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Abstract 16 

Convection-permitting regional climate models (CPRCMs) have demonstrated enhanced capability in capturing 17 

extreme precipitation compared to regional climate models (RCMs) with convection-parameterization schemes. 18 

Despite this, a comprehensive understanding of their added values in daily or sub-daily extremes, especially at local 19 

scale, remains limited. In this study, we conduct a thorough comparison of daily and sub-daily extreme precipitation 20 

from the HARMONIE-Climate (HCLIM) model at 3 km resolution (HCLIM3) and 12 km resolution (HCLIM12) 21 

across Norway’s diverse landscape, divided into five regions, using both gridded and in-situ observations. Our main 22 

focus is to investigate the added value of CPRCMs (i.e., HCLIM3) compared to RCMs (i.e., HCLIM12) for extreme 23 

precipitation at daily and sub-daily scales from regional to local scales, and quantify to what extend CPRCMs can 24 

reproduce the orographic effect on extreme precipitation at daily and sub-daily scale. We find that HCLIM3 better 25 

matches observations than HCLIM12 for daily and hourly extreme precipitation across all grid points in Norway, 26 

while HCLIM12 underestimates the extremes, especially for hourly extremes. At the regional scale, HCLIM3 27 

captures the maximum 1-day precipitation (Rx1d) and maximum 1-hour precipitation (Rx1h) more accurately across 28 

most regions and seasons, except summer. Besides, HCLIM12 underestimates daily return levels across most 29 

regions while HCLIM3 shows larger bias of daily extreme in the east and west at the local scale. Nevertheless, 30 

HCLIM3 consistently demonstrates added value in simulating daily extremes in the middle and north regions at both 31 

regional and local scales, as well as hourly extremes at all 10 stations, compared with HCLIM12. Both HCLIM3 and 32 
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HCLIM12 capture the seasonality of extreme precipitation well across most regions, with HCLIM3 outperforming 33 

HCLIM12 for hourly extremes. Additionally, the reverse orography effect on seasonal Rx1h and Rx1d is well 34 

captured, with HCLIM3 showing added value in representing the reverse orographic effect of daily extremes except 35 

in summer. This study highlights the importance of more realistic convection-permitting regional climate 36 

simulations in providing reliable insights into the characteristics of precipitation extremes across Norway's five 37 

regions. Such information is crucial for effective adaptation management to mitigate severe hydro-meteorological 38 

hazards, especially for the local extremes.   39 

1 Introduction 40 

In recent years, the world has witnessed a surge in both frequency and intensity of floods primarily attributed to the 41 

increasing occurrence of intensive rainfall events (Tabari, 2020). These changes underscore the pressing need to 42 

develop a predictive understanding of precipitation extremes for the upcoming decades, given the ongoing globe 43 

warming. The intensification of precipitation extremes under the influence of global warming has the potential to 44 

trigger severe natural hazards and exert significant socioeconomic impacts (Thackeray et al., 2022), which has 45 

gained substantial attention in recent research endeavors. However, most previous research in this field relied on 46 

coarse-resolution GCMs with grid sizes exceeding 100 km, which struggle to accurately simulate extreme 47 

precipitation events and their frequency due to the limitations of their coarser resolution (Piani et al., 2010; Wang et 48 

al., 2017). Notably, these GCMs tend to produce the largest errors in predicting extreme precipitation, particularly in 49 

cases involving heavier convective activity, as observed in the study by Gervais et al. (2014a). Despite various bias-50 

correction techniques are applied to mitigate these discrepancies on the GCMs, as well as employing them as forcing 51 

data for regional climate models (RCMs) with grid size larger than 10 km, it remains a persistent challenge to 52 

eliminate the transfer of biases from GCMs to RCMs, as noted by studies such as Pontoppidan et al. (2018) and Kim 53 

et al. (2020). The large resolution gap between GCMs or RCMs and localized precipitation extremes further 54 

constrains the robust simulations of extreme precipitation as highlighted by Li et al. (2020a). In addition, the 55 

reliance on parameterization schemes to represent convection in these coarse resolution models introduces a 56 

significant source of uncertainty in modelling errors (Prein et al., 2015; Kendon et al., 2019). More frequent and 57 

intense precipitation events under global warming stimulate interest in higher resolution and physics-based models 58 

to improve the estimation of short-duration extremes. 59 

Convection-permitting regional climate models (CPRCMs), with grid size of less than 4 km, offer a promising 60 

alternative, which explicitly represent convection, eliminating the need for parameterizations of deep atmospheric 61 

convection. The potential in resolving deep convection and local extremes from CPRCMs lead to the realistic 62 

representation in daily and sub-daily precipitation features, including diurnal cycle, intensity and frequency of heavy 63 

precipitation events, seasonality, spatial-temporal pattern, wet-spell and dry-spell. For instance, CPRCMs have been 64 

proven to reduce the bias and enhance the representation in precipitation intensity and intensity in the Tibetan 65 

Plateau, the highest highland in the world, as shown in Li et al. (2021). In addition to their capability in capturing 66 

precipitation, Liu et al. (2017) also demonstrated the confidence of CPRCMs in estimating snowfall and snowpack 67 
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in the central U.S. Furthermore, the importance of CPRCMs in representing dry spell, dry and wet extremes induced 68 

by local convective activity across Africa has also been found in Kendon et al. (2019), Chapman et al. (2023) further 69 

confirmed its benefit in capturing rare rainfall extreme and local feature. In UK, Kendon et al. (2023) and Kent et al. 70 

(2022) have found the benefit of CPRCMs compared to RCMs with convection parameterization schemes. 71 

Additionally, the superior performance in capturing hourly and daily extreme precipitation including return-level, 72 

frequency and intensity from CPRCMs over Alpine in Europe, has also been highlighted by Adinolfi et al. (2021), 73 

Dallan et al. (2023) and Giordani et al. (2023).  74 

Northern Europe has been reported to experience the most increase in precipitation, as indicated by Dyrrdal et 75 

al., (2023), where a novel CPRCMs have been developed within the Nordic Convection Permitting Climate 76 

Projections project (NorCP) based on the convection-permitting HARMONIE-Climate model (HCLIM), cycle 38 77 

(HCLIM38) at a resolution of 3 km (HCLIM38-AROME) and 12km (HCLIM38-ALADIN). For convenience, 78 

HCLIM3 and HCLIM12 are used in the following to represent the regional climate models HCLIM38-AROME and 79 

HCLIM38-ALADIN, respectively. HCLIMs also indicate both HCLIM3 and HCLIM12. Through comparisons of 80 

seasonal precipitation, daily mean precipitation, higher-intensity daily precipitation, the diurnal of hourly 81 

precipitation including frequency and intensity from HCLIM3 and HCLIM12 over Fenno-Scandinavia, Lind et al. 82 

(2020) emphasized the add-value of CPRCMs in reproducing extreme precipitation, primarily over complex terrain, 83 

compared to a coarser-scale model. Médus et al. (2022) also noted that the summer diurnal cycle of frequency and 84 

intensity of hourly precipitation was correctly captured in HCLIM3 compared to HCLIM12 in the Nordic region, 85 

with HCLIM12 underestimating the diurnal cycle. However, the evaluation and conclusions from Lind et al. (2020) 86 

and Médus et al. (2022) mainly focused on the large regional and country scale of Fenno-Scandinavia, overlooking 87 

the added values of CPRCMs at local scale. Furthermore, Thomassen et al. (2023) observed that HCLIM3 tends to 88 

exhibit underestimations in monthly precipitation and a later evening peak compared to sub-kilometre models. They 89 

found that the advantages of sub-kilometer models were not outstanding. These evaluations were based on gridded 90 

datasets, which introduce uncertainty at the local scale, especially over complex orography (Lussana et al., 2019). 91 

As Chapman et al. (2023) demonstrated, who underscored the importance of assessing rare extreme rainfall events 92 

in eastern African using convection-permitting models and parameterization convection models at both grid and 93 

station scales, that the extreme from grids representing rainfall averaged over a larger area are damped and hence the 94 

return-level will be smaller than observation. They found that the station-derived shape parameters and return levels 95 

are aligned with observations and suggested the significance of site-specific analysis and evaluations. The error 96 

induced by station density in gridded dataset has also been indicated in Gervais et al. (2014b), who suggested the 97 

source of large errors in gridded dataset when station density is low. Consequently, a comprehensive evaluation and 98 

analysis of the added value from CPRCMs compared with RCMs that incorporates both regional and local scales is 99 

crucial for extreme precipitations. 100 

We acknowledge that Norway, a Nordic country, is representative of diverse climate features due to its 101 

extended latitude, rugged coastline, plateaus, and complex orography. The dominances of precipitation between the 102 

coastal and inland regions over Norway are distinctly different, and most of studies focusing on the hydrology and 103 
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meteorology over Norway were based on the divided regions (Vormoor et al., 2016; Poujol et al., 2021; Konstali 104 

and Sorteberg, 2022). By dividing region with its characteristics, a more thorough comprehension of add-value of 105 

CPRCMs in capturing extreme precipitation can be reached. Therefore, reliable evaluation about analyzing the add-106 

value of CPRCMs in capturing extreme precipitation should be scaled to region or local scale. 107 

