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Abstract. Fast urban pluvial flood models are necessary for a range of applications, such as near real-time flood nowcasting

or processing large rainfall ensembles for uncertainty analysis. Data-driven models can help overcome the long computational

time of traditional flood simulation models, and the state-of-the-art models have shown promising accuracy. Yet the lack of

generalizability of urban pluvial flood data-driven models to both terrain and rainfall events
:::::
unseen

:::::::
rainfall

:::
and

:::::::::::
distinctively

:::::::
different

::::::
terrain,

::
at
:::
the

::::
fine

:::::::::
resolution

:::::::
required

:::
for

:::::
urban

:::::
flood

::::::::
mapping,

:
still limits their application. These models usually5

adopt a patch-based framework to overcome multiple bottlenecks, such as data availability and computational and memory

constraints. However, this approach does not incorporate contextual information of the terrain surrounding the small image

patch (typically 256 m x 256 m). We propose a new deep-learning model that maintains the high-resolution information

of the local patch and incorporates a larger context
:::::::::
surrounding

::::
area

:
to increase the visual field of the model with the aim

of enhancing the generalizability of urban pluvial flood data-driven models. We trained and tested the model in the city of10

Zurich (Switzerland), at a spatial resolution of 1 m, for 1-hour rainfall events at 5 min temporal resolution. We demonstrate

that our model can faithfully represent flood depths for a wide range of rainfall events, with peak rainfall intensities ranging

from 42.5 mm h-1 to 161.4 mm h-1. Then, we assessed the model’s terrain generalizability in distinct urban settings, namely

Luzern (Switzerland) and Singapore. The model accurately identifies locations of water accumulation, which constitutes an

improvement compared to other deep-learning models. Using transfer learning, the model was successfully retrained in the15

new cities, requiring only a single rainfall event to adapt the model to new terrains while preserving adaptability across diverse

rainfall conditions. Our results indicate that by incorporating contextual terrain information into the local patches, our proposed

model effectively generates high-resolution urban pluvial flood maps, demonstrating applicability across varied terrains and

rainfall events.
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1 Introduction20

Urban pluvial flooding represents a global threat to population and infrastructure that is expected to increase as floods become

more frequent and the world’s population grows, with 68% of the world population projected to live in cities by 2030 (UN,

2018). From an economic point of view, the concentration of wealth in urban areas combined with accelerated infrastructure

development has led to a great increase in economic losses from floods (Kundzewicz et al., 2014) and these losses are projected

to further increase globally (Winsemius et al., 2016).25

Along with the growing exposure of population and assets, the occurrence of pluvial floods is projected to increase due to

both climate change and the effects of urbanization (IPCC, 2022). Pluvial flooding occurs in response to intense precipitations

that cause the failure of the drainage system. Due to global warming, short-duration extreme rainfall, which is the key trigger

to pluvial flooding, is intensifying globally (Fowler et al., 2021; Tabari et al., 2020), and this intensification can be exacerbated

by the urban environment (Han and Baik, 2008; Huang et al., 2022; Li et al., 2020; Liang and Ding, 2017). It is also well30

established that urbanization increases the occurrence of pluvial flooding by modifying the hydrological response: sealed

impervious surfaces and reduced vegetation decrease infiltration capacity, surface storage, and evapotranspiration, resulting in

higher peak discharges and runoff volumes (Leopold, 1968; Miller et al., 2014; Semadeni-Davies et al., 2008; Kaspersen et al.,

2017).

The foreseen urbanization and climate change, and its projected impacts on urban pluvial floods, encourage the development35

of resilient cities (Ahmed et al., 2018; Berndtsson et al., 2019; Rosenzweig et al., 2018). While there exists a consensus re-

garding the increase in urban pluvial flood risk (Houston et al., 2011; Kundzewicz and Pińskwar, 2022), the extent of increased

risk and its attributed causes still constitute major knowledge gaps (IPCC, 2022; Kundzewicz et al., 2014). Loss databases are

not suited for risk trend analysis due to biases from improvements in reporting, changes in vulnerability, and the inability to

distinguish amongst the factors (climatic or non-climatic) triggering the hazard (Peduzzi et al., 2012; Willems et al., 2012).40

Thus, there is a need to model the changes in extreme rainfall due to changes in climate and urban areas, and the impact they

will have on the flood regime in each city individually.

Extreme short-duration rainfall events can be modeled using physically-based climate models with high spatial resolution

(such as convection-permitting models; Dallan et al., 2023), stochastic-mechanistic climate models (Peleg et al., 2017), or

stochastic-statistical methods (Marra et al., 2019, 2024). The outputs of these models can be used as inputs to numerical45

hydrodynamic models, which are the most robust and reliable models for estimating urban hydrological responses to rainfall

(Kourtis and Tsihrintzis, 2021). However, these models are also characterized by a long computational time. This is problematic

considering that multiple runs of these models are required per city to account for the large degree of uncertainty in future

climate projections and urban development scenarios (Hirsch, 2011; Miller and Hutchins, 2017), necessitating the development

of alternative models.50

The use of machine learning for fast flood mapping has been given growing attention in recent years (Nearing et al., 2021).

Models based on convolutional layers have demonstrated the potential to emulate urban pluvial flood maps as they can best ex-

tract spatial information characterizing the flood events (Bentivoglio et al., 2022). To increase the amount of training data, and to
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suppress the
::::::
address

:
memory limitations of handling large images, these models operate on local patches rather than the entire

catchment area (Guo et al., 2021, 2022; Löwe et al., 2021; Seleem et al., 2023). The patched-based
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Berkhahn and Neuweiler, 2024; do Lago et al., 2023; Guo et al., 2021, 2022; Löwe et al., 2021; Seleem et al., 2023)55

:
.
:::
The

::::::::::
patch-based

:
model presented by Guo et al. (2021)recently, for example, can predict water depths 1,400 times faster than

traditional hydrodynamic models, as demonstrated for a range of rainfall events in the cities of Zurich, Luzern, and Coim-

bra.
:::::::::::::::
Löwe et al. (2021)

::::::::
developed

:
a
::::::

model
:::
for

:::::
urban

::::::
pluvial

:::::
flood

:::::::
mapping

::::
and

::::::::
evaluated

::
its

:::::::::
prediction

:::::::::::
performance

::
in

:
a
::::
city

::
in

::::::::
Denmark

::
at

:
5
::
m

:::::::::
resolution,

::::::::
reserving

::::::::::::
approximately

:::::
25%

::
of

:::
the

::::
area

:::
for

::::::::
validation

:::
and

:::::::
testing.

::::::::
Although

:::::
these

::::
areas

:::::
were

:::::::
included

::
in

:::
the

:::::::::
validation,

:::
they

:::::
were

:::::::
excluded

:::::
from

:::::::
training,

:::
and

:::
the

:::::
model

::::
still

:::::::::
performed

::::
well

::
in

::::
these

:::::
areas.

::
In

:::::::
another

:::::
study,60

::::::::::::::
Guo et al. (2022)

:::::::
assessed

:::
the

::::::
terrain

:::::::::::::
generalizability

::
of

:
a
::::::::::
data-driven

::::
flood

::::::
model

:::::
across

::::
656

:::::::::
catchments

:::
in

::::::::::
Switzerland.

::::
The

:::::
model

::::
was

:::
able

:::
to

::::
adapt

::
to
::::
new

::::::::::
catchments,

:::
yet

::
it

:::
did

:::
not

::::::::::
incorporate

::::::
rainfall

::
as

:::
an

:::::
input,

:::::::
limiting

::
its

:::::::::
predictions

::
to
:::
the

::::::
single

::::::
rainfall

:::::
event

::::
used

:::
for

:::::::::
generating

::::
the

:::::::
training

:::::
flood

:::::
maps.

