evaluation of hourly extreme with in-situ data 352 

4.3.1 Maximum 1-hour precipitation (Rx1h) 353 

The time evolution of annual Rx1h from HCLIM3 and HCLIM12 is compared to in-situ observation during 1999-354 

2018, as shown in Fig. 7. Compared to HCLIM12, HCLIM3 shows distinct superior in capturing the time evolution 355 

of annual Rx1h, even with underestimation and time shifting at some local places. For example, the annual Rx1h 356 

above 25 mm/hour at Kvithamar (SN69150), Særheim (SN44300), Tromsø - Holt (SN90400), Tjøtta (SN76530) and 357 

Løken i Volbu (SN23500) is struggle to be captured by HCLIM3 and HCLIM12. However, HCLIM3 well capture 358 

the annual Rx1h in other local places, despite of the time deviation of annual Rx1h. Taking the site Østre Toten - 359 

Apelsvoll (SN11500) as an example to illustrate the time deviation: HCLIM3 simulate that the annual Rx1h (37 360 

mm) in the past 20 years was in 2001, four years earlier than the in-situ observation (35 mm). Furthermore, to better 361 

assess the annual variability of Rx1h, we extracted grids within a 12 km radius of each station and calculate the 362 

uncertainty range (Fig. S2), which reveals that the interpolated local Rx1h precipitation from HCLIM12, particularly 363 

over grids with a larger area, tends to be damped, resulting in a narrower range than HCLIM3. Based on station 364 

statistics of annual mean Rx1h in Norway, the boxplot (Fig. 7) shows that the annual mean Rx1h of HCLIM3 is 365 

within the range of observed values. In contrast, HCLIM12 consistently underestimates Rx1h, with all its values 366 

being below the observed minimum. Despite outperforming than HCLIM12, it is noteworthy that HCLIM3 367 

demonstrates limitations in reproducing the accurate occurrence time and magnitude of annual Rx1h at local-level in 368 

Norway.   369 
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 370 
Figure 7: Time evolution of Rx1h precipitation for each year from observation, HCLIM3 and HCLIM12 during 1999-371 
2018 at 10 rain-gauges (Table S1). The final boxplot summarizes the statistical distribution of Rx1h from observations 372 
and both HCLIMs simulations. 373 

4.3.2 Return levels 374 

At the local and hourly scale, HCLIM3 has a better representation of hourly extreme events at the 5-, 10-, 20-, and 375 
50-year return periods compared to HCLIM12. Although both HCLIM3 and HCLIM12 tend to underestimate the 376 
annual Rx1h for all return periods at almost stations (Fig. 8), the biases between the observations and the 377 
interpolated HCLIM3 for all ten rain gauges are consistently lower than those of HCLIM12 for all return periods. 378 
The exceptions are Kvithamar (SN69150), Tromsø - Holt (SN90400) and Fureneset (SN56420) which present at all 379 
return periods, and Østre Toten - Apelsvoll (SN11500) which present at a 50-year return period, where HCLIM3 380 
slightly overestimation. Notably, the return levels of hourly extreme events at all ten sites are accurately captured by 381 
HCLIM3, demonstrating its better ability to capture the extreme hourly precipitation at the 5-, 10-, 20-, and 50-year 382 
return periods in localized areas, compared to HCLIM12. This result underscores the added value of CPRCMs in 383 
representing hourly extreme precipitation at a very localized scale, despite the overall underestimation of return 384 
levels by both HCLIM3 and HCLIM12. 385 
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 386 
Figure 8: Percentage bias of extreme hourly precipitation exceeding the 5-year to 50-year return periods between 387 
HCLIMs (i.e., HCLIM3 and HCLIM12) and in-situ observation in the 10 hourly rain-gauges. Return periods of 5-, 10-, 388 
20-, and 50-year are calculated on the basis of station-scale GEV. 389 
 390 
 391 
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4.4 Evaluation of seasonality  392 

 393 
Figure 9: The seasonality of frequency and magnitude of Rx1d precipitation from the SeNorge, HCLIM3 and HCLIM12 394 
during 1999-2018 over different regions: a) East, b) South, c) West, d) Middle, f) North. The color represents the 395 
magnitude of Rx1d (m3/s). Winter: December, January, February; Spring: March, April, May; Summer: June, July, 396 
August; Autumn: September, October, November. 397 