In the complex mountain areas, extreme precipitation is triggered by the interaction of large-scale atmospheric 108 

activity and local orography property, which may cause severe hydrometeorological hazards, such as flash flooding. 109 

However, understanding the orographic impact in precipitation in complex orography is challenging due to sparse 110 

observations (Rossi et al., 2020). The poor representation of RCMs in capturing local precipitation have been 111 

indicated in Knist et al. (2020). Importantly, CPRCMs shows advantage in reproducing precipitation bias over 112 

higher complex orography in the Alpine, as shown in Lind et al. (2016) and Reder at al. (2020). Furthermore, the 113 

better representation of sub-daily and daily heavy precipitation from CPRCMs over the Alpine have also been found 114 

in Ban et al. (2020) and Dallan et al. (2023). Marra et al. (2021) and Dallan et al. (2023) also confirmed the 115 

efficiency of CPRCMs in reproducing the reverse orography effect on hourly extreme precipitation. The relationship 116 

between extreme precipitation and elevation may vary depending on latitude and climate zones (Amponsah et al., 117 

2022). Rossi et al. (2020) and Mahoney et al. (2015) found the weak depend of subdaily precipitation on elevation in 118 

the Colorado, USA. Opposing the orographic enhance on daily precipitation, Dallan et al. (2023) indicated the no 119 

evident relation of daily precipitation on elevation. It is worth noting that the potential added value of CPRCMs in 120 

representing orographic effects compared to RCMs has not been explored. Moreover, the performance of CPRCMs 121 

varies with seasons, which underscores the need to explore the orographic effects on seasonal extremes. Thus, we 122 

fill this knowledge gap by characterizing orographic impact on hourly and daily extreme precipitation seasonally.  123 

As highlighted by Konstali and Sorteberg (2022),  there can be significant uncertainties associated with the 124 

interpolation of grided precipitation data. Besides, the benefit for precipitation spatial evaluation based on in-situ 125 

observation has also been reported in Thomassen et al. (2023). Therefore, the evaluation of extreme precipitation 126 

from HCLIM3 and HCLIM12 here, is based on both gridded precipitation and in-situ observation. Our study aims to 127 

address the value of CPRCMs (HCLIM3) in capturing the characteristics of extreme precipitation in Norway, 128 

comparing it with a coarser resolution model (HCLIM12) as well as both of the in-situ and gridded precipitation 129 

observations. Here, our contribution to the existing literature, e.g., Médus et al. (2022), revolves around the added 130 

value of CPRCMs in the extreme precipitation characteristics, encompassing a range of metrics.  131 

The main objectives of this study are to: (1) enhance the understanding of convection-permitting climate 132 

models and highlighting the added value of CPRCMs by comparing their effectiveness in simulating extreme 133 

precipitation with that of regional climate models from regional to local scales; (2) assess HCLIM3's capability in 134 

depicting orographic effects on seasonal extreme precipitation. This research explores whether the benefits provided 135 

by CPRCMs are consistent in different regions driven by varying physical processes for precipitation. Finally, our 136 

study delves into the analysis of the intensity and frequency of extreme precipitation events, offering insights into 137 

local and regional variations. 138 
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2 Study area and data 139 

2.1 Study area 140 

 141 

 142 
Figure 1: (a) The division of five regions in Norway. In the legend, the numbers shown in the brackets after each region 143 
represent the available size of hourly / daily stations in the region during 1999 – 2018. For example, East (4/46) means 144 
that there are available data from 4 hourly stations and 46 daily stations in the East during 1999-2018; (b) Spatial 145 
distribution of topography over Norway. 146 

 147 
The different climate regimes between coastal and inland regions over Norway compels the analysis of hydro-148 

meteorology based on divided regions. Based on similar seasonal cycle characteristics, Michel et al. (2021) and 149 

Konstali and Sorteberg (2022) divided the Norwegian continent into eight regions. Taking into account the spatial 150 

distribution of rain gauges and ensuring that each region has at least one hourly rain-gauge, we combined the south 151 

and southwest into the south, and the middle-inland and north into the north. Therefore, mainland Norway in this 152 

study is divided into five regions: East (E), South (S), West (W), Middle (M), and North (N), as shown in Fig. 1. 153 

The study areas cover the mainland Norway which has unique climate characteristics within different regions. 154 

Precipitation in Norway primarily occurs along the coast in late autumn and winter, while inland areas receive more 155 

precipitation in summer. The eastern region with stratiform precipitation originating from south is dominant by 156 

continental climate, with convective precipitation in summer. The west coast of Norway is strongly affected by the 157 

North Atlantic storm track, where precipitation from frontal systems and landfalling storms is enhanced due to the 158 

orographic uplift over Scandinavia (Poujol et al., 2021). Most extreme events occurring in the western region with 159 

abrupt topography, are mainly related to atmospheric rivers (AR), which are generally linked to extratropical 160 

cyclones during cooler seasons (Whan et al., 2020). Additionally, in the summer, AR coincides with more frequent 161 

convective activities (Poujol et al., 2021). The southern region lies at the end of the climatological jet and is 162 
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regularly affected by the AR especially during the Zonal and Atlantic trough weather regimes (Michel et al., 2021), 163 

while convective activities play a crucial role in the southern regions in summer (Li et al., 2020b). For the middle 164 

and northern regions, 59% of extremes are associated with AR, and the precipitation rate decreases moving inland 165 

(Konstali and Sorteberg, 2022).  166 

2.2 Data 167 

We utilize the outputs of double nested model simulations from the HCLIM38 model, which include different 168 

configuration settings for each spatial resolution: HCLIM3 and HCLIM12. HCLIM12 covers most of Europe with 169 

313 ×349 grid-points using the ERA-Interim reanalysis (~80 km) as the boundary condition, and HCLIM3 spans the 170 

Fenno-Scandinavia region with 637×853 grid-points using the output of the HCLIM12 as the boundary condition for 171 

every 3 h. Importantly, the convection-parameterization scheme was switched-off in HCLIM3, allowing for an 172 

explicit representation of convection processes. The present-day simulations from HCLIM3 and HCLIM12 span the 173 

years 1997-2018. For more comprehensive information, refer to the work of Lind et al. (2020) and Médus et al. 174 

(2022).  175 

This study primarily focuses on assessing the performance of HCLIM3 and HCLIM12 in simulating hourly 176 

and daily extreme precipitation events in mainland Norway for the present-day period (1997-2018, with the first two 177 

years excluded). The model outputs from HCLIM3 and HCLIM12 are specifically extracted for mainland Norway. 178 

Before analysis, HCLIM3 data was remapped to the HCLIM12 grid (12km) using a bilinear interpolation method.  179 

Precipitation from the seNorge2018 (SeNorge) gridded dataset, covering Norway with 1-day temporal and 1 180 

km spatial resolution since 1957 (Lussana et al., 2019), is used as the observation dataset to evaluate the 181 

performance of HCLIM3 and HCLIM12 during 1999-2018. Precipitation from the SeNorge2 gridded dataset, with 182 

1-hour temporal and 1 km spatial resolution, is also applied to evaluate the hourly result during 2010-2018 (Lussana 183 

et al., 2018). In addition, in-situ precipitation of observations, including both 1-hour and 1-day resolutions, are 184 

downloaded from Norwegian Meteorological Institute Frost API (met.no).    185 

3 Methods 186 

3.1 Evaluation of precipitation  187 

To evaluate the characteristics of precipitation extremes between HCLIM3 and HCLIM12, we compared the 188 

historical simulations with daily SeNorge gridded dataset, hourly SeNorge2 gridded dataset and in-situ observations. 189 

We only keep the stations that have less than 10% of the data missing during 1999-2018 and consider station 190 

distribution uniformity, which give a total of 192 daily stations and 10 hourly stations, respectively, over Norway 191 

(Fig. 1, Table S1 and Table S2). In this study, the evaluation based on in-situ observation and gridded dataset 192 

(SeNorge and SeNorge2) was defined as the local scale and regional scale, respectively.  193 

Remapping finer-resolution data to a coarser resolution reduces the influence of such artifacts by averaging out 194 

the variability. This approach is consistent with the methodology used by Lind et al. (2020) and Médus et al. (2022), 195 

who also remapped all data to a coarser grid when comparing the performance of HCLIM3 and HCLIM12. Lind et 196 

https://frost.met.no/api.html#!/elements
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al. (2020) observed that the differences between HCLIM3 data remapped to the coarser native grid of HCLIM3 and 197 

the HCLIM12 grid were minimal. Importantly, they found that the improvements of HCLIM3 persisted even after 198 

spatial aggregation, indicating that the enhanced resolution of the model offered benefits that were preserved when 199 

viewed on a coarser grid. Therefore, HCLIM3, SeNorge and SeNorge2 were remapped to HCLIM12 grid~12 km for 200 

the evaluation at regional scale. For the SeNorge and SeNorge2 based assessments, the extreme indices are first 201 

calculated at the grid-point level and then the regional averages are computed. For the evaluation based on in-situ 202 

observation, HCLIM3 and HCLIM12 were interpolated to the 192 daily rain-gauges and 10 hourly rain-gauges to 203 

calculate the indices using bilinear interpolation method.   204 

For the evaluation of extreme precipitation, we examined the maximum 1-day precipitation (Rx1d), maximum 205 