:::::
More

::::::
recent

::::::::
advances

::::::
include

::::
the

::::
work

:::
of

:::::::::::::::::
Seleem et al. (2023)

:
,
::
in

:::::
which

::
a
::::::::::
CNN-based

::::::::
approach

::::
was

:::::::::
compared

::::
with

:
a
:::::::

random
::::::

forest
::::::::
approach

:::
for

:::::
urban

::::::
pluvial

:::::
flood

::::::::
mapping

::
in

:::::
three

::::
study

:::::
areas

::
in

::::::
Berlin

::
at

::
1

::
m

::::::
spatial

:::::::::
resolution.

::::
The

::::::
authors

::::::
found

:::
that

:::
the

:::::
CNN

::::::
model

:::::
could

::::::
benefit

:::::
from

:::::::
transfer

:::::::
learning65

::
to

:::::::
enhance

:::::::::::
performance

::
in

::::::
terrain

::
on

::::::
which

:::
the

::::::
model

::::
was

:::
not

::::::
trained.

::::::::::::::
Generalizability

::
to

::::::
terrain

::::
was

::::
also

::::::::::
investigated

:::
by

:::::::::::::::::
do Lago et al. (2023),

::::
who

:::::::::
developed

::
a

:::::::::
conditional

:::::::::
generative

:::::::::
adversarial

:::::::
network

::::
that

:::::::::
distributes

:
a
:::::::::
previously

::::::
known

::::::
runoff

::::::
volume

::::
over

:
a
:::::
given

:::::::::
catchment.

::::
The

::::::::
generator

:::
was

::::
able

::
to

:::::::
identify

::::
cells

:::::
where

:::
the

:::::
water

::::
level

:::::::
exceeds

:::
0.3

::
m,

::::
and

::
to

::::::
predict

:::
the

::::
water

:::::
levels

:::
for

::::
cells

::::::
below

:::
that

::::::::
threshold.

:::::::::::::::::::::::::::
Berkhahn and Neuweiler (2024)

::::
have

::::
used

:::::::::::
autoencoders

::
to

::::::::
compress

::::
data

::::::::
contained

::
in

::::
flood

:::::
maps

:::
and

:
a
::::::::
recursive

::::
time

:::::
series

:::::::::
prediction

:::::
model

::
to

:::::::
simulate

:::::
water

:::::
depth

::::
time

:::::
series

::
in

:::::
urban

:::::
areas,

::
at

:
6
::
m

::::::::::
resolutions.70

::::::::
However,

:::
they

:::
did

:::
not

::::::::
consider

::::::::::::
generalizability

::
to

::::::
terrain.

::::::
Lastly,

:::
the

:::::::::::::
generalizability

::
of

:::::
flood

::::::
models

::
to

::::
both

::::::
rainfall

:::
and

::::::
terrain

:::
was

::::::::::
investigated

:::
by

::::::::::::::::
Fraehr et al. (2023)

:::
who

:::::::::
developed

:
a
::::
fast

:::::
model

:::
for

:::::
flood

:::::::::
inundation

::::::::
prediction

::
at
:::
20

::
m

:::
and

::
1

:
h
:::::::::
resolution

:::
and

::::::
applied

::
it

::
to

:::
two

:::::
study

:::::
areas

::::
with

::::::
distinct

::::::::::
topography.

:

Despite the advancements made in recent years in developing data-driven models for flood predictions, there are still some

major challenges to overcome. One of them is the generalizability of the models to unseen case studies; e.g., training the model75

in one city and using it in another city or training the model on selected regions in large metropolitan areas and applying it to

the entire area
:
,
::::::::
including

::::
both

::::::
unseen

::::::
rainfall

::::
and

::::::::::
distinctively

::::::::
different

::::::
terrain,

::
at

:::
the

:::
fine

:::::::::
resolution

:::::::
required

:::
for

:::::
urban

:::::
flood

:::::::
mapping. This limits their application to real-case studiesas the models require a large amount of data to be trained. .

:

Although the patch-based approach that the
::::::::::::
high-resolution urban pluvial flood data-driven models adopt overcomes multiple

bottlenecks (e.g., amount of training data and memory limitations of handling large images), it ignores contextual information80

::::
from

:::
the

::::::::::
surrounding

::::::
terrain that can be crucial for flood mapping (Fig. 1). In order to preserve global elevation information,

Guo et al. (2022) have investigated the resizing-based option that down-samples the input and then up-samples the outputs to

the original size. This option can process larger areas, yet it causes significant information loss which makes it a less optimal

method for urban flood mapping that requires high spatial resolution.

Including larger context information while preserving the high-resolution local representation of the patch is a common85

issue in the field of image segmentation (e.g. biomedical and land-use/land-cover image segmentation; Alsubaie et al., 2018;

BenTaieb et al., 2017; Li et al., 2021; Mou et al., 2020; Shaban et al., 2019). Combining multi-scale information in context-
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Figure 1. Schematic showing the importance of contextual information of local patches to predict urban pluvial flood maps; local terrain

does not contain the information necessary to distinguish the flood responses in patches A and B.

aware models has been shown to improve image segmentation performance together with keeping models computationally

efficient .
:::::::::::::::::::::::::
(Sirinukunwattana et al., 2018).

:

Here, we present the development of a new context-aware data-driven model for
::::::::::::
high-resolution urban pluvial flood

:::::::
mapping90

and investigate its performance, generalizability, and transfer learning abilities, using the cities of Zurich, Luzern, and Singa-

pore as case studies.

2 Context-aware flood model description

We developed a context-aware data-driven model for urban pluvial flooding. The objective of the model is to extract and

combine the information from the high-resolution local patch, its context
::::::::::
surrounding

::::::
terrain

::
(or

:::::::
context)

:
and the rainfall times95

series to emulate the corresponding flood map. To achieve this, we developed a joint model that couples different types of

neural networks and learns dependencies between the local patch and its context
::::::::::
surrounding

::::
area. The model consists of the

following components (Fig. 2, Fig. S1): (i) three convolutional encoders that extract latent information from the multi-scale

spatial features
:::
(i.e.

::::::::::::
high-resolution

:::::
local

:::::
patch

:::
and

:::::
lower

:::::::::
resolution

::::::::
contextual

:::::::::::
information); (ii) an attention mechanism that

measures the correlation between the local patch and its context; (iii) a recurrent neural network (RNN) that analyzes the100

hyetograph; and (iv) a decoder that converts the extracted information from both the terrain and rainfall data into the flood

depth prediction. The various components of the model are explicitly defined hereinafter.

2.1 Multi-scale terrain features

To help inform the model of spatial features that govern water accumulation, terrain information images are derived from the

digital elevation model (DEM) for the local patch and its context at different scales. Context
::
To

::::::
reduce

::::::::::::
computational

:::::
costs,105

::::::
context images are rescaled into

:
to
:
the same size as the local patch (256 x 256) to reduce computational costs

:::::
using

:::
the

:::::::
Lanczos

::::::::::::
downsampling

:::::
filters. Assuming a native resolution of the DEM of 1 m, the visual field of the model thus covers surfaces of

512 m x 512 m and 1024 m x 1024 m at spatial resolutions of 2 m and 4 m respectively.
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Figure 2. Schematic diagram of the inputs, modeling framework, and output of the data-driven flood model.
:

A
::::::
detailed

:::::::
diagram

::
of

:::
the

::::::::
architecture

::
is
:::::::
provided

::
in

:::
Fig.

:::
S1.

2.2 Multi-scale convolutional encoders

The multi-scale image patches
:
,
::::::::
consisting

:::
of

:::
the

:::::
terrain

:::::::
features

::::::
derived

:::::
from

:::
the

:::::
DEM,

:
are fed to convolutional encoders that110

are composed of stacked convolutional layers and pooling layers. These operations reduce the spatial dimensionality of the

input images while extracting latent information contained in an increasing number of feature maps. Our model includes three

distinctive encoder networks with the same architecture, each processing multi-channel images at different resolutions.