Figure 9 and Figure 10 show the comparison of seasonality (indicated by monthly distribution) of annual Rx1d (e.g., 398 

frequency and magnitude) from both HCLIM3 and HCLIM12, compared to SeNorge and in-situ observation, 399 

respectively. From the seasonality of observed daily extreme precipitation in Fig. 9, we can see that winter-autumn 400 

precipitation dominates in almost east, south and west regions, while in the middle and north regions, spring-401 

summer precipitation is more prevalent. HCLIM3 captures the seasonality of Rx1d frequency at the regional scale in 402 

most regions except in middle region, where winter-autumn precipitation dominates. In contrast, HCLIM12 403 

performs poorly in the east and middle regions. It is particularly noteworthy that HCLIM3 has an enhanced ability to 404 

capture the seasonality of extreme precipitation frequency over the west region compared to HCLIM12. Heavy 405 

precipitation over 50 mm/day occurs mainly in the south and west, which is also simulated by HCLIM3 and 406 

HCLIM12. In general, both HCLIM3 and HCLIM12 demonstrate competence in capturing the magnitude of 407 

extreme daily precipitation seasonally at regional scale in most regions except middle region. The seasonal 408 

performance of Rx1d from HCLIM3 and HCLIM12 in the local scale is also confirmed by the in-situ observation, as 409 

shown in Fig. 10. A larger magnitude of annual Rx1d across five regions at local scale than regional scale is shown 410 

for observation, HCLIM3 and HCLIM12. Generally, both HCLIM3 and HCLIM12 capture the seasonality of daily 411 

extreme precipitation well, HCLIM3 does not consistently shows added value in simulating them.  412 

For the seasonality of annual Rx1d at local scale, as shown in Fig. 11, HCLIM3 more accurately represents the 413 

seasonality of Rx1h compared to HCLIM12, which tends to underestimate the frequency of hourly extremes in most 414 
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sites. Compared with RCMs, CPRCMs demonstrate better potential performance in simulating seasonality of 415 

extreme precipitation, with particularly improved accuracy for the hourly extremes at the local scale. 416 

 417 

 418 
Figure 10: The seasonality of frequency and magnitude of Rx1d precipitation from the in-situ observation, HCLIM3 and 419 
HCLIM12 during 1999-2018 over different regions: a) East, b) South, c) West, d) Middle, f) North. The color represents 420 
the magnitude of Rx1d (m3/s). 421 

 422 
 423 
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 424 
Figure 11: Seasonality of the frequency and magnitude of Rx1h precipitation from the in-situ, HCLIM3 and HCLIM12 425 
during 1999-2018 at 10 rain gauge stations (Table S1), i.e., a) Østre Toten – Apelsvoll (east), b) Ås - Rustadskogen (east), 426 
c) Kise in Hedmark (east), d) Løken i Volbu (east), e) Særheim (south), f) Stryn – Kroken (west), g) Fureneset (west) , h) 427 
Kvithamar (middle) , i) Tjøtta (middle), j) Tromsø – Holt (north). The color represents the magnitude of Rx1h (m3/s).  428 

 429 
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4.5 Orographic effect on seasonal extreme precipitation 430 

4.5.1 Seasonal Rx1d at regional scale 431 

 432 
Figure 12: Relationship between elevation and Rx1d (maximum 1-day precipitation) for (a) winter, (b) spring, (c) 433 
summer, and (d) autumn, as derived from SeNorge and HCLIMs (i.e., HCLIM3 and HCLIM12) across mainland Norway 434 
during the period of 1999-2018. 435 
         436 
The relationship of seasonal Rx1d with elevation from SeNorge, HCLIM3 and HCLIM12 is shown in Fig. 12. 437 

Compared to HCLIM12, HCLIM3 more accurately captures the no evident linear relation (indicated by zero 438 

coefficient of determination R2) of seasonal Rx1d with elevation, similar to SeNorge, though it depicts a more 439 

pronounced increase with elevation than SeNorge during summer. For example, both HCLIM3 and HCLIM12 440 

simulate a large average increase in summer Rx1d with elevation (over 8 %/km), compared to observation, as 441 

indicated by the larger absolute slope values. Generally, SeNorge, HCLIM3 and HCLIM12 showed the weak 442 

relationship of seasonal Rx1d with altitude. 443 
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4.5.2 Seasonal Rx1d at local scale 444 