1-hour precipitation (Rx1h), return-period-based precipitation amounts at 5, 10, 20, and 50-year return periods, and 206 

seasonality of frequency/intensity from regional to local scales. The calculation of seasonal Rx1d/Rx1h was based 207 

on the maximum value within one season per year. 208 

3.2 Extreme precipitation indices 209 

The Generalized Extreme Value (GEV) distribution was used to estimate precipitation intensity for specific return 210 

periods (e.g., 5, 10, 20, and 50 years). The return levels were calculated by fitting the annual maximum discharge 211 

derived from observed and simulated daily data (both gridded and rain gauges), and hourly data (only 10 rain 212 

gauges), to GEV distribution. Then, the quantile 𝑍! of the GEV distribution with a return period of  "
!
 can be 213 

obtained. GEV distribution has been widely used to model extreme events in meteorology (Coles et al., 2003). The 214 

cumulative distribution function 𝐹(𝑥) and probability density function 𝑓(𝑥)of GEV were as follows to calculate the 215 

return level 𝑍!: 216 

 	217 

𝐹(𝑥) = 𝑒𝑥𝑝 +− -1 − 𝑘 0#$%
&
12
" '⁄
3 , 𝑘 ≠ 0																																																							      (1) 218 

𝑓(𝑥) = "
&
-1 − 𝑘 0#$%

&
12
" '⁄ $"

𝑒𝑥𝑝 +− -1 − 𝑘 0#$%
&
12
" '⁄
3																																	   (2) 219 

𝑍! = 𝜉 − &
'
{1 − [−𝑙𝑜𝑔	(1 − 𝑝)]$'}																																																																			    (3) 220 

 221 
Where, 𝛼, 𝜉, and 𝑘  indicates the scale, location and shape parameter, respectively. Kolmogorov-Smirnovs, 222 

Anderson-Darlings, and Chi-Square tests were performed to determine if the GEV was accepted to fit the maxima 223 

series. 224 

 225 

3.3 Quantification of the orographic effect 226 

 The orographic effect on Rx1h and Rx1d precipitation was explored by looking at the relationship with elevation of 227 

the annual and seasonal maxima from regional to local scales. A linear regression model (Di Piazza et al., 2011) was 228 

utilized to approximate the relations. The relationship of elevation with observation (Rx1h: SeNorge2; Rx1d: 229 

SeNorge and daily in-situ observation) and simulation (HCLIM3 and HCLIM12) was fitted to compute the linear 230 
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regression slope. To eliminate the impact of unit (Rx1h and Rx1d), the slope is transferred to relative slope with 231 

respect to the average value of extreme precipitation, expressed as percentage precipitation (%) per kilometer of 232 

elevation. The orographic effect at local scale was only based on daily in-situ observation due to the limited hourly 233 

in-situ observation. At local scale, the elevation for each rain-gauges was extracted according to the digital elevation 234 

model. At regional scale, the grid of digital elevation model and HCLIM3 was resample to the same grid resolution 235 

of 12 km as HCLIM12 before calculation. Only the grids and stations above sea level of 0 m are included to 236 

quantify the orographic effect.  237 

If the precipitation increases with elevation, it means that the orographic effect on extreme precipitation; if the 238 

precipitation decreases with elevation, its means that the reverse orographic effect on extreme precipitation.  239 

4 Results 240 

4.1 Evaluation of daily extreme with SeNorge 241 

4.1.1 Maximum 1-day precipitation (Rx1d) 242 

 243 



9 
 

Figure 2: (a) The annual Rx1d of SeNorge, and the percentage bias of Rx1d from HCLIM3 and HCLIM12 to SeNorge 244 
during 1999-2018; (b) density plot of the percentage bias distribution for annual Rx1d from HCLIM3 and HCLIM12 245 
compared to SeNorge for Rx1d during 1999-2018 (The dashed lines represent the mean bias); (c) the absolute percentage 246 
bias of annual and seasonal Rx1d from HCLIM3 and HCLIM12 to SeNorge for five regions. The bias is first calculated at 247 
the grid-point level, and then regional averages are computed. For (a) and (b), the percentage bias is equal to model 248 
simulations minus observations, divided by observations. For (c), the absolute percentage bias is calculated as the absolute 249 
difference between simulations and observations, divided by observations. 250 

 251 
Figure 2 provides a comprehensive comparison of percentage biases of Rx1d from HCLIM3 and HCLMI12 252 

compared to SeNorge. From Fig. 2 (a), we can see that HCLIM12 has more grids with underestimated Rx1d than 253 

HCLMI3 in Norway, which is confirmed clearly in Fig. 2 (b) showing density plot of the percentage bias 254 

distribution from two models compared with SeNorge. Specifically, more grids from HCLIM3 than HCLIM12 tend 255 

to overestimate Rx1d within the 0-25 % range, while HCLIM12 leans towards larger underestimation within the -256 

10-50%. The density curve in Fig. 2 (b) reflects a higher peak at 0 for HCLIM3, indicating a more accurate 257 

representation of Rx1d with an average dry-bias with 1.6%. Conversely, HCLIM12 shows a 7% dry-bias for Rx1d 258 

on average.  259 

Figure 2 (c) shows the absolute percentage bias of annual and seasonal Rx1d from HCLIM3 and HCLIM12 260 

compared to SeNorge for five regions in four seasons. In annual, HCLIM3 exhibit added value in capturing annual 261 

Rx1h in the five regions compared to HCLIM12. HCLIM3 better captures Rx1d in four seasons and annual for five 262 

regions than HCLIM12, while HCLIM12 shows larger bias in most regions except in the east, south and west during 263 

summer. In summer, HCLIM3 only outperforms Rx1d in the middle and north over HCLIM12. Overall, HCLIM3 264 

shows notably added value in Rx1d comparing with HCLMI12 across regions and seasons except in summer.  265 

Furthermore, as shown in Fig. 3, a comparison of the Rx1h percentage biases of HCLIM3 and HCLIM12 with 266 

SeNorge2 for the period 2010-2018 demonstrates that HCLIM3 has a clearly added value in simulating the annual 267 

Rx1h in Norway, with smaller wet biases on average, while HCLIM12 shows larger dry biases over the whole of 268 

mainland Norway. At the regional scale, HCLIM3 also shows added value in capturing annual and seasonal Rx1h 269 

than HCLIM12 in five regions except west and middle regions. Specifically, in the west region, HCLIM3 exhibits 270 

larger absolute percentage biases than HCLIM12 in annual Rx1h and seasonal Rx1h than HCLIM12, except in 271 

spring. In summer, only in the south and north regions, the Rx1h bias of HCLIM3 is smaller than that of HCLIM12. 272 

 273 
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 274 
Figure 3: (a) The annual Rx1h of SeNorge2, and the percentage bias of Rx1h from HCLIM3 and HCLIM12 to SeNorge2 275 
during 2010-2018; (b) density plot of percentage bias for annual Rx1h distribution from HCLIM3 and HCLIM12 276 
compared to SeNorge2 during 2010-2018 (The dashed lines represent the mean bias); (c) the absolute percentage bias of 277 
seasonal Rx1h from HCLIM3 and HCLIM12 to SeNorge2 for five regions. For (a) and (b), the percentage bias is equal to 278 
model simulations minus observations, divided by observations. For (c), the absolute percentage bias is calculated as the 279 
absolute difference between simulations and observations, divided by observations. 280 

4.1.2 Return levels  281 

Figure 4 shows the bias in estimated daily precipitation for 5-, 10-, 20-, and 50-year return periods during 1999-2018 282 

across five regions (compared to SeNorge). The great interregional variation is shown between HCLIM3 and 283 

HCLIM12. Relative to SeNorge, HCLIM3 tends to overestimate return-levels in the eastern and western regions, 284 

while underestimates them in the others. By comparison, except for the east region where HCLIM12 shows 285 

overestimation, the extreme precipitation estimates in most other regions are underestimated. The performance of 286 

HCLIM3 in capturing extremes varies across regions. HCLIM3 and HCLIM12 exhibit percentage biases of opposite 287 

sign in simulating return level precipitation in the western region, where HCLIM3 overestimates and HCLIM12 288 

underestimates precipitation at different return periods. In the western, middle, and northern regions, HCLIM3 289 

outperforms HCLIM12 in all return periods, but the performance is less satisfactory in the eastern region.  290 
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Given the societal impacts of precipitation extremes, understanding how HCLIM3 and HCLIM12 represent 291 

these extremes is crucial. The physical processes driving precipitation in inland and coastal regions, as highlighted 292 

by Konstali and Sorteberg (2022), emphasize the need for a separate evaluation for each region with different 293 

characteristics. This approach ensures a more robust assessment, providing valuable information for regional 294 

authorities. 295 

 296 
Figure 4: Percentage bias of extreme daily precipitation exceeding the 5-year to 50-year return periods over five regions 297 
between SeNorge and HCLIMs (i.e., HCLIM3 and HCLIM12). Return periods of 5-, 10-, 20-, and 50-year are calculated 298 
on the basis of GEV. 299 
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4.2 Evaluation of daily extreme with in-situ data 300 