2.3 Contextual attention mechanism

An attention mechanism then associates the features of the local patch with the features of the context to capture the rela-115

tionships between the high- and lower-resolution images. This attention mechanism is similar to the locality-aware contextual

correlation module applied by Li et al. (2021) for high-resolution geospatial image segmentation. By applying the scaled dot-

product attention to the encoder extracted features, the significance of each multi-channel image features are weighted to help

the model correctly combine contextual information.
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2.4 Hyetograph processing120

Additionally, information from the dynamic input are extracted using an RNN
:
a
::::
base

:::::
RNN

:::::
layer. This is a type of neural

network that is known to be well suited for handling time series data, especially for the task of rainfall-runoff modeling (Géron,

2019; Kratzert et al., 2019). RNNs can process time series of arbitrary length, which allows to use the model for rainfall events

of different durations. This enables to address the limit of use of the model to rainfall events of one specific duration, as is the

case in similar studies (e.g., Guo et al., 2021).125

2.5 Fused terrain and hyetograph features upsampling

Lastly, the
::::
The output of the RNN is

:::
then

:
scaled by the normalized accumulated rainfall(Section S1)before being .

:::::
This

:::::::::::
multiplicative

::::::
scaling

:::::::
ensures

::::
that

:::
the

::::::
rainfall

::::::
forcing

:::::
from

:::
the

:::::
RNN

::
is

::::::::::
proportional

::
to

:::
the

:::::::::::
accumulated

:::::::
rainfall,

::::::::
resulting

::
in

:::
zero

:::::::
forcing

:::::
when

::::
there

::
is

::::
zero

:::::::
rainfall.

:::
The

::::::
scaling

::
is
:::::::
defined

::
for

:::::::
rainfall

::::
event

:
i
::
as:

:

::::::::::
Si =

Pi,acc

Pnorm
,
::::
with

::::::::::::::
Pi,acc =

∑
tPi,t::::

and
:::::::::::::::::
Pnorm =

∑
tPmin,t :::::

where
:
t
::

is
::::

the
::::
time

::::
step

:::
and

:::::
Pmin:::::

refers
::
to
:::

the
:::::::

rainfall
:::::
event130

::::
with

::::::::
minimum

:::::::::::
accumulated

::::::
rainfall

::
in
:::

the
:::::::

training
::::

set.
:::
We

::::::::::
normalized

:::
the

::::::
scaling

::
in

:::::
order

::
to
:::::

avoid
:::::::::

vanishing
::
or

:::::::::
exploding

:::::::
gradients

::::::
issues.

::::::::::
Ultimately,

:::
this

::::::::
procedure

:::
led

::
to
::
a
:::::
model

::::
with

:::::
better

:::::::::::
performance

::::::
(Table

:::
S2).

:

2.5
:::::

Fused
::::::
terrain

::::
and

::::::::::
hyetograph

:::::::
features

:::::::::::
upsampling

:::::
Lastly,

:::
the

::::::
scaled

::::
RNN

::::::
output

::
is concatenated with the locality-aware contextual features extracted from the scaled dot-product

attention. The resulting combination serves as the input to the decoder. Similarly to the encoder, the decoder consists of stacked135

:::::::::
upsampling

::::::
layers,

::::
each

::::::::::
comprising

:::
one deconvolution (convolutional transpose) and

::::
layer

:::::::
followed

:::
by

:::
two

:
convolution layers.

Each upsampling layer of the decoder is joined with the corresponding features of the local patch from the encoder through a

skip connection, in a similar way to the UNet model (Ronneberger et al., 2015). The latter model has recently gained attention

in hydrological studies (Guo et al., 2022; Löwe et al., 2021; Seleem et al., 2023) as it is particularly efficient at localizing, and

thus at processing images in which spatial information is important. The operations of the decoder progressively upsample the140

fused feature maps into the flood map in a way that exploits complementary information from the local patch, the different

contexts, and the rainfall time series.

2.6 Hyperparameters

Following initial tests, we adopted the Mean Squared Error (MSE) as the loss function to train the model:
:

::::::::::::::::::::::
MSE = 1

n

∑n
i=1(yi − ŷi)

2,
::::::

where
::
yi:::::::::

represents
:::
the

::::
true

::::::
values,

:::̂
yi:::::::::

represents
:::
the

::::::::
predicted

::::::
values,

::::
and

::
n

::
is

:::
the

:::::::
number145

::
of

::::::::::
observations. We implemented an early stopping callback to regularize the model, i.e. to avoid overfitting. This callback

terminates the model’s training when the performance on the validation set is not improving for a certain number of epochs,

defined by the patience. We applied the Adam optimizer (Kingma and Ba, 2014) with a learning rate of 0.0001 and implemented

the Glorot normal initialization strategy (Glorot and Bengio, 2010), which is a way to avoid unstable gradients when training
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the model. The kernel sizes of the convolutional layers were 3 x 3 and 2 x 2 for the pooling and deconvolutional layers, the150

activation function of all layers was Leaky-ReLU following Guo et al. (2021), and the batch size was 32.

2.7 Urban flood map predictions

After completing the training process, the model can be used for making predictions. The flood maps of the entire city are

constructed by assembling the local patch predictions. The terrain patches are extracted at regular grid intervals ensuring that

the whole city is covered. To produce more robust predictions, the patches are extracted at a grid size distance of half the patch155

size so that the flood map patches overlap. In these overlapping areas, the final prediction is the average of the patch predictions

in that area. This method was found to be the best option by Guo et al. (2021) as it gives a good balance between accuracy and

prediction time.

3 Model input specifications

3.1 Data specifications for model training160

The model requires two types of inputs: static inputs (multi-channel terrain images) and dynamic inputs (rainfall hyetographs).

Furthermore, the desired output, i.e., the target flood map, must also be included in the training data. Hereafter, we describe

the pre-processing framework for the training data assuming a native resolution of the DEM of 1 m.

First, the DEM is upscaled to 2 m and 4 m, and spatial features are derived from the DEM at the different spatial resolutions

(1 m, 2 m, and 4 m) before being stacked as multi-channel images. The spatial features used to train the neural network were165

chosen based on previous studies (Guo et al., 2021; Löwe et al., 2021) and the model’s performance in initial tests. We found

(not shown) that feeding the model with the DEM, mean curvature, aspect (sine and cosine), depth of the sinks and the slope

(in radians) helped the model learn best, suggesting that these features can encapsulate the hydrological characteristics of the

catchment related to the dynamics of water during floods. Additionally, these features can all be derived directly from the

DEM, thus eliminating the need for further data, such as imperviousness maps for example. We extract the spatial features170

from the DEM using the RichDEM library (Barnes, 2016).

Patches are then extracted from the multi-channel images at random locations, with the constraints of a maximum overlap

threshold of 20% between two patches and a minimum study area coverage of 10% for each individual patch. The correspond-

ing output patches are extracted from the target flood map. The pairs of input and output patches are subsequently augmented.

The model should be invariant
:::::::::
equivariant

:
to rotation and flip transformations, i.e., these transformations of the input and175

output patches are arbitrary, as long as they are consistently applied to input and output pairs. Hence, since the augmentation

techniques need to be applied to both inputs and outputs, and that rainfall-runoff follows non-linear relationships, we can ap-

ply 7 augmentation techniques consisting of a combination of flips and 90° rotations of the images (Fig. S2). This enables

to increase the amount of training data while limiting the patch overlap and thus limiting the risk of overfitting the model.

In fact, similar studies with equivalent
::::::::::
comparable study area sizes have used disproportionate amounts of patch locations180
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without data augmentation, thus extracting redundant patches and facing the risk of large overlaps between training and valida-

tion patches (Fig. S3 Guo et al., 2021; Löwe et al., 2021)
:::::::::::::::::::::::::::::::::::::
(Fig. S3, Guo et al., 2021; Seleem et al., 2023). Hence, these models

are overfitting
:::::
could

::
be

:::::::::
overfitting

::
to

:::
the

:::::::
terrain, even though this would not be apparent when comparing the training and

validation losses using standard evaluation metrics
:::::::
(Section

:::
S1,

:::::
Table

:::
S1).