 445 
Figure 13: Relationship between elevation and Rx1d (maximum 1-day precipitation) for (a) winter, (b) spring, (c) 446 
summer, and (d) autumn, based on daily in-situ observation and HCLIMs (i.e., HCLIM3 and HCLIM12) across mainland 447 
Norway during the period of 1999-2018. 448 

 449 

Figure 13 represents the relationship of the seasonal Rx1d from in-situ observation, HCLIM3 and HCLIM12 with 450 

elevation at local scale. The observed reverse orographic effect, seasonal Rx1d decrease with elevation, clearly 451 

depicts with an average decrease of winter, spring, summer and autumn Rx1d of more than 87.4%, 56.7%, 23.9% 452 

and 67% per kilometer. HCLIM3 more accurately represents the observed orographic influences on Rx1d in all 453 

seasons except summer than HCLIM12. Moreover, HCLIM12 displays a more pronounced decline in Rx1d with 454 

elevation, as evidenced by a steeper slope, across all seasons except summer, when compared to observation. 455 

Generally, the reverse orographic effect is shown for the Rx1d from in-situ observation, HCLIM3 and HCLIM12. 456 
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4.5.3 Seasonal Rx1h at regional scale 457 

 458 
Figure 14: Relationship between elevation and Rx1h (maximum 1-hour precipitation) for (a) winter, (b) spring, (c) 459 
summer, and (d) autumn, as derived from SeNorge2 and HCLIMs (i.e., HCLIM3 and HCLIM12) across mainland 460 
Norway during the period of 2010-2018. 461 

 462 
The relationship of seasonal Rx1h with elevation from gridded observation (SeNorge2) and simulation is further 463 

explored, as shown in Fig. 14. The reverse orographic effect of SeNorge2 on Rx1h was manifested in all seasons, 464 

with average decreases exceeding 24.3%, 10.1%, 14.9% and 19.2% per kilometer in winter, spring, summer and 465 

autumn, respectively. Compared to HCLIM12, HCLIM3 more accurately captures the decrease in seasonal Rx1h 466 

with elevation during winter, summer and autumn, though it still underestimates the decrease rate relative to 467 

observation. By contrast, HCLIM12 can only reflect the similar reverse orographic on Rx1h with observation in 468 

spring. The density plots of Rx1h reveal a dry bias in HCLIM12, particularly noticeable in summer, where it 469 

inversely correlates Rx1h with elevation.   470 

5 Discussion 471 
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5.1 Comparison between SeNorge vs in-situ observation 472 

 473 
Figure 15: (a) Density distribution of bias for Rx1d between SeNorge and daily in-situ observations from 194 stations 474 
during 1999-2018; (b) the percentage difference of seasonal Rx1d between SeNorge and daily in-situ observations across 475 
the five regions. The bias is calculated as the SeNorge minus daily in-situ observations at each grid-point. 476 

 477 

To further explore the uncertainty of different observation datasets on local scale model evaluation, we investigate 478 

the bias of SeNorge’s annual and seasonal Rx1d from daily in-situ observations (see in Fig. 15). Our analysis in the 479 

Fig.15 (a) shows that SeNorge mostly underestimates the annual Rx1d compared to in-situ observation at 192 480 

stations, with an average bias of -5.8% and a range between -28% and 25%. Although SeNorge data are designed to 481 

improve hydrological simulations (Lussana et al., 2019), their dry-biases still persist in most seasons and regions, 482 

especially in summer. It is noteworthy that SeNorge slightly overestimates the winter Rx1d in east, middle and north 483 

regions. Moreover, SeNorge underestimates the return levels of Rx1d for different return periods (e.g., 5-, 10-, 20- 484 

and 50-year) in all regions (Fig. S3).  485 

The larger differences between SeNorge and in-situ observation in simulating the Rx1d are manifested in the 486 

annual summer and autumn in the south and west, and in the summer in the east, where SeNorge tends to 487 

underestimate Rx1d more than in-situ observation. This discrepancy helps explain the differences between 488 