4.2.1 Maximum 1-day precipitation (Rx1d) 301 

 302 
Figure 5: (a) The annual Rx1d of in-situ observation, and the percentage bias of Rx1d from HCLIM3 and HCLIM12 to 303 
in-situ observation during 1999-2018 over 194 stations; (b) density distribution of percentage bias for annual Rx1d 304 
between HCLIMs and observations from 194 stations during 1999-2018 (The dashed lines represent the mean bias); (c) 305 
the absolute percentage bias of seasonal Rx1d between HCLIMs and observations across the five regions. For (a) and (b), 306 
the percentage bias is equal to model simulations minus observations, divided by observations. For (c), the absolute 307 
percentage bias is calculated as the absolute difference between simulations and observations, divided by observations. 308 

 309 
Similar to the regional results in Fig. 2, Fig. 5 shows the percentage bias of annual and seasonal Rx1d from 310 

HCLIM3 and HCLIM12 in comparison to in-situ observations. Notably, a difference between HCLIM3 and 311 

HCLIM12 can be seen at local scale compared to regional result: a greater number of sites from HCLIM3 approach 312 

zero-bias, and more grids from HCLIM12 shows a dry bias about 10-40%, as shown in Fig. 5 (b). On average, 313 

HCLIM12 with 4.5% dry-bias tends to underestimate annual Rx1d, while HCLIM3 represents added value in 314 

capturing annual Rx1d with 1% wet-bias on average at local scale. Furthermore, HCLIM3 shows added value in 315 

simulating the annual Rx1h at local scale in all regions. 316 

From a seasonal perspective, as shown in Fig. 5 (c), overall, HCLIM3 shows added value in capturing the 317 

seasonal Rx1d in most regions and seasons, except for summer. Specifically, HCLIM3 performs better than 318 
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HCLIM12, except for the western and southern region, where HCLIM3 exhibits a larger bias in summer Rx1d. In 319 

particular, the added value of HCLIM3 in simulating autumn Rx1d in the east and west is not as obvious when 320 

compared to HCLIM12.  321 

It is noteworthy that at the local scale, HCLIM3 and HCLIM12 perform similarly to the regional results in most 322 

regions. There are some exceptions, such as, HCLIM3 shows larger biases in summer Rx1d in the south and west 323 

compared with HCLIM12 at both regional and local scales. In contrast to the clearly larger bias in Rx1h at the 324 

regional scale for both HCLIM3 and HCLIM12, a relatively smaller bias in Rx1d is demonstrated at both regional 325 

and local scales. At the regional scale, HCLIM3 exhibits added value in all seasons except summer, while at the 326 

local scale, HCLIM3 and HCLIM12 show similar biases in autumn Rx1d in the east and west, which means that the 327 

advantage of HCLIM3 over HCLIM12 at the local scale in autumn weakens in the west and east compared with the 328 

regional scale.  329 

 4.2.2 Return-levels 330 

 331 
Figure 6: Percentage bias of extreme daily precipitation exceeding the 5-year to 50-year return periods over five regions 332 
between HCLIMs (i.e., HCLIM3 and HCLIM12) and in-situ observation in the 192 daily rain-gauges. Return periods of 333 
5-, 10-, 20-, and 50-year are calculated on the basis of station-scale GEV. 334 
 335 
Figure 6 shows the percentage bias of the estimated daily return levels (e.g., 5-, 10-, 20-, and 50-year return periods) 336 

from HCLIM3 and HCLIM12 compared to observations for the period 1999-2018. The figure illustrates the average 337 

bias of return-levels for the stations in the corresponding regions. Compared with the in-situ observation, HCLIM3 338 

overestimates the return levels in the east and west for all return periods (5-, 10-, 20-, and 50-year) and 339 

underestimates return levels in the south and north for 20- and 5-year return periods, while HCLIM12 340 

underestimates the return levels in all regions. Generally, HCLIM3 can more accurately represent the return levels in 341 

most regions compared to HCLIM12. The biases of HCLIM3 and HCLIM12 vary across regions and return periods. 342 
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HCLIM3 has lower biases than HCLIM12 in most regions, except for the eastern and western regions. Both 343 

HCLIM3 and HCLIM12 perform well in the southern region. In addition, Fig. S1 shows the range of the return 344 

levels for all stations in the corresponding region, and HCLIM3 introduces larger variations in the western and 345 

southern regions compared with HCLIM12, as indicated by the wider whiskers.  346 

4.3 Evaluation of hourly extreme with in-situ data 347 

4.3.1 Maximum 1-hour precipitation (Rx1h) 348 

The time evolution of annual Rx1h from HCLIM3 and HCLIM12 is compared to in-situ observation during 1999-349 

2018, as shown in Fig. 7. Compared to HCLIM12, HCLIM3 shows distinct superior in capturing the time evolution 350 

of annual Rx1h, even with underestimation and time shifting at some local places. For example, the annual Rx1h 351 

above 25 mm/hour at Kvithamar (SN69150), Særheim (SN44300), Tromsø - Holt (SN90400), Tjøtta (SN76530) and 352 

Løken i Volbu (SN23500) is struggle to be captured by HCLIM3 and HCLIM12. However, HCLIM3 well capture 353 

the annual Rx1h in other local places, despite of the time deviation of annual Rx1h. Taking the site Østre Toten - 354 

Apelsvoll (SN11500) as an example to illustrate the time deviation: HCLIM3 simulate that the annual Rx1h (37 355 

mm) in the past 20 years was in 2001, four years earlier than the in-situ observation (35 mm). Furthermore, to better 356 

assess the annual variability of Rx1h, we extracted grids within a 12 km radius of each station and calculate the 357 

uncertainty range (Fig. S2), which reveals that the interpolated local Rx1h precipitation from HCLIM12, particularly 358 

over grids with a larger area, tends to be damped, resulting in a narrower range than HCLIM3. Based on station 359 

statistics of annual mean Rx1h in Norway, the boxplot (Fig. 7) shows that the annual mean Rx1h of HCLIM3 is 360 

within the range of observed values. In contrast, HCLIM12 consistently underestimates Rx1h, with all its values 361 

being below the observed minimum. Despite outperforming than HCLIM12, it is noteworthy that HCLIM3 362 

demonstrates limitations in reproducing the accurate occurrence time and magnitude of annual Rx1h at local-level in 363 

Norway.   364 

 365 
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 366 
Figure 7: Time evolution of Rx1h precipitation for each year from observation, HCLIM3 and HCLIM12 during 1999-367 
2018 at 10 rain-gauges (Table S1). 368 

  369 
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4.3.2 Return levels 370 

 371 
Figure 8: Percentage bias of extreme hourly precipitation exceeding the 5-year to 50-year return periods between 372 
HCLIMs (i.e., HCLIM3 and HCLIM12) and in-situ observation in the 10 hourly rain-gauges. Return periods of 5-, 10-, 373 
20-, and 50-year are calculated on the basis of station-scale GEV. 374 

 375 
 376 
At the local and hourly scale, HCLIM3 has a better representation of hourly extreme events at the 5-, 10-, 20-, and 377 

50-year return periods compared to HCLIM12. Although both HCLIM3 and HCLIM12 tend to underestimate the 378 

annual Rx1h for all return periods at almost stations (Fig. 8), the biases between the observations and the 379 
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interpolated HCLIM3 for all ten rain gauges are consistently lower than those of HCLIM12 for all return periods. 380 

The exceptions are Kvithamar (SN69150), Tromsø - Holt (SN90400) and Fureneset (SN56420) which present at all 381 

return periods, and Østre Toten - Apelsvoll (SN11500) which present at a 50-year return period, where HCLIM3 382 

slightly overestimation. Notably, the return levels of hourly extreme events at all ten sites are accurately captured by 383 

HCLIM3, demonstrating its better ability to capture the extreme hourly precipitation at the 5-, 10-, 20-, and 50-year 384 

return periods in localized areas, compared to HCLIM12. This result underscores the added value of CPRCMs in 385 

representing hourly extreme precipitation at a very localized scale, despite the overall underestimation of return 386 

levels by both HCLIM3 and HCLIM12.  387 

4.4 Evaluation of seasonality  388 

 389 
Figure 9: The seasonality of frequency and magnitude of Rx1d precipitation from the SeNorge, HCLIM3 and HCLIM12 390 
during 1999-2018 over different regions: a) Eastern, b) South, c) West, d) Middle, f) North. The color represents the 391 
magnitude of Rx1d (m3/s). Winter: December, January, February; Spring: March, April, May; Summer: June, July, 392 
August; Autumn: September, October, November. 393 
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 394 
Figure 10: The seasonality of frequency and magnitude of Rx1d precipitation from the in-situ observation, HCLIM3 and 395 
HCLIM12 during 1999-2018 over different regions: a) Eastern, b) South, c) West, d) Middle, f) North. The color 396 
represents the magnitude of Rx1d (m3/s). 397 