Lastly, all multi-channel image patches are transformed through normalization (also called min-max scaling). This trans-185

formation consists of forcing the input to have the same scale, here [-1, 1], by shifting and rescaling the data. It is commonly

applied to machine learning data as machine learning algorithms do not perform well on inputs with very different scales

(Géron, 2019). We found that the model performed best when the normalization was applied on each patch individually. We

also tested its application across the entire study area, i.e., extracting patches after normalizing the feature images of the full

study area, similar to previous studies (Guo et al., 2021; Löwe et al., 2021). While this could help preserve some information190

about the position of the patch in its larger context, it also forces patches to have values falling in a very small range (e.g., full

study area DEM with values between 0 and 1, and DEM patches with values between 0.455 and 0.495), therefore considerably

decreasing the performance of the model
:::::
(Table

::::
S2).

Before being fed to the model, some data must be reserved for validation and testing purposes. To facilitate this, both

patch locations and rainfall time series are partitioned into training, validation, and testing datasets. First, the rainfall events195

must be partitioned in a way that ensures independence among training, validation
:
, and testing rainfall events,

::::
with

:::::::::
respective

:::::::::
proportions

::
of

:::::
67%,

::::
11%

::::
and

::::
22%. Then, the patch characteristics (i.e., patch location and patch augmentation combinations)

are randomly divided into training and validation
:::::
(90%)

::::
and

::::::::
validation

::::::
(10%) sets. Lastly, some of the training data, consist-

ing of the combination of both patch characteristics and rainfall events, are allocated to the validation dataset(Section S2).
:
.

::::::::
Following

::::
this

::::::::
workflow,

:::
the

::::
data

::
in

:::
the

:::::::
training

:::
and

::::::::
validation

::::
sets

:::
are

::::::::
allocated

::
in

::
an

:::::::::
80%-20%

::::
ratio.

:
This partitioning strat-200

egy ensures that the testing rainfall events remain unseen by the model until evaluation, thereby maintaining the validity of the

rainfall generalizability assessment.
:::::::::::
Consequently,

:::
the

:::::::::
validation

::
set

::::::::
includes

:::
the

::::::::
following

:::::::::::
combinations

::
of

:::::
data:

::
(1)

::::
new

::::
rain

:::
and

::::
new

:::::
terrain

::::::
patch,

:::
(2)

::::::
training

::::
rain

:::
and

::::
new

::::::
terrain

:::::
patch,

:::
and

:::
(3)

::::
new

::::
rain

:::
and

:::::::
training

::::::
terrain

:::::
patch.

To summarize, the model’s inputs are three multi-channel image patches (one 256 x 256 x 6 image for the local patch at 1

m resolution and two 256 x 256 x 6 images for the context at 2 m and 4 m resolutions), along with the unprocessed rainfall205

time series and the corresponding target flood map patch (256 x 256 image covering the same area as the local patch at 1 m

resolution).

3.2 Data specifications for flood map generation

The data requirement and pre-processing framework for using the model to generate flood maps closely resemble those em-

ployed during training, with some minor deviations. The main differences lie in the fact that; the target output is not informed210

to the model, the locations of the patches are neither sampled randomly nor split into train/test/validation sets, and no aug-

mentation technique is applied to the patches. The model’s inputs are three multi-channel image patches of the terrain (each

with dimensions 256 x 256 x 6 and resolutions 1 m, 2 m, and 4 m, assuming a native DEM resolution of 1 m) and the rainfall

hyetograph for which the user wants to produce the flood map. The patches are sampled at a regular grid interval of half the

8



Table 1. Training and testing overview.

Training Testing on new rainfall events

Terrain Rainfall Model initialization Terrain Figures

Zurich 12 events - Zurich Fig. 4, Fig. 5

Luzern Fig. 6b

Singapore Fig. 6b

Luzern 1 event Model trained for Zurich Luzern Fig. 6c, Fig. 7

Singapore 1 event Model trained for Zurich Singapore Fig. 6c, Fig. 7

patch size (here 128), ensuring a comprehensive coverage of the study area. The model will subsequently generate flood maps215

for all patches and reconstruct the flood map for the entire study area by combining the output patches.

4 Model training and transfer learning

First, we trained and tested the model in the city of Zurich and evaluated its performance to represent flood depths for a wide

range of rainfall events. Second, the model’s terrain generalizability was assessed in distinct urban settings, namely Luzern and

Singapore.220

In an effort to enhance the model’s performance in new cities, we assessed the suitability of employing transfer learning.

Transfer learning is a popular approach to improve the training of deep computer vision models by using the knowledge of

existing models that perform similar, or identical, tasks to the new model. By initializing or freezing some of the weights and

biases of the layers of the new model with the ones from the existing pre-trained model, this technique speeds up the training

of the new model and requires significantly less training data to retrain the new model (Erhan et al., 2010; Géron, 2019) as225

there is no need to train the model from scratch.

5 Rainfall and terrain generalizability

5.1 Dataset and training details

The training, testing, and validation datasets for Zurich were extracted from 18 flood maps at 1 m resolution for a catchment

of 12.7 km2 (Fig. 3 Guo, 2019). These flood maps were generated using the cellular automata model WCA2D (Guidolin et al.,230

2016, implemented in CADDIES-caflood) and correspond to 18 1-hour uniform rainfall events at 5 min resolution with mean

intensities ranging from 19 mm h-1 to 46 mm h-1. These correspond to rainfall events with return periods ranging from 2- to

100-y in Zurich. Each return period is associated with three events that have different shapes and maximum intensities (Fig. 3).

::
To

::::::
ensure

:::
the

::::::
model’s

:::::::::::
equivariance

::
to

:::::::::::
zero-padding

:::
and

:::
its

:::::
ability

::
to

::::::
handle

::::::
rainfall

::::::
events

::
of

:::::::
differing

:::::::::
durations,

:::
we

::::::::
randomly

9



Figure 3. DEM of (a) Zurich, (b) Luzern, and (c) Singapore, and hyetographs used to (d) train, and (e) validate and test the model. The

elevation datum of the DEM is set to the minimum elevation in each of the study areas respectively. The validation and test hyetographs are

shown by the dashed and solid lines respectively.

::::::
selected

:::::
three

::::::
rainfall

::::::
events

::::
with

:::::::
varying

:::::
mean

::::::::
intensities

::::
and

:::::::::
introduced

:::::::
random

:::::::::::
zero-padding

::
at

:::
the

:::::::::
beginning

:::
and

:::
end

:::
of235

::::
these

::::::
events.

::::::
Lastly,

:::
we

:::::::::
introduced

::
an

:::::
event

::::
with

::::
zero

::::::
rainfall

:::
and

::
a
::::::::::::
corresponding

::::
flood

::::
map

::::::::
showing

::
no

::::::::
flooding. The neural

network can thus learn to distinguish the effects of rainfall events with different characteristics. The DEM used as input for

these simulations did not include buildings’ representation. We extracted a total of 1,250 patches for training and validation of

the model (Fig. S3), and the rainfall events were split into train/test sets so that each return period was represented only once

in the test dataset, similar to Guo et al. (2021). Furthermore, the rainfall events in the test set are independent from the ones in240

the training set as they have different shapes and peak intensities.

5.2 Generalizability to rainfall events

Our model’s performance was evaluated by comparing the emulated flood maps for the entire city with those simulated in

CADDIES-caflood. Hereafter, we will refer to these as simulated and target flood maps respectively, and denote the rainfall

events by their mean intensity m and shape s as follows: Pms:::::
Pm−s. The shape notation ranges from 1 to 3, where 1 denotes245

the events with the highest peak rainfall intensity and 3 denotes the most distributed event types.

First, we evaluated the model’s ability to accurately predict water depths in Zurich for rainfall events in the test set (Fig. 4).