HCLIM3’s performance in simulating Rx1d in summer in the east and autumn in the south and west at regional 489 

scale, compared to the local scale, as shown in Fig. 2 (c) and Fig. 5 (c). Generally, the difference between SeNorge 490 

and in-situ observation at daily scale is not very large, which is why in most regions the added value of HCLIM3 in 491 
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Rx1d at the regional scale is similar to that at the local scale. However, it should be noted that the interpolated 492 

precipitation from SeNorge may introduce uncertainties in assessing the performance of CPRCM at the local scale 493 

due to the sparse distribution of daily and hourly rain-gauges at high altitude. Especially, for the hourly extremes at 494 

the local scale and regional scales, larger uncertainties should be considered due to the limited data from only ten 495 

rain-gauges at local scales and nine-years of data series at the regional scale. The impact of station density on the 496 

errors of gridded datasets were also highlighted by Gervais et al. (2014b), who suggested that low station density is 497 

an important source of errors in such datasets. To address these challenges and enhance the accuracy of extreme 498 

precipitation assessments, future studies should prioritize expanding in-situ datasets and improving the spatial 499 

coverage of observational networks, especially at the 1-hour timescale.  500 

5.2 Added value of CPRCMs at regional scale 501 

HCLIM3 demonstrates clear advantages over HCLIM12 in capturing the annual Rx1d in most regions. In terms of 502 

regional averages, HCLIM12 underestimates Rx1d in most regions except the east and is biased towards wetter, 503 

while HCLIM3 shows relatively smaller biases in most regions except the east, due to improvements in 504 

microphysics and convection schemes (Lind et al., 2020). 505 

Despite the overall better performance of HCLIM3, slightly larger biases in summer over the east, south and 506 

west may result from the model’s sensitivity to convective processes and limitations in accurately resolving 507 

localized dynamics under moisture-rich and unstable atmospheric conditions.	These challenges are particularly 508 

pronounced during summer, when the intensity of convective activity increases, leading to rapid atmospheric 509 

feedbacks and localized extremes (Poujol et al., 2021). In contrast, the south region in winter is mainly affected by 510 

atmospheric rivers (ARs) associated to extratropical cyclones, and HCLIM3 can better capture this feature due to its 511 

finer resolution.  512 

In terms of annual Rx1h, HCLIM3 outperforms HCLIM12, although it exhibits a wet bias compared to 513 

SeNorge2. HCLIM12 underestimates Rx1h in most grids, likely due to its reliance on parameterization schemes that 514 

fail to capture extremes (Médus et al., 2022). However, HCLIM3 shows larger biases in seasonal Rx1h in the west 515 

in all seasons except spring, and in the east and middle region in summer, the overestimation of HCLIM3 over 516 

Norway may be attributed to the underestimation in the hourly SeNorge2 (Lussana et al., 2018). Compared with 517 

daily extremes, both HCLIM3 and HCLIM12 exhibit larger biases in simulating hourly extremes compared to daily 518 

extremes, both at the annual and seasonal scales. It is important to note the limitations of the SeNorge2 dataset, 519 

which only spans eight years and is interpolated from sparse hourly rain gauges. 520 

In summary, HCLIM3 demonstrates better agreement with observations across most regions of Norway and 521 

seasons at the regional scale, with the exception of the east and summer. This is consistent with previous studies 522 

highlighting the advantage of convection-permitting models, especially in capturing extreme precipitation events 523 

over complex terrain (Kendon et al., 2023; Médus et al., 2022; Lucas-Picher et al., 2021).  524 
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5.3 Added value of CPRCMs at local scale 525 

The analysis of local scale convection-permitting climate models (CPRCMs) highlights their better performance in 526 

capturing precipitation extremes. HCLIM3 demonstrates notable advantages over HCLIM12, especially in terms of 527 

hourly precipitation extremes (Rx1h). For example, HCLIM3 achieves near-zero bias for the annual Rx1d in 528 

Norway (Fig. 5) and relative smaller bias for hourly extremes (Fig. 7 and Fig. 8) in all stations, while HCLIM12 529 

consistently underestimates the return levels for hourly extremes at most station (Fig. 8) and daily extremes in all 530 

regions. Médus et al. (2022) also pointed out that RCMs underestimate the return levels of Rx1h in Norway. 531 

Thomassen et al. (2023) compared the performance of HCLIM3 and HCLIM12 based on local rain-gauge data in 532 