 398 
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 399 
Figure 11: Seasonality of the frequency and magnitude of Rx1h precipitation from the in-situ, HCLIM3 and HCLIM12 400 
during 1999-2018 at 10 rain gauge stations (Table S1), i.e., a) Østre Toten - Apelsvoll, b) Kvithamar, c) Stryn - Kroken, d) 401 
Ås - Rustadskogen, e) Særheim, f) Kise in Hedmark, g) Tromsø – Holt, h) Tjøtta, i) Fureneset, j) Løken i Volbu. The color 402 
represents the magnitude of Rx1h (m3/s).  403 

 404 
Figure 9 and Figure 10 show the comparison of seasonality (indicated by monthly distribution) of annual Rx1d (e.g., 405 

frequency and magnitude) from both HCLIM3 and HCLIM12, compared to SeNorge and in-situ observation, 406 

respectively. From the seasonality of observed daily extreme precipitation in Fig. 9, we can see that winter-autumn 407 

precipitation dominates in almost all regions, except the middle and northern regions, where spring-summer 408 

precipitation is more prevalent. HCLIM3 captures the seasonality of Rx1d frequency at the regional scale in most 409 

regions except in middle region, where winter-autumn precipitation dominates. In contrast, HCLIM12 performs 410 

poorly in the eastern and middle regions. It is particularly noteworthy that HCLIM3 has an enhanced ability to 411 

capture the seasonality of extreme precipitation frequency over the western region compared to HCLIM12. Heavy 412 
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precipitation over 50 mm/day occurs mainly in the south and west, which is also simulated by HCLIM3 and 413 

HCLIM12. In general, both HCLIM3 and HCLIM12 demonstrate competence in capturing the magnitude of 414 

extreme daily precipitation seasonally at regional scale in most regions except middle region.  415 

The seasonal performance of Rx1d from HCLIM3 and HCLIM12 in the local scale is also confirmed by the in-416 

situ observation, as shown in Fig. 10. A larger magnitude of annual Rx1d across five regions at local scale than 417 

regional scale is shown for observation, HCLIM3 and HCLIM12. Generally, spring-summer precipitation events are 418 

more frequent in the east, middle and north, while winter-autumn events are frequent in the south and west, and both 419 

HCLIM3 and HCLIM12 capture this pattern well. In comparison, HCLIM3 better represents the seasonality of 420 

frequency in the south, west and middle, compared to HCLIM12. For the seasonality of annual Rx1d at local scale, 421 

as shown in Fig. 11, HCLIM3 more accurately represents the seasonality of Rx1h compared to HCLIM12, which 422 

tends to underestimate the frequency of hourly extremes in most sites. Compared with RCMs, CPRCMs demonstrate 423 

better potential performance in simulating seasonality of extreme precipitation, with particularly improved accuracy 424 

for the hourly extremes at the local scale. 425 
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4.5 Orographic effect on seasonal extreme precipitation 426 

4.5.1 Seasonal Rx1d at regional scale 427 

 428 
Figure 12: Relationship between elevation and Rx1d (maximum 1-day precipitation) for (a) winter, (b) spring, (c) 429 
summer, and (d) autumn, as derived from SeNorge and HCLIMs (i.e., HCLIM3 and HCLIM12) across mainland Norway 430 
during the period of 1999-2018. 431 
         432 
The relationship of seasonal Rx1d with elevation from SeNorge, HCLIM3 and HCLIM12 is shown in Fig. 12. 433 

Compared to HCLIM12, HCLIM3 more accurately captures the no evident linear relation (indicated by zero 434 

coefficient of determination R2) of seasonal Rx1d with elevation, similar to SeNorge, though it depicts a more 435 

pronounced increase with elevation than SeNorge during summer. For example, both HCLIM3 and HCLIM12 436 

simulate a large average increase in summer Rx1d with elevation (over 8 %/km), compared to observation, as 437 

indicated by the larger absolute slope values. Generally, SeNorge, HCLIM3 and HCLIM12 showed the weak 438 

relationship of seasonal Rx1d with altitude. 439 
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4.5.2 Seasonal Rx1d at local scale 440 

 441 
Figure 13: Relationship between elevation and Rx1d (maximum 1-day precipitation) for (a) winter, (b) spring, (c) 442 
summer, and (d) autumn, based on daily in-situ observation and HCLIMs (i.e., HCLIM3 and HCLIM12) across mainland 443 
Norway during the period of 1999-2018. 444 

 445 

Figure 13 represents the relationship of the seasonal Rx1d from in-situ observation, HCLIM3 and HCLIM12 with 446 

elevation at local scale. The observed reverse orographic effect, seasonal Rx1d decrease with elevation, clearly 447 

depicts with an average decrease of winter, spring, summer and autumn Rx1d of more than 87.4%, 56.7%, 23.9% 448 

and 67% per kilometer. HCLIM3 more accurately represents the observed orographic influences on Rx1d in all 449 

seasons except summer than HCLIM12. Moreover, HCLIM12 displays a more pronounced decline in Rx1d with 450 

elevation, as evidenced by a steeper slope, across all seasons except summer, when compared to observation. 451 

Generally, the reverse orographic effect is shown for the Rx1d from in-situ observation, HCLIM3 and HCLIM12. 452 
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4.5.3 Seasonal Rx1h at regional scale 453 

 454 
Figure 14: Relationship between elevation and Rx1h (maximum 1-hour precipitation) for (a) winter, (b) spring, (c) 455 
summer, and (d) autumn, as derived from SeNorge2 and HCLIMs (i.e., HCLIM3 and HCLIM12) across mainland 456 
Norway during the period of 2010-2018. 457 

 458 
The relationship of seasonal Rx1h with elevation from gridded observation (SeNorge2) and simulation is further 459 

explored, as shown in Fig. 14. The reverse orographic effect of SeNorge2 on Rx1h was manifested in all seasons, 460 

with average decreases exceeding 24.3%, 10.1%, 14.9% and 19.2% per kilometer in winter, spring, summer and 461 

autumn, respectively. Compared to HCLIM12, HCLIM3 more accurately captures the decrease in seasonal Rx1h 462 

with elevation during winter, summer and autumn, though it still underestimates the decrease rate relative to 463 

observation. By contrast, HCLIM12 can only reflect the similar reverse orographic on Rx1h with observation in 464 

spring. The density plots of Rx1h reveal a dry bias in HCLIM12, particularly noticeable in summer, where it 465 

inversely correlates Rx1h with elevation.   466 

5 Discussion 467 
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5.1 Comparison between SeNorge vs in-situ observation 468 

 469 

Figure 15: (a) Density distribution of bias for Rx1d between SeNorge and daily in-situ observations from 194 stations 470 
during 1999-2018; (b) the percentage difference of seasonal Rx1d between SeNorge and daily in-situ observations across 471 
the five regions. The bias is calculated as the SeNorge minus daily in-situ observations at each grid-point. 472 

 473 

To further explore the uncertainty of different observation datasets on local scale model evaluation, we investigate 474 

the bias of SeNorge’s annual and seasonal Rx1d from daily in-situ observations (see in Fig. 15). Our analysis in the 475 

Fig.15 (a) shows that SeNorge mostly underestimates the annual Rx1d compared to in-situ observation at 192 476 

stations, with an average bias of -5.8% and a range between -28% and 25%. Although SeNorge data are designed to 477 

improve hydrological simulations (Lussana et al., 2019), their dry-biases still persist in most seasons and regions, 478 

especially in summer. It is noteworthy that SeNorge slightly overestimates the winter Rx1d in eastern, middle and 479 

northern regions. Moreover, SeNorge underestimates the return levels of Rx1d for different return periods (e.g., 5-, 480 

10-, 20- and 50-year) in all regions (Fig. S3).  481 

The larger differences between SeNorge and in-situ observation in simulating the Rx1d are manifested in the 482 

annual summer and autumn in the south and west, and in the summer in the east, where SeNorge tends to 483 

underestimate Rx1d more than in-situ observation. This discrepancy helps explain the differences between 484 

HCLIM3’s performance in simulating Rx1d in summer in the east and autumn in the south and west at regional 485 

scale, compared to the local scale, as shown in Fig. 2 (c) and Fig. 5 (c). Generally, the difference between SeNorge 486 



25 
 

and in-situ observation at daily scale is not very large, which is why in most regions the added value of HCLIM3 in 487 