We chose to show the flood maps for the least and most intense rainfall events as these can reflect the performance of the model

to distinguish situations where limited flooding occurs, as well as the prediction performance in extreme conditions.

The visual comparison of the target and predicted flood maps suggests that the model successfully reproduces the spatial250

pattern of water accumulation for both low- and high-intensity rainfall events. This is confirmed by the MSE values of the

10



::::
Root

:::::
Mean

:::::::
Squared

:::::
Error

:::::::
(RMSE,

::::::
defined

::
as

:::::::::::::::::
RMSE =

√
MSE)

::
of

:::
the

::::::::
predicted

:::::
flood

:::::
maps

::
for

:
P19−1 and P46−1flood map

predictions, which are respectively 0.37
:::
19.2·10-3 m 2 and 0.47

:::
and

::::
21.8·10-3 m2. Considering only wet cells using a water depth

thresholdof .
:

::::::::::
Furthermore,

::::
the

:::::
model

:::::::::
accurately

::::::::
identifies

::::
cells

::::::
below 0.1

::
m

::::
(Fig.

:::
5).

::::
The

::::::
critical

:::::::
success

:::::
index

:::::
(CSI),

::::::
which

::::::::
measures255

::
the

::::::::
accuracy

::
of

:::
the

::::::::::
predictions,

::
is

::::::
defined

::
as

:::
the

::::
ratio

::
of

::::::::
correctly

::::::::
identified

::::
cells

:::
(i.e.

::::
true

::::::::
positives,

:::
TP)

::
to
:::
the

::::
sum

::
of

::::::::
correctly

::::::::
identified

::::
cells,

::::::
missed

:::::
target

::::
cells

::::
(i.e.

::::
false

:::::::::
negatives,

::::
FN),

:::
and

::::::::::
incorrectly

::::::::
identified

::::
cells

:::
(i.e

::::
false

::::::::
positives,

::::
FP):

:

CSI =
TP

TP +FN +FP
::::::::::::::::::::

:::
The

::::
CSI

:::::
values

:::
for

::::::
P19−1:::

and
::::::
P46−1:::

are
::::::::::
respectively

::::
0.98

::::
and

::::
0.97.

:::::::::::
Additionally,

:::
the

:::::::
majority

:::
of

:::
the

::::
cells

::
in

:::
the

:::::
target

:::::
flood

::::
maps

:::
fall

::::::
below

:::
the

:::
0.1

::
m

::::::::
threshold,

::::::::::
representing

::::::::::
respectively

::::::
84.6%

:::
and

::::::
80.8%

::
of

:::
all

::::
cells

::::
(Fig.

:::
5).

::
To

:::::::
address

:::
this

:::::::::
imbalance260

:::
and

:::::::
evaluate

:::
the

:::::::::
prediction

:::::::::::
performance

:::
of

:::
the

:::::
model

::::::
above

:::
the

::::::
critical

::::
0.1 m , the MSE values are respectively 3.12

:::
wet

:::::::
threshold

::::::::::::::::::::::::::::::::::::
(Seleem et al., 2023; Kaspersen et al., 2017)

:
,
:::
we

::::
also

::::::::
evaluated

:::
the

::::::
RMSE

::::::
values

:::
for

::::
cells

:::::::::
exceeding

:::
0.1

::
m
:::

in
:::
the

:::::
target

::::
flood

:::::
maps.

::::
The

::::::
RMSE

:::::
values

:::
for

::::
wet

::::
cells

:::
are

::::::::::
respectively

::::
55.9·10-3 m 2 and 2.19

:::
and

::::
46.8·10-3 m2.

Additionally, Fig. 4,
::::::
which shows a zoomed-in area of size 650 x 650 , which is greater than the aggregation size of 128 x

128. This
::::
128, enables us to visually evaluate the smoothness of the predictions at the boundaries of the patches. The absence265

of artifacts such as horizontal and vertical lines confirms that the multi-scale patch-based predictions along with the patch

aggregation method produce continuous flood maps. This suggests that merging contextual information with the local patch

alleviates the issue of single-scale patch models cutting off and disconnecting hydrological objects such as flow paths or sinks.

The model’s prediction performance was further analysed by investigating the relative error in a set of water depth ranges

(Fig. 5) for the least and most intense rainfall events, as well as for an intermediate event, P31−2, with mean intensity approx-270

imately equal to the average mean intensity from the least and most intense events. The median relative error is fairly even

across water depth ranges and across rainfall events. For all rainfall events, we observe a trend towards underprediction of the

water levels when moving to the largest target water depth ranges. The error is the lowest for the most intense rainfall event

P46−1, which exhibits the smallest median residual error, and the lowest inter-quartile range for water depths above 0.3 m.

We also compared the performance of the model relative to some terrain characteristics, similar to Guo et al. (2021). We275

likewise focused the analysis on the most extreme condition from the test set, i.e., the P46−1 rainfall event. While the previous

study found that their model performed worse in downstream areas (lowest 33% terrain elevations) than in upstream areas

(highest 33% terrain elevations), we found that our multi-scale model improves performance in downstream areas, bringing the

error in these areas to a similar range as the error in upstream areas (Table S1
::
S3). Our model also exhibits a major prediction

improvement in depressions, with the errors first and third quartile reduced by a factor of 3 compared to the state-of-the-art280

model (Table S1
::
S3). This suggests that adding contextual information helps the model predict more accurately water routing

and accumulation in lower laying areas or terrain depressions.

Overall, the results show that our model can faithfully reproduce flood depths for a wide range of unseen rainfall events for

the terrain on which the model was trained, here Zurich.
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Figure 4. Target (left) and simulated (right) flood maps in Zurich for the least (P19−1) and most (P46−1) intense rainfall events in the test

set.

5.3 Generalizability to terrain285

Next, we verified that the model can predict flood maps in new, unseen terrain. We tested the model in two cities: Luzern

(Switzerland) and Singapore (Fig. 3). The former has a similar landscape type to Zurich. Singapore, on the other hand, is not

located in a mountainous environment and therefore presents a much flatter topography than Zurich. In both cases, the DEM

of the urban areas included the representation of the built environment while this was not the case for Zurich. The spatial

resolution of the DEMs are 1 m for Luzern and 2 m for Singapore
:
,
:::::::
meaning

:::
the

::::::::::::
multi-channel

:::::
image

:::::::
patches

:::
for

:::::::::
Singapore290

::::
have

:::::::::
resolutions

::
of

::
2
:::
m,

:
4
:::
m,

:::
and

::
8
::
m. This allows to also test the abilities of the model to adapt to terrain data at different

resolutions.

12



Figure 5. Violinplot of the simulation error, expressed as the difference between the target flood map and simulated flood map, for different

target water depth ranges and different rainfall events (P19−1, P31−2 and P46−1, that have respectively lowest, intermediate, and highest

mean intensities of the test set). The vertical black lines range from the 25th to 75th percentiles and the horizontal black line indicates the

median value. Negative values correspond to the underprediction of the simulations. The pie charts illustrate the proportion of cells in each

water depth range in the target flood maps(.
:::
The

:::::
water

:::::
depth

:::::
ranges

:::
are indicated by the

:::::::
different shading levels)

:
:
::::
lower

:::::
water

:::::
depths

:::
are

::::::::
represented

:::
by

::::
more

::::::::
transparent

:::::
colors,

:::::
while

:::::
higher

::::
water

::::::
depths

::
are

:::::::
depicted

:::
with

:::::
darker

:::::
colors.