Denmark, and found that HCLIM12 indeed underestimate the hourly extreme event and HCLIM3 agree well with 533 

observation. Despite these benefits, the added value of HCLIM3 is not uniform across all stations and seasons, 534 

which struggle to capture summer daily extremes in the south and west, and the return level in the east and west. 535 

However, it should also be noted that the analysis is based on data from only 10 sites, which limits the 536 

generalizability of the findings to local hourly extreme events. Further studies of hourly extreme events at more 537 

stations are needed to validate these results and provide a more comprehensive understanding. Additionally, the 538 

uncertainties in the extreme precipitation analysis based on the stationary GEV method with a 20-years data series 539 

should also be noted. 540 

The added value of CPRCMs in simulating hourly precipitation extremes is more obvious at the local scale 541 

than at the regional scale. The damped extremes caused by grid-scale averaging may explain the smaller return-level 542 

observed for HCLIM3 and HCLIM12 compared to station-level observations. As discussed in Section 5.1, this 543 

discrepancy between regional and local scales may be partly due to the inadequate density of in-situ observations.  544 

Few studies have systematically compared hourly and daily rainfall in RCMs due to the challenges in reliably 545 

simulating hourly extremes. In line with Ban et al. (2014), we find that RCMs such as HCLIM12 demonstrate 546 

reasonably well performance for daily extremes with biases less than 50%. However, CPRCMs such as HCLIM3 547 

perform better for hourly extremes. This is consistent with previous studies (Jiang et al., 2013; Thomassen et al., 548 

2023), such as, Jiang et al. (2013), which showed that it is challenging to capture sub-daily extreme rainfall using 549 

RCMs with a resolution of 10 km in the southwest United States. The better performance of CPRCMs compared to 550 

RCMs at hourly scale is consistent with the findings by Médus et al. (2022) and Ban et al. (2014), emphasizing that 551 

the CPRCMs have significantly better sub-daily precipitation characteristics, including spatial distribution and 552 

duration-intensity characteristics. Nonetheless, further improvements in the observation networks and longer 553 

observational datasets are necessary to fully verify and realize the benefits of CPRCMs at finer spatial and temporal 554 

scales. 555 

Comparison of regional and local extreme precipitation seasonality confirms that HCLIM3 is able to represent 556 

the seasonality of daily extremes, although both HCLIM3 and HCLIM12 fail to capture the spring-summer events in 557 

the middle region. Moustakis et al. (2021) also highlighted the adequacy of CPRCMs (CTL-WRF~4 km) in 558 

capturing seasonality observed over the United States. In particular, we observe HCLIM3 better represent the 559 

seasonality of hourly precipitation at the local scale. The persistent underestimation of hourly extremes by 560 
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HCLIM12 may be attributed to higher uncertainty in its convective parameterization scheme or numerical 561 

uncertainties at the local scale. 562 

5.4 Added value of CPRCMs in reproducing reverse orographic effect 563 

An unclear relation of daily extreme precipitation with elevation was also seen from the study of Dallan et al. 564 

(2023), in which they analyzed annual daily return level based on CPRCMs and in-situ observation over an Alpine 565 

region. By comparing the relationship between elevation and seasonal variation of extreme precipitation, HCLIM3 566 

represents the reverse orographic effect well at regional and local scale, although there is a weak relationship 567 

between extreme precipitation and elevation at the regional scale. The reverse orographic effects on hourly and daily 568 

extremes vary with seasons, indicating the influence of topography on extreme precipitation at different timescales 569 

and emphasizing the reliability of simulation of extreme precipitation over complex terrain. Unlike Rx1d at the 570 

regional scale, which is less affected by topography, the slope of the reverse orographic effect of daily extreme 571 

precipitation at the local scale is more clearly. From a seasonal perspective, the reverse orographic effect of extreme 572 

precipitation in summer is not well captured in HCLIM3 and HCLIM12, which may be related to the intense 573 

orographically-sustained convection affected by the atmospheric, aerosol conditions, local terrain slope and 574 

shadowing effects, which RCMs and CPRCMs fail to capture (Dallan et al., 2023; Poujol et al., 2021).  575 