Rx1d at the regional scale is similar to that at the local scale. However, it should be noted that the interpolated 488 

precipitation from SeNorge may introduce uncertainties in assessing the performance of CPRCM at the local scale 489 

due to the sparse distribution of daily and hourly rain-gauges at high altitude. Especially, for the hourly extremes at 490 

the local scale and regional scales, larger uncertainties should be considered due to the limited data from only ten 491 

rain-gauges at local scales and nine-years of data series at the regional scale. The impact of station density on the 492 

errors of gridded datasets were also highlighted by Gervais et al. (2014b), who suggested that low station density is 493 

an important source of errors in such datasets. To address these challenges and enhance the accuracy of extreme 494 

precipitation assessments, future studies should prioritize expanding in-situ datasets and improving the spatial 495 

coverage of observational networks, especially at the 1-hour timescale.  496 

5.2 Added value of CPRCMs at regional scale 497 

HCLIM3 demonstrates clear advantages over HCLIM12 in capturing the annual Rx1d in most regions. In terms of 498 

regional averages, HCLIM12 underestimates Rx1d in most regions except the east and is biased towards wetter, 499 

while HCLIM3 shows relatively smaller biases in most regions except the east, due to improvements in 500 

microphysics and convection schemes (Lind et al., 2020). 501 

Despite the overall better performance of HCLIM3, slightly larger biases in summer over the east, south and 502 

west may result from the model’s sensitivity to convective processes and limitations in accurately resolving 503 

localized dynamics under moisture-rich and unstable atmospheric conditions.	These challenges are particularly 504 

pronounced during summer, when the intensity of convective activity increases, leading to rapid atmospheric 505 

feedbacks and localized extremes (Poujol et al., 2021). In contrast, the southern region in winter is mainly affected 506 

by atmospheric rivers (ARs) associated to extratropical cyclones, and HCLIM3 can better capture this feature due to 507 

its finer resolution.  508 

In terms of annual Rx1h, HCLIM3 outperforms HCLIM12, although it exhibits a wet bias compared to 509 

SeNorge2. HCLIM12 underestimates Rx1h in most grids, likely due to its reliance on parameterization schemes that 510 

fail to capture extremes (Médus et al., 2022). However, HCLIM3 shows larger biases in seasonal Rx1h in the west 511 

in all seasons except spring, and in the east and middle region in summer, the overestimation of HCLIM3 over 512 

Norway may be attributed to the underestimation in the hourly SeNorge2 (Lussana et al., 2018). Compared with 513 

daily extremes, both HCLIM3 and HCLIM12 exhibit larger biases in simulating hourly extremes compared to daily 514 

extremes, both at the annual and seasonal scales. It is important to note the limitations of the SeNorge2 dataset, 515 

which only spans eight years and is interpolated from sparse hourly rain gauges. 516 

In summary, HCLIM3 demonstrates better agreement with observations across most regions of Norway and 517 

seasons at the regional scale, with the exception of the east and summer. This is consistent with previous studies 518 

highlighting the advantage of convection-permitting models, especially in capturing extreme precipitation events 519 

over complex terrain (Kendon et al., 2023; Médus et al., 2022; Lucas-Picher et al., 2021).  520 
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5.3 Added value of CPRCMs at local scale 521 

The analysis of local scale convection-permitting climate models (CPRCMs) highlights their better performance in 522 

capturing precipitation extremes. HCLIM3 demonstrates notable advantages over HCLIM12, especially in terms of 523 

hourly precipitation extremes (Rx1h). For example, HCLIM3 achieves near-zero bias for the annual Rx1d in 524 

Norway (Fig. 5) and relative smaller bias for hourly extremes (Fig. 7 and Fig. 8) in all stations, while HCLIM12 525 

consistently underestimates the return levels for hourly extremes at most station (Fig. 8) and daily extremes in all 526 

regions. Médus et al. (2022) also pointed out that RCMs underestimate the return levels of Rx1h in Norway. 527 

Thomassen et al. (2023) compared the performance of HCLIM3 and HCLIM12 based on local rain-gauge data in 528 

Denmark, and found that HCLIM12 indeed underestimate the hourly extreme event and HCLIM3 agree well with 529 

observation. Despite these benefits, the added value of HCLIM3 is not uniform across all stations and seasons, 530 

which struggle to capture summer daily extremes in the south and west, and the return level in the east and west. 531 

However, it should also be noted that the analysis is based on data from only 10 sites, which limits the 532 

generalizability of the findings to local hourly extreme events. Further studies of hourly extreme events at more 533 

stations are needed to validate these results and provide a more comprehensive understanding. Additionally, the 534 

uncertainties in the extreme precipitation analysis based on the stationary GEV method with a 20-years data series 535 

should also be noted. 536 

The added value of CPRCMs in simulating hourly precipitation extremes is more obvious at the local scale 537 

than at the regional scale. The damped extremes caused by grid-scale averaging may explain the smaller return-level 538 

observed for HCLIM3 and HCLIM12 compared to station-level observations. As discussed in Section 5.1, this 539 

discrepancy between regional and local scales may be partly due to the inadequate density of in-situ observations.  540 

Few studies have systematically compared hourly and daily rainfall in RCMs due to the challenges in reliably 541 

simulating hourly extremes. In line with Ban et al. (2014), we find that RCMs such as HCLIM12 demonstrate 542 

reasonably well performance for daily extremes with biases less than 50%. However, CPRCMs such as HCLIM3 543 

perform better for hourly extremes. This is consistent with previous studies (Jiang et al., 2013; Thomassen et al., 544 

2023), such as, Jiang et al. (2013), which showed that it is challenging to capture sub-daily extreme rainfall using 545 

RCMs with a resolution of 10 km in the southwestern United States. The better performance of CPRCMs compared 546 

to RCMs at hourly scale is consistent with the findings by Médus et al. (2022) and Ban et al. (2014), emphasizing 547 

that the CPRCMs have significantly better sub-daily precipitation characteristics, including spatial distribution and 548 

duration-intensity characteristics. Nonetheless, further improvements in the observation networks and longer 549 

observational datasets are necessary to fully verify and realize the benefits of CPRCMs at finer spatial and temporal 550 

scales. 551 

Comparison of regional and local extreme precipitation seasonality confirms that HCLIM3 is able to represent 552 

the seasonality of daily extremes, although both HCLIM3 and HCLIM12 fail to capture the spring-summer events in 553 

the middle region. Moustakis et al. (2021) also highlighted the adequacy of CPRCMs (CTL-WRF~4 km) in 554 

capturing seasonality observed over the United States. In particular, we observe HCLIM3 better represent the 555 

seasonality of hourly precipitation at the local scale. The persistent underestimation of hourly extremes by 556 
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HCLIM12 may be attributed to higher uncertainty in its convective parameterization scheme or numerical 557 

uncertainties at the local scale. 558 

5.4 Added value of CPRCMs in reproducing reverse orographic effect 559 

An unclear relation of daily extreme precipitation with elevation was also seen from the study of Dallan et al. 560 

(2023), in which, they analyzed annual daily return level based on CPRCMs and in-situ observation over Alpine 561 

region. By comparing the relationship between elevation and seasonal variation of extreme precipitation, HCLIM3 562 

represents the reverse orographic effect well at regional and local scale, although there is a weak relationship 563 

between extreme precipitation and elevation at the regional scale. The reverse orographic effects on hourly and daily 564 

extremes vary with seasons, indicating the influence of topography on extreme precipitation at different timescales 565 

and emphasizing the reliability of simulation of extreme precipitation over complex terrain. Unlike Rx1d at the 566 

regional scale, which is less affected by topography, the slope of the reverse orographic effect of daily extreme 567 

precipitation at the local scale is more clearly. From a seasonal perspective, the reverse orographic effect of extreme 568 

precipitation in summer is not well captured in HCLIM3 and HCLIM12, which may be related to the intense 569 

orographically-sustained convection affected by the atmospheric, aerosol conditions, local terrain slope and 570 

shadowing effects, which RCMs and CPRCMs fail to capture (Dallan et al., 2023; Poujol et al., 2021).  571 

For hourly extremes, the reverse orography effect of seasonal Rx1h in this study is consistent with the reverse 572 

orographic effect of hourly return level, as found by Dallan et al. (2023) over Alpine region. HCLIM3 and 573 

HCLIM12 well capture the reverse orography effect on seasonal Rx1h, especially in HCLIM3, although a stronger 574 

decrease of Rx1h with elevation is observed from SeNorge2 except spring. In comparison, lower Rx1h and weak 575 

reverse orography effect is found in HCLIM12 in all seasons. Our findings confirm the reverse orographic effect on 576 

Rx1h, as demonstrated by Marra et al. (2021) for hourly precipitation and Formetta et al. (2022) for sub-hourly 577 

scale.  578 

Furthermore, we demonstrate the reverse orographic effect for both seasonal Rx1h and Rx1d, which contrasts 579 

with the findings of Formetta et al. (2022), who identified a reverse orographic effect for hourly and sub-hourly 580 

durations, and an orographic enhancement for durations of approximately 8 hours or longer. The "orographic 581 

enhancement" (Avanzi et al., 2021; Formetta et al., 2022; Amponsah et al., 2022)—the increase in precipitation on 582 

the windward side due to the lifting of air masses and the decrease on the leeward side from air descent and 583 

drying—is not found in our study at either the regional or local scales. These results deviate from the anticipated 584 

patterns, which may be attributed to the combined effects of latitude, climate, altitude zones, static atmospheric or 585 

aerosol conditions, and shadowing effects (Amponsah et al., 2022; Napoli et al., 2019).  586 

It should be noted that simple relationship between extreme precipitation and elevation is difficult to build due 587 

to several land surface characteristics could influence the precipitation, a complex regression model should be 588 

considered to more realistically quantify the reverse orographic effect (Zhang et al., 2018) in the future. The 589 

interpolated gridded dataset and limited rain gauges over the complex orography, along with the decreasing station 590 

density at higher elevations, may also limit the reliable analysis of the reverse orographic effect. The sparsity of rain 591 
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gauges and under catch problems could also lead to underestimation of precipitation, especially in the complex 592 

orography (Lussana et al., 2018, 2019; Gervais et al., 2014b).  593 

6 Conclusions 594 

In this study, we conducted a comprehensive evaluation of extreme precipitation characteristics from regional to 595 

local scale in Norway, focusing on five distinct regions, utilizing a convection-permitting regional climate model 596 