We present the target and simulated flood maps in Luzern and Singapore for the most intense rainfall event in the dataset

in Fig. 6a. and 6b. We used the model presented heretofore to generate the flood maps in Fig.6b.
:::
6b., i.e., the model trained

for Zurich. Despite the differences in terrain, and especially the representation of the built environment in the DEMs
:::
and295

::
the

::::::
spatial

:::::::::
resolution, the model broadly captures the areas of water accumulation and the flood hazard levels in both new

cities. This suggests that the contextual information, along with the consistent data pre-processing, helps the model extract

information relevant to flood mapping in unseen terrain (Fig. S4). In fact, we identify continuous flooded areas that are larger

than the local patch size. However, while the spatial patterns are broadly reproduced, the model fails at correctly predicting the

water depth magnitudes.300

To evaluate how well the model detects the locations of water accumulation, we evaluated the precision
:::
CSI for wet and

flooded cells. Precision measures the accuracy of the positive predictions. In other terms, it measures the proportion of wet (or

flooded) cells that were correctly identified by the model. Considering a wet cell threshold of 0.1 m and a flood depth threshold

of 0.3 m, we obtained the following precision scores: Precision
:::
CSI

::::::
values:

::::
CSI0.1, Luzern = 0.79, Precision

::::
0.50,

::::
CSI0.3, Luzern =

0.78, Precision
::::
0.32,

::::
CSI0.1, Sgp = 0.75, and Precision

::::
0.48,

:::
and

::::
CSI0.3, Sgp = 0.68. The Precision0.3 scores are slightly

::::
0.35.

::::
The305

:::::
CSI0.3:::

are
:
lower than the Precision0.1 scores

:::::
CSI0.1 mainly because of a decrease in true positives, i.e.,

:::::::
meaning

:
the model

13



Figure 6. Flood maps and error in Luzern (left) and Singapore (right). Note that the models used to simulate the flood maps 6c were retrained

for P31−2.
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detects fewer flooded cells than it detects wet cells. This is due to the model’s water depth underpredictionwhich results
:
,

:::::::
resulting

:
in fewer cells reaching the flooded depth threshold.

::::::
Despite

:::
the

:::::
more

::::::::::
pronounced

:::::
terrain

::::::::::
differences

:::::::
between

::::::
Zurich

:::
and

:::::::::
Singapore

:::
and

:::
the

:::::::
different

::::::
spatial

:::::::::
resolutions

::
of

:::
the

::::::
terrain

::::
data,

:::::
with

::::::::
Singapore

::::::
having

:
a
::
2
::
m

:::::
DEM

:::
and

::::
both

::::::
Zurich

::::
and

::::::
Luzern

::::::
having

:
1
::
m

::::::
DEMs,

:::
the

::::
CSI

:::::
values

:::::::
indicate

::::
that

:::
the

:::::::
model’s

::::::::::
performance

::
is

::::::
similar

::
in

::::::
Luzern

::::
and

:::::::::
Singapore.310

6 Transfer learning for terrain adaptation

While the results obtained when applying the model to terrain in which the model has not been trained are promising, the errors

in water depth magnitudes are too high to consider that the model generalizes well (see Fig. 6b). Therefore, we investigated

the effectiveness of transfer learning to improve our multi-scale urban pluvial flood model performance.

Here, we considered the model trained for Zurich as the pre-trained model and transferred its knowledge to models that we315

separately trained for our case studies; Luzern and Singapore. Note that Luzern and Singapore are case studies and that the

presented framework could potentially be applied to any other city. As the objective of this study is to develop a model that is

fast and limits as much as possible computations for the end-user, the additional training data necessary should be either readily

available or fast to produce. Consequently, the models were retrained using only one rainfall event and its corresponding flood

map for each respective city. The model is thus solely informed of the response of the new terrain to one rainfall event.320

6.1 Case study 1: A resembling terrain

6.1.1 Terrain details

We first evaluated how well the model can adapt to a terrain resembling the one for which the model was initially trained. To

that end, we retrained the model in Luzern. Like Zurich, Luzern is located in Switzerland and has a mountainous landscape.

The size of the study area is 6.3 km2 and the spatial resolution of the DEM and target flood maps is 1 m. The target flood maps325

for Luzern were also generated in CADDIES-caflood. Considering the size of the study area in Luzern, we reduced the number

of training patches to 620 (Fig. S3).

The model was trained on only one rainfall event and its corresponding flood map. The model’s training hyperparameters

were exactly the same as for the model trained in Zurich, except that all the model’s layers were initialized with the layers of

Zurich’s model and the patience was set to 1. This enabled the prevention of overfitting for the specific rainfall event on which330

the model was retrained, considering that the aim is to adapt the model to the new terrain while preserving adaptability across

diverse rainfall conditions.

6.1.2 Model performance

First, we evaluated the performance of the model retrained in Luzern for event P31−2. We selected this event to retrain the

model as its mean intensity lies midway between the lowest and highest mean intensities of all the events. Additionally, the335
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shape of the event is neither the sharpest one nor the most uniform one. This enabled the evaluation of the model’s extrapolation

ability towards less and more extreme events, both in terms of mean and maximum intensity of the events.

Comparing the predicted flood maps visually and through various performance metrics shows that the new model can

accurately reproduce the flood maps in Luzern, and that the model consistently outperforms the predictions from the model

trained on Zurich (Fig. 6c, Fig. 7a,
::::
Fig.

:::
S5). Fig. 6c shows the flood map simulated for rainfall event P46−1. The model340

accurately reproduces the spatial distribution of water accumulation and the corresponding water depths. The predicted flood

map achieves an MSE0.1 of 0.02 m 2 and the precision scores
::::::::
RMSE0.1 ::

of
::::
0.16

::
m

:::
and

:::
the

::::
CSI

:::::
values

:
for wet and flooded cells

reach Precision
:::
CSI0.1, Luzern = 0.84 and Precision

::::
0.72

:::
and

::::
CSI0.3, Luzern = 0.90

::::
0.68. Furthermore, Fig. 6d shows that the areas

where the performance error of the model are highest are located at the boundary with a water body (Fig. 3) or in areas where

the model had successfully predicted high water levels (Fig. 6c).345

We further analysed the model’s prediction performance for the events with lowest, intermediate, and highest mean intensi-

ties, respectively P19−1, P31−2, and P46−1, according to different target water depth ranges (Fig. 7a). The violinplot shows that

our model accurately reproduces the water depths for all water levels. The relative prediction error is the highest in the cells

with the largest water depths for all rainfall events, and the model tends to underpredict the water levels. In fact, the median

error in the cells with target flood depths higher than 1 m lies between -8 cm and -22 cm. However, considering the high water350

depths in which these errors occur, the absolute median relative error does not exceed 15%. Furthermore, we can notice that

the prediction error is lower for P31−2 than for P19−1 and P46−1. This result is in line with the fact that the model was trained

for the event P31−2. Overall, the model can faithfully reproduce the flood maps in Luzern for unseen rainfall events.

Second, we evaluated the model’s extrapolation ability by comparing the MSE
:::::
RMSE0.1 of the predicted flood maps ac-

cording to the rainfall event used to retrain the model (Fig. 8a). We retrained the model for the following rainfall events:355

P19−1, P41−3 and P46−1. Subsequently, we simulated the flood map for each of these rainfall events and P31−2 using all

four retrained models. The prediction performances are summarized in the heatmap in Fig. 8a. The asterisk that indicates the

lowest MSE
:::::
RMSE0.1 for each prediction rainfall is located along the diagonal. This means that each model had the lowest

MSE
::::::
RMSE0.1 for the prediction rainfall event for which it was trained, and that the lowest MSE

::::::
RMSE0.1 of each prediction

rainfall was achieved by the model which was trained for this same rainfall event. In line with expectations, the MSE
::::::
RMSE0.1360

increases as the mean rainfall intensity moves away from the training rainfall mean intensity. Furthermore, the results suggest

that the model extrapolates better when the prediction rainfall event mean intensity is smaller than the training event mean

intensity.

6.2 Case study 2: A distinct terrain

6.2.1 Training details365

Next, we evaluated how well the model can adapt to a terrain that is distinct from the one for which the model was initially

trained. We chose to retrain the model in Singapore, which is an island city with one of the most high-density urban development

in the world. The terrain is much flatter than in Zurich or Luzern, with a maximum elevation in the study area reaching 56 m

16



Figure 7. Violinplot of the simulation error in (a.) Luzern and (b.) Singapore,
::::
using

:::
the

::::::
models

:::::::
retrained

::
for

:::
the

::::
event

::::::
P31−2 ::

in
:::
each

::::
city

:::::::::
respectively.

