
 
 

June 24, 2024 
 
 
Prof. Yue-Ping Xu  
Editor  
Hydrology and Earth System Sciences 
Ref. No.: HESS-2024-63 
 
Dear Prof. Yue-Ping Xu, 
 
We would like to thank you for handling our manuscript. The revised manuscript entitled 
‘Enhancing the generalizability of data-driven urban pluvial flood models’ is enclosed, along with 
the revised supplementary material and a letter of response to all the remarks made by the 
reviewers.  
 
All the concerns raised by the reviewers have been addressed point-by-point, providing 
explanations where necessary and adjusting the manuscript as recommended. We believe that 
the reviewer’s suggestions have allowed us to improve the manuscript, and that the revised 
manuscript can be considered for publication in Hydrology and Earth System Sciences. Listed