(HCLIM3) and comparing it with its convection-parameterized regional climate model (HCLIM12) forced by ERA-597 

Interim data during 1999-2018. 598 

The key conclusions of this study are as follows: 599 

a) At regional scale, HCLIM3 shows consistent advantage in capturing Rx1d, compared to HCLIM12, with 600 

improved representation of Rx1d in most regions and season, while HCLIM12 underestimates the annual 601 

daily extremes in all regions except the east. Specifically, HCLIM3 shows larger bias of Rx1d in summer 602 

over east, south and west regions, and the return level of daily extreme in the eastern region. In 603 

comparison, for hourly extremes, HCLIM3 captures Rx1h better in most regions and seasons except the 604 

west and the summer compared to HCLIM12. In general, HCLIM3 overestimates the annual Rx1h while 605 

HCLIM12 underestimates it. Besides, HCLIM3 and HCLIM12 show larger bias in percentage for hourly 606 

extremes than daily extremes. 607 

b) At local scale, HCLIM3 shows added value in capturing the annual and seasonal Rx1d in most regions, 608 

compared to HCLIM12. Specifically, HCLIM3 can better capture the return levels of daily extremes in 609 

most regions except in the west and east, and it shows smaller biases in Rx1d across Norway for all 610 

seasons, except summer in the southern and western regions. Overall, HCLIM3 shows consistent benefit 611 

in capturing the daily extremes in the middle and north regions compared with HCLIM12, both at the 612 

regional and local scales. For hourly extreme precipitation, HCLIM3 outperforms HCLIM12 in capturing 613 

the annual Rx1h and return levels in those 10 stations. 614 

c) For the seasonality of extremes, at the regional scale, HCLIM3 and HCLIM12 can well characterize the 615 

seasonality of daily extremes except for the middle region, especially for HCLIM3 in the western region. 616 

At local scale, the seasonality of Rx1d can also be captured by HCLIM3 and HCLIM12. A distinct 617 

advantage emerges with HCLIM3 for hourly extremes, where it accurately reflects both the occurrence 618 

and intensity of these events across different seasons, while HCLIM12 tends to underestimate these 619 

aspects.  620 

d) In Norway, the effect of the preserved topography on seasonal Rx1h and Rx1d emerge from regional to 621 

local scales, although weak relationship between Rx1d and elevation is demonstrated at regional scale. For 622 

seasonal Rx1h, both HCLIM3 and HCLIM12 can capture the reverse orographic effect at regional scale, 623 

but no added value is shown in HCLIM3. In particular, at the local scale, the reverse orographic effect of 624 

seasonal Rx1d is more pronounced, and HCLIM3 provides added value in all seasons except summer.  625 
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 803 
Table S1. The information for the ten hourly rain gauges. 804 

Name Station ID Longitude (°E) Latitude (°N) Elevation(m) Region 

Østre Toten - Apelsvoll SN11500 10.8695 60.7002 264 East  

Ås - Rustadskogen SN17870 10.8107 59.6703 120 East  

Kise in Hedmark SN12550 10.8055 60.7733 128 East 

Løken i Volbu SN23500 9.063 61.122 521 East 

Kvithamar SN69150 10.8795 63.4882 27 Middle 

Tjøtta SN76530 12.4255 65.8295 21 Middle 

Stryn - Kroken SN58900 6.5585 61.9157 208 West 

Fureneset SN56420 5.0443 61.2928 7 West 

Særheim SN44300 5.6508 58.7605 87 South 

Tromsø - Holt SN90400 18.9095 69.6538 20 North 

 805 
  806 
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Table S2. The information for the 192 daily rain gauges. 807 

ID Name 
Longitude 

(°E) 
Latitude 

(°N) 
Elevation 

(m) 
ID Name 

Longitude 
(°E) 

Latitude 
(°N) 

Elevation 
(m) 

SN420 HEGGERISET - 
NORDSTRAND 

11.9963 61.6848 481 SN98550 VARDØ RADIO 31.0962 70.3707 10 
SN78370 BJERKA - VALLA 13.8067 66.1415 20 SN47090 SKJOLD - FRØVIK 5.6257 59.5033 5 
SN47820 EIKEMO 6.2786 59.8594 178 SN69960 BURAN 11.5436 63.7199 182 
SN82290 BODØ VI 14.3816 67.2723 16 SN44480 SØYLAND I GJESDAL 5.9817 58.6855 263 
SN32780 HØIDALEN I SOLUM 9.2668 59.1444 113 SN810 TUFSINGDAL - MIDTDAL 11.732 62.2776 687 
SN63580 ÅNGÅRDSVATNET 9.1967 62.6708 596 SN50150 HATLESTRAND 5.9032 60.045 45 
SN43810 MAUDAL 6.3675 58.7645 311 SN78350 BARDAL 13.3917 66.2178 39 
SN42520 RISNES I FJOTLAND 6.9443 58.6577 348 SN52860 TAKLE 5.3813 61.0272 38 
SN67150 LEINSTRAND 10.2733 63.3281 13 SN24960 GOL - STAKE 8.9478 60.7188 542 
SN78250 LEIRFJORD 12.9097 66.0668 53 SN34900 POSTMYR I DRANGEDAL 8.7687 59.2647 464 
SN42810 TONSTAD - NETTFED 6.709 58.6642 55 SN76100 ØKSNINGØY 12.3745 65.1245 24 
SN36490 BØYLEFOSS 8.717 58.5967 63 SN82530 KJERRINGØY - OS 14.8402 67.5385 15 
SN68270 LØKSMYR 10.4369 63.2315 173 SN25100 HEMSEDAL - HØLTO 8.5285 60.8703 648 
SN46150 SAND I RYFYLKE II 6.276 59.4791 25 SN730 VALDALEN 12.1722 62.0758 794 
SN8720 ATNSJØEN 10.1398 61.8902 749 SN72650 OVERHALLA - UNNSET 11.8397 64.4815 26 

SN70820 UTGÅRD 11.729 64.1163 50 SN61040 HILDRE 6.3187 62.6017 13 
SN47450 STRAUMØY 5.4335 59.6532 36 SN52930 BREKKE I SOGN 5.425 60.9585 240 
SN31080 TESSUNGDALEN - 

BAKKHUS 
8.7033 60.1293 762 SN52170 EKSINGEDAL 6.1469 60.8028 450 

SN48500 ROSENDAL 6.02637 59.9913 75 SN31410 RJUKAN 8.6663 59.88 258 
SN33250 RAULAND 8.0317 59.7057 719 SN60500 TAFJORD 7.4218 62.2305 11 
SN66620 RENNEBU - RAMSTAD 9.8354 62.864 223 SN93900 SIHCCAJAVRI 23.5387 68.7553 382 
SN82840 STYRKESNES - HESTVIKA 15.4953 67.5258 27 SN60400 NORDDAL 7.2392 62.2477 28 

SN770 ELLEFSPLASS 11.4525 62.204 713 SN32850 KVITESEID - MOEN 8.473 59.4058 76 
SN57810 SVELGEN II 5.2983 61.7707 16 SN38380 DOVLAND 8.0392 58.5234 259 
SN96970 SIRBMA 27.4018 70.0185 51 SN92350 NORDSTRAUM I 

KVÆNANGEN 
21.8958 69.8362 20 

SN76250 SØMNA - STEIN 12.1643 65.2965 19 SN14050 SJOA 9.5562 61.6757 330 
SN13420 VENABU 10.1082 61.6513 930 SN73500 NORDLI - HOLAND 13.718 64.4458 433 
SN40420 BYKLE - KULTRAN 7.3438 59.3505 594 SN43010 EIK - HOVE 6.5045 58.507 65 
SN88660 BOTNHAMN 17.9175 69.5212 6 SN41550 LJOSLAND - MONEN 7.3501 58.7878 504 
SN12600 VEA 10.6791 60.953 161 SN41770 LINDESNES FYR 7.048 57.9815 16 
SN38800 TOVDAL 8.2295 58.7938 220 SN83300 STEIGEN 15.1123 67.923 31 
SN71550 ØRLAND III 9.6105 63.7045 10 SN18700 OSLO - BLINDERN 10.72 59.9423 94 
SN75020 OTTERØY 11.2806 64.5228 36 SN59900 SÆBØ 6.4657 62.2027 21 
SN44760 IMS 5.9672 58.9055 2 SN55670 VEITASTROND 7.034 61.4783 172 
SN77850 SUSENDAL 14.2457 65.3675 498 SN63530 HAFSÅS 8.9773 62.5095 698 
SN31570 MØSVATN - HAUG 8.1342 59.8143 945 SN73250 SØRLI 13.765 64.2432 370 