:::
The

::::
error

::
is expressed as the difference between the target flood map and simulated flood map, for different target water depth

ranges and different rainfall events. The vertical black lines range from the 25th to 75th percentiles and the horizontal black line indicates

the median value. Negative values correspond to the underprediction of the simulations. The pie charts illustrate the proportion of cells in

each water depth range in the target flood maps(
:
.
:::
The

::::
water

:::::
depth

:::::
ranges

:::
are indicated by the

:::::::
different shading levels):

:::::
lower

:::::
water

:::::
depths

::
are

:::::::::
represented

::
by

::::
more

:::::::::
transparent

:::::
colors,

:::::
while

:::::
higher

::::
water

:::::
depths

:::
are

::::::
depicted

::::
with

:::::
darker

:::::
colors.

Figure 8. Heatmaps of the simulated flood maps MSE
:::::
RMSE0.1 for (a.) Luzern and (b.) Singapore for various rainfall events depending on

the rainfall event for which the model was retrained. The asterisks indicate the lowest MSE
::::
RMSE0.1 for each prediction rainfall.

17



(against a 464 m maximum change in elevation in Zurich). The size of the study area is 15.4 km2 and the spatial resolution

of the DEM and target flood maps is 2 m. The target flood maps for Singapore were also generated in CADDIES-caflood. We370

extracted 450 patches to keep a similar patch density as in Zurich and Luzern. The model was trained on only one rainfall event

and its corresponding flood map after initializing the model’s layers with the layers from the model trained for Zurich. The

hyperparameters were kept unchanged, except for the patience that was set to 1 to prevent overfitting to the rainfall event for

which the model was retrained.

6.2.2 Model performance375

We evaluated the performance of the model for Singapore in the same way as we evaluated the one for Luzern; we first

evaluated the performance of the model retrained in Singapore for the event P31−2. The model trained for P31−2 accurately

reproduced the flood map corresponding to the event P46−1 (Fig. 6c,
::::
Fig.

:::
S5). Both the spatial distribution of water and the

magnitude of the flood depths were correctly simulated, and the performance metrics outperformed the ones for the simulation

from the model trained in Zurich: MSE
:::::
RMSE0.1 = 0.02 m2, Precision

:::
0.10

:::
m,

:::
CSI0.1, Sgp = 0.90 and Precision

:::
0.66

:::
and

::::
CSI0.3, Sgp380

= 0.90
::::
0.67. Similar to Luzern, the areas with the largest differences between the target and simulated flood map are located

either in areas close to water bodies (Fig. 3) or in areas where the model had successfully predicted high water levels (Fig. 6c).

Next, we analyzed the prediction error for three rainfall events in different target water level ranges (Fig. 7b). The error

follows a similar pattern as the one from the model for Luzern (Fig. 7a). We found that the model can faithfully reproduce the

flood maps in Singapore for new rainfall events as the model produces low errors. It exhibits a slight underprediction of the385

water levels for the highest range, i.e. for cells with target water depths above 1 m. The error for unseen events, i.e., for P19−1

and P46−1, is close to the error for P31−2 for which the model was trained, which suggests that this model performs well at

extrapolating for both less and more intense rainfall events.

Eventually, we compared the MSE
:::::
RMSE0.1 of the simulated flood maps depending on the rainfall event for which the

model was trained (Fig. 8b). Similarly as for Luzern, we retrained the model for the rainfall events P19−1, P41−3, and P46−1,390

and simulated the flood maps for each of these rainfall events and P31−2 using all four retrained models. The heatmap of

MSE
::::::
RMSE0.1 in Fig. 8b suggests that all retrained models produce accurate results for new rainfall events. Unlike for Luzern,

the asterisk is not everywhere along the diagonal of the heatmap. The lowest MSE
::::::
RMSE0.1 for prediction rainfall P41−3 was

not achieved by the model trained for P41−3 but by the model trained for P46−1. However, even though this is not consistent

with expectations, the MSE
::::::
RMSE0.1 for P41−3 simulated by the model trained for P41−3 is almost equal to the one achieved395

by the model trained for P46−1. Furthermore, the results suggest that the model can extrapolate equally well to both less and

more intense events, but that the performance of the models decreases as the difference in mean intensity from the training and

prediction rainfall events increases.
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7 Discussion

The proposed context-aware data-driven flood model accurately reproduces high-resolution (1 m) flood maps in the training400

terrain for unseen extreme rainfall events, with peak rainfall intensities ranging from 42.5mm h-1 to 161.4 mm h-1. Our model

outperforms other patch-based urban flood emulators (e.g., Guo et al., 2021) mostly in downstream areas and depressions

:::::
(Table

:::
S3), which are critical as these areas will typically be the ones where flooding occurs most.

When simulating flood maps for unseen terrain, the model accurately identifies the locations of water accumulation. ,
::::::
which

:::::::::
constitutes

::
an

:::::::::::
improvement

:::::::::
compared

::
to

:::
the

::::::::::::
state-of-the-art

::::::::::
patch-based

::::::
model

::::
(Fig.

::::
S4).

:
This suggests that the model is not405

overfitting to the training terrain, but extracts the information that captures the hydrologic behaviour of the area. The model

adapted well to different spatial resolutions and different representations of the built environment. However, predicting the

water levels in unseen terrain remains a challenge. Our results have demonstrated that the model can conveniently adapt to

new terrain through the use of transfer learning. After retraining the model for new terrains and for only one rainfall event and

its corresponding flood map, the model was effectively adapted to the new terrain while preserving its adaptability to rainfall410

events. The advantage of this method is that the model can be applied to new terrain without extensive computational resources

and training data.

We excluded the water bodies from the simulation results as we want to focus on urban pluvial flooding, and not fluvial

flooding for example. However, the model exhibits an acceptable performance level in these areas (Fig. S5
::
S6), as the model

could accurately identify that these areas were flooded.415

The data pre-processing framework along with the proposed model architecture has been developed to alleviate the hydro-

logically counter-intuitive patch-based prediction approach. Yet, this approach remains the most appropriate one for the aim

of generalizability to terrain, as sampling (and augmenting) patches increase the number of terrain training images (Romano

and Elad, 2016). Consequently, the model can make accurate predictions even in a city with a distinct terrain from the training

city, as long as the terrain features in the new city are also present in some areas of the training city. In other words, a model420

trained on a city that presents different
:
a

::::::
broader

::::::
variety

:::
of topographical features and urban development will probably gen-

eralize best. However, we want to emphasize the importance of careful data pre-processing in data-scarce machine learning

applications; it is crucial not to over-sample data to avoid overfitting .
::::
(Fig.

:::
S3,

::::::
Section

::::
S1).

:

:::
We

::::::::
evaluated

::
the

::::::
model

::::
using

:::::::
various

:::::::::::
combinations

::
of

:::::
terrain

:::::::
features

::::
used

::
in

:::::::
previous

::::::
studies

::::::::::::::::::::::::::::::
(Guo et al., 2021; Löwe et al., 2021)

::::
such

::
as

::::::
DEM,

:::::
mask

::
(a

::::::
binary

:::::
image

:::
of

:::
the

:::::::::
catchment

:::::
area),

::::::::
curvature

::::::
(plan,

::::::
profile

:::
and

:::::::
mean),

:::::
aspect

:::
(in

:::::::
radians

:::
and

:::
in425

:::::::
degrees),

:::::
depth

::
of

:::
the

:::::
sinks,

:::::
slope

::
(in

::::::
radians

::::
and

::
in

:::::::
degrees),

::::
flow

:::::::::::
accumulation

:::::::::
(standard,

:::::::
cuberoot

::::::::
transform

::::
and

:::::::
weighted

:::
by

::
the

:::::
slope

::
in

::::
each

::::
cell)

:::
and

:::
the

::::::::::
topographic

:::::::
wetness

:::::
index

::::::::::::::::::::::::::::::::::::::::::::
(standard and squareroot transform; Löwe et al., 2021)

:
.
:::
We

::::::::
evaluated

::::
only

:::::::::::
DEM-derived

:::::::
features

::
as

:::::
other

::::::
features

:::::
such

::
as

:::::::::::::
imperviousness

::
or

:::
the

::::::
design

::
of

:::
the

:::::::
drainage

:::::::
network

:::::
might

:::
not

:::
be

:::::
freely

:::
and

:::::
easily

::::::::
available.