For hourly extremes, the reverse orography effect of seasonal Rx1h in this study is consistent with the reverse 576 

orographic effect of hourly return level, as found by Dallan et al. (2023) over the Alpine region. HCLIM3 and 577 

HCLIM12 well capture the reverse orography effect on seasonal Rx1h, especially in HCLIM3, although a stronger 578 

decrease of Rx1h with elevation is observed from SeNorge2 except spring. In comparison, lower Rx1h and weak 579 

reverse orography effect is found in HCLIM12 in all seasons. Our findings confirm the reverse orographic effect on 580 

Rx1h, as demonstrated by Marra et al. (2021) for hourly precipitation and Formetta et al. (2022) for sub-hourly 581 

scale.  582 

Furthermore, we demonstrate the reverse orographic effect for both seasonal Rx1h and Rx1d, which contrasts 583 

with the findings of Formetta et al. (2022), who identified an orographic enhancement for durations of 584 

approximately 8 hours or longer, although a reverse orographic effect for hourly and sub-hourly durations was 585 

shown. These difference, which may be attributed to the combined effects of latitude, climate, altitude zones, static 586 

atmospheric or aerosol conditions, and shadowing effects (Amponsah et al., 2022; Napoli et al., 2019).  587 

It should be noted that simple relationship between extreme precipitation and elevation is difficult to build due 588 

to several land surface characteristics could influence the precipitation, a complex regression model should be 589 

considered to more realistically quantify the reverse orographic effect (Zhang et al., 2018) in the future. The 590 

interpolated gridded dataset and limited rain gauges over the complex orography, along with the decreasing station 591 

density at higher elevations, may also limit the reliable analysis of the reverse orographic effect. The sparsity of rain 592 

gauges and under catch problems could also lead to underestimation of precipitation, especially in the complex 593 

orography (Lussana et al., 2018, 2019; Gervais et al., 2014b).  594 

6 Conclusions 595 
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In this study, we conducted a comprehensive evaluation of extreme precipitation characteristics from regional to 596 

local scale in Norway, focusing on five distinct regions, utilizing a convection-permitting regional climate model 597 

(HCLIM3) and comparing it with its convection-parameterized regional climate model (HCLIM12) forced by ERA-598 

Interim data during 1999-2018. 599 

The key conclusions of this study are as follows: 600 

a) At regional scale, HCLIM3 general performs better than HCLIM12 in capturing Rx1d across most regions 601 

and seasons, except for larger biases in summer over the east, south, and west, as well as in the return 602 

levels of daily extremes in the east. In contrast, HCLIM12 consistent underestimates the annual daily 603 

extremes in all regions except the east. For hourly extremes, HCLIM3 outperforms HCLIM12 in most 604 

regions and seasons except in summer and over the west. In general, HCLIM3 overestimates annual Rx1h 605 

across most grid points in Norway, while HCLIM12 underestimates it. 606 

b) At local scale, HCLIM3 also shows added value compared to HCLIM12 in capturing Rx1d in most 607 

regions and seasons. Specifically, HCLIM3 can better capture the return levels of daily extremes in most 608 

regions except in the west and east, and it shows smaller biases in Rx1d across Norway for all seasons, 609 

except summer in the south and west. Overall, HCLIM3 shows consistent benefit in capturing the daily 610 

extremes in the middle and north regions compared with HCLIM12, both at the regional and local scales. 611 

For hourly extremes, HCLIM3 outperforms HCLIM12 in capturing the annual Rx1h and return levels in 612 

those 10 stations. 613 

c) For the seasonality of extremes, HCLIM3 and HCLIM12 can well characterize the seasonality of daily 614 

extremes in most regions. A distinct advantage emerges with HCLIM3 for hourly extremes, where it 615 

accurately reflects both the occurrence and intensity of these events across different seasons, while 616 

HCLIM12 tends to underestimate these aspects.  617 

d) In Norway, the effect of the preserved topography on seasonal Rx1h and Rx1d emerge from regional to 618 

local scales, although weak relationship between Rx1d and elevation is demonstrated at regional scale. For 619 

seasonal Rx1h, both HCLIM3 and HCLIM12 can capture the reverse orographic effect at regional scale, 620 

but no added value is shown in HCLIM3. At the local scale, HCLIM3 provides added value in capturing 621 

the reverse orographic effect of seasonal Rx1d in all seasons except summer.  622 
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