SN100 PLASSEN 12.5039 61.1349 333 SN3780 IGSI I HOBØL 11.0468 59.636 144 
SN37230 TVEITSUND 8.5187 59.0257 252 SN88100 BONES I BARDU 18.2442 68.6457 230 
SN92910 SOPNESBUKT 22.3243 70.0518 8 SN52990 ORTNEVIK 6.134 61.1095 4 
SN60990 VIGRA 6.115 62.5617 22 SN58480 OLDEDALEN 6.8088 61.694 44 
SN44560 SOLA 5.637 58.8843 7 SN63750 MJØEN 9.6591 62.574 512 
SN80610 MYKEN 12.486 66.7628 17 SN20520 LUNNER 10.5753 60.295 372 
SN22730 HEDAL I VALDRES II 9.7238 60.6197 474 SN36560 NELAUG 8.63 58.6582 142 
SN79480 MO I RANA III 14.1542 66.307 41 SN53130 FRESVIK 6.9345 61.0688 32 
SN39220 MESTAD I ODDERNES 7.89 58.2153 151 SN48450 HUSNES 5.7694553 59.8641203 13 
SN89350 BARDUFOSS 18.5437 69.0577 76 SN10600 AURSUND 11.4534 62.6737 685 
SN1230 HALDEN 11.388 59.1223 3 SN24600 GRIMELI I KRØDSHERAD 9.5958 60.137 367 

SN53160 JORDALEN - NÅSEN 6.7243 60.9004 614 SN4780 GARDERMOEN 11.0802 60.2065 202 
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Table S2. Continue. 810 

ID Name 
Longitude 

(°E) 
Latitude 

(°N) 
Elevation 

(m) 
ID Name 

Longitude 
(°E) 

Latitude 
(°N) 

Elevation 
(m) 

SN16610 FOKSTUGU 9.2862 62.1133 973 SN93700 KAUTOKEINO 23.0335 68.9968 307 
SN58320 MYKLEBUST I BREIM 6.6092 61.708 315 SN59250 REFVIK 5.0878 61.9985 3 
SN69100 VÆRNES 10.9305 63.4597 12 SN46300 SULDALSVATN 6.809 59.5887 333 
SN80740 REIPÅ 13.646 66.9035 9 SN22840 REINLI 9.4905 60.8346 628 
SN57940 ÅLFOTEN II 5.6674 61.832 24 SN51250 ØVSTEDAL 5.9647 60.6887 316 
SN60620 GRØNNING 7.5135 62.3292 312 SN52750 FRØYSET 5.2108 60.8462 13 
SN58780 NORDFJORDEID - NYMARK 6.0392 61.9183 34 SN12550 KISE PA HEDMARK 10.8055 60.7733 128 
SN73800 TUNNSJØ 13.6506 64.6837 376 SN54600 MARISTOVA 8.0368593 61.1098838 806 
SN56780 SYGNA 5.7265 61.3435 45 SN71810 ÅFJORD - MOMYR 10.523 64.1003 280 
SN65230 HEMNE - LENES 9.0115 63.2613 45 SN84190 SKJOMEN - STIBERG 17.5145 68.2075 29 
SN56520 HOVLANDSDAL 5.4342 61.232 85 SN57850 DAVIKNES 5.5333 61.8986 78 
SN5350 NORD-ODAL 11.558 60.3883 147 SN38600 MYKLAND 8.2888 58.633 245 

SN90490 TROMSØ - LANGNES 18.9133 69.6767 8 SN71200 MOSVIK - 
TRØAHAUGEN 

10.998 63.8128 39 
SN56850 VIKSDALEN I GAULAR 6.1983 61.3262 243 SN11710 EINAVATN 10.6408 60.59505 406 
SN75100 LIAFOSS 11.9547 64.8382 44 SN57480 BOTNEN I FØRDE 6.0586 61.5349 237 
SN1950 ØRJE 11.6506 59.4829 123 SN37500 FOLDSÆ 8.1517 59.3242 492 

SN50540 BERGEN - FLORIDA 5.3327 60.383 12 SN52400 EIKANGER - MYR 5.3742 60.6268 72 
SN31660 MOGEN 7.913 60.018 954 SN13140 FÅVANG - TROMSNES 10.1902 61.4567 187 
SN9870 BLANKTJERNMOEN I 

KVIKNE 
10.428 62.4343 692 SN61820 ERESFJORD 8.105 62.663 14 

SN53700 AURLAND 7.201 60.9027 15 SN14550 PRESTSTULEN 9.0084 61.9225 823 
SN80200 LURØY 13.1848 66.3892 115 SN86500 SORTLAND 15.4157 68.7033 3 
SN71900 BESSAKER 10.3257 64.2448 12 SN11900 BIRI 10.5954 60.9518 190 
SN68420 AUNET 11.5669 63.0556 302 SN41860 KVINESHEI - 

SØRHELLE 
6.9821926 58.2431584 317 

SN27600 SANDEFJORD 10.2147 59.132 6 SN23720 VANG I VALDRES 8.569 61.124 489 
SN25320 ÅL III 8.5609 60.6391 720 SN57390 SKEI I JØLSTER 6.4873 61.5722 205 
SN58960 HORNINDAL 6.6502 62.0033 349 SN63100 ØKSENDAL 8.4218 62.6855 47 
SN56400 YTRE SOLUND 4.6693 61.007 3 SN57990 GJENGEDAL 5.9468 61.6594 230 
SN15480 SKJÅK II 8.4672 61.8777 374 SN97350 CUOVDDATMOHKKI 24.4312 69.3695 286 
SN4040 ENEBAKK - BARBØL 11.1535 59.75 164 SN23560 BEITO 8.8557 61.2433 754 

SN15430 BØVERDAL 8.2423 61.7195 700 SN55550 HAFSLO 7.1887 61.2925 246 
SN70930 SNÅSA - NAGELHUS 12.4393 64.249 107 SN46450 RØLDAL 6.8238 59.8305 388 
SN29600 TUNHOVD 8.7511 60.4629 870 SN57660 EIMHJELLEN 5.8157 61.6407 176 
SN15660 SKJÅK 8.1706 61.9013 432 SN62900 EIDE PÅ NORDMØRE 7.3896 62.8909 49 
SN4740 UKKESTAD 11.051 60.1742 187 SN27800 HEDRUM 9.9641 59.196 31 

SN34800 TØRDAL - SUVDØLA 8.7742 59.1482 235 SN90450 TROMSØ 18.9368 69.6537 100 
SN16790 LESJA - SVANBORG 8.919 62.1057 551 SN1650 STRØMSFOSS SLUSE 11.6599 59.3006 113 
SN42720 BAKKE 6.657 58.4117 75 SN42650 FLEKKEFJORD 6.6498 58.28415 5 
SN55730 SOGNDAL - SELSENG 6.9335 61.3348 421 SN24210 SOKNA II 9.9267 60.238 140 
SN7660 ÅKRESTRØMMEN 11.2042 61.696 260 SN15730 BRÅTÅ - SLETTOM 7.8955 61.8957 664 

SN71280 LEKSVIK - MYRAN 10.6075 63.6856 138 SN53070 VIK I SOGN III 6.5813 61.0728 65 
SN68840 STUGUDAL - KÅSEN 11.8626 62.8952 730 SN18160 NORDSTRAND 10.7912 59.873 118 
SN6440 VERMUNDSJØEN 12.369 60.6925 276 SN27770 STOKKE - SOLLI 10.2022 59.2752 90 

SN60 LINNES 12.499 61.5581 564 SN90650 GRUNNFJORD - 
STAKKEN 

19.573 70.0083 7 
SN44800 SVILAND 5.9202 58.8185 230 SN47890 OPSTVEIT 6.0169242 59.8577805 38 
SN83520 TØMMERNESET 15.859 67.8918 70 SN62700 HUSTADVATN 7.2436 62.9087 80 
SN35090 EIKELAND 9.098 58.8037 42 SN41480 ÅSERAL 7.4128 58.6172 268 
SN44520 HELLAND I GJESDAL 6.0135 58.755 288 SN36200 TORUNGEN FYR 8.7893 58.3988 12 
SN19710 ASKER 10.4358 59.8558 163 SN56320 LAVIK 5.5413 61.1124 26 
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 813 
Figure S1: Bias of return-levels in the present-day for HCLIM3 and HCLIM12 relative to observation for 5-, 10-, 20-, and 814 
50-year return periods in the 192 daily rain-gauges. Return periods of 5-, 10-, 20-, and 50-year are calculated on the basis 815 
of station-scale GEV. The bias of return-levels for 192-rain-gauges are statistics by regions. 816 
 817 
 818 

 819 
Figure S2: Time evolution of annual maximum hourly precipitation from observation, HCLIM3 and HCLIM12 during 820 
1999-2018 at 10 hourly rain-gauges. Grids within a 12 km radius of each station are extracted for HCLIM3 and 821 
HCLIM12 to calculate the range band.   822 
 823 
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 824 
Figure S3: (a) Density distribution of bias for Rx1d between SeNorge and daily in-situ observations from 194 stations 825 
during 1999-2018; (b) the percentage difference of seasonal Rx1d between SeNorge and daily in-situ observations across 826 
the five regions. The bias is calculated as the SeNorge minus daily in-situ observations at each station and then the 827 
regional averages are computed. 828 