::::::::
However,

::
if

:::::
these

::::::
features

::::::::
influence

:::
the

:::::::::
hydraulics

:::
and

:::::::::
hydrology

::
in

:::
the

:::::::
training

::::
flood

::::::
maps,

::::
their

::::::
impact

:::
will

:::
be

::::::::
indirectly

:::::::
captured

:::
in

:::
the

:::::::
model’s

::::::::::
predictions.

:::::
From

:::::
initial

::::
tests

::::
(not

:::::::
shown),

:::
we

:::::
found

::::
that

:::::::
feeding

:::
the

::::::
model

::::
with430

::
the

::::::
DEM,

:::::
mean

::::::::
curvature,

::::::
aspect

::::
(sine

::::
and

:::::::
cosine),

:::::
depth

::
of

:::
the

::::
sinks

::::
and

:::
the

:::::
slope

::
(in

:::::::
radians)

::::::
helped

:::
the

::::::
model

::::
learn

:::::
best.

:::::
Unlike

::::::::::::::::
Löwe et al. (2021),

:::
we

:::::
found

::::
that

:::::
using

:::
the

:::::::
cuberoot

:::::::::
transform

::
of

::::
flow

:::::::::::
accumulation

::::::::
weighted

:::
by

:::::
slope

::::::::
(FLSLO)

:::
did
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:::
not

::::
lead

::
to

:::
the

::::
best

::::::::::
performing

::::::
model.

::::
One

:::::::
possible

::::::
reason

::
is

::::
that

::::::
FLSLO

::
is
::::::

highly
:::::::::
correlated

::::
with

:::::
other

::::::
terrain

::::::::
variables

::::
(e.g.

::::::::::
Spearman’s

::::
rank

:::::::::
correlation

:::::::::
coefficient

:::
of

:::::::
FLSLO

::::
with

:::::
mean

::::::::
curvature

::::
and

:::::
slope

:::
are

::::::::::
respectively

:::::
-0.32

::::
and

::::
-0.72

:::
in

::::::
Zurich),

::::::
while

::::
these

:::::
other

::::::
terrain

::::::::
variables

:::::::
provide

:::::::::::::
complementary

::::::::::
information

:::::::::::
(Spearman’s

::::
rank

:::::::::
correlation

:::::::::
coefficient

:::
of435

::::
mean

::::::::
curvature

::::
and

:::::
slope

::
is

::::
0.02

::
in

:::::::
Zurich).

:::::::::::
Additionally,

::::::::
machine

:::::::
learning

:::::::::
algorithms

:::::
often

:::::::
perform

:::::
poorly

:::
on

::::::
inputs

::::
with

::::
very

:::::::
different

::::::
scales

::::::::::::
(Géron, 2019).

::::
This

::::::
could

::::::
explain

::::
why

:::::
using

::::::::::::::
non-normalized

:::::::
FLSLO

:::::
could

:::
not

:::::::
improve

::::
our

:::::::
model’s

:::::::::::
performance,

:::::
while

::::::::::
normalizing

::::::
FLSLO

::::::
results

::
in

:::
the

::::
loss

::
of

:::::::::
contextual

:::::::::::
information.

:::::
Lastly,

:::
the

::::::
terrain

:::::::
features

::::
that

:::::
result

::
in

::
the

::::
best

::::::::::
performing

:::::
model

::::
may

::::
vary

:::::::::
depending

::
on

:::
the

::::
city,

::::
and

:::::::
different

::::::
feature

::::::
scaling

:::::::
methods

:::::
could

:::
be

:::::::::
considered.

:

Regarding the limitations, machine learning models learn to replicate the errors present in the training data. The model should440

therefore be trained on the most accurate flood maps available, as the error will propagate from the target flood map onto the

simulated flood map. Similar to other studies, the hydrodynamic simulations corresponding to the target flood maps considered

1 h single-peak rainfall events with uniform distribution in space (Guo et al., 2021, 2022), a simplified representation of the

drainage network (do Lago et al., 2023; Löwe et al., 2021) and a uniform infiltration rate in space (Guo et al., 2021; Löwe

et al., 2021). Additionally, the model was neither trained nor tested for rainfall events with multiple peaks or events longer
::::
with445

::::::
rainfall

::
on

:::::
more

:
than 1 h. The model should be further tested to account for different types and durations of design storms.

The lack of representation of the drainage network could represent a limit to the transferability of the model to cities where the

drainage network plays a significant role
:
,
::
or

:::
in

:::::::::::
urbanization

::::::::
scenarios

:::::
where

:::
the

::::::::
drainage

:::::::
capacity

::
is

:::::::
changed. On the other

hand, the lack of realistic infiltration rates should not be a limitation as urban pluvial floods occur in response to heavy rainfall

that becomes saturated and behave as impervious surfaces (Hollis, 1975; Leopold, 1968).450

Due to the speed of simulations for standard computing resources ( 0.5
::::
~0.5 s per patch on a 4-core CPU and 16GB of RAM),

our model can just as easily be used for flood nowcasting as in the scope of urbanization or climate change impact studies. The

model can also be used as a pre-trained model for similar hydrological applications, such as flow velocity mapping (Guo et al.,

2022). Some technical improvements to consider are the development of a model that can process different spatial structures

of rainfall, as spatial storm profiles can have a significant impact on the flood water depths and areas (Peleg et al., 2022).455

Machine learning algorithms have been shown to outperform traditional hydrological models in ungauged catchments, not

only in terms of computational time but also in terms of accuracy (Kratzert et al., 2019; Nearing et al., 2021; Zhang et al.,

2022). However, this requires a lot of training data to ensure the transfer of information from similar catchments. The lack of

an extensive dataset remains a limitation for the development of generalizable models in urban pluvial flooding. Similarly, a

benchmark dataset to compare different approaches is still lacking (Bentivoglio et al., 2022). Given the potential of machine460

learning to address urban flood hazard analysis and early warning, it would be worthwhile for the community to invest efforts

in producing and collecting large urban flood databases.

8 Conclusions

We present a novel context-aware deep learning model for high-resolution urban pluvial flood mapping, which has a 16 times

greater visual field than the standard patch-based flood mapping models. The proposed framework is particularly well-suited465
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for flood mapping applications where the continuity of hydrological features, such as flow paths or sinks, is essential. The

model exploits both static (terrain) and dynamic (hyetograph) information to generate fast urban pluvial flood maps. Our

results demonstrate that the model performs well, both in the training terrain (i.e., the same city used for the training) and in

new terrains (i.e., application to another unseen city). The context-aware model could generate accurate results for a variety

of rainfall events, with different hyetographs shapes and intensities. When applied to new terrain, the model adapts well to470

different building representations and spatial resolution. While the generalizability to terrain is not yet fully achieved, we

showed that the model accurately identifies the area of water accumulation and that transfer learning is an efficient way to

adapt the model to the new terrain.

Code and data availability. The source codes, trained models and simulation data are freely available in the following repository: https:

//doi.org/10.5281/zenodo.10688079 (Cache and Gomez, 2024), and in the GitHub repository https://github.com/tcache1/context_aware_475

flood_model. We implemented the model and data pre-processing framework in Tensorflow version 2.6.2 (Abadi et al., 2015) using Python

version 3.6.13.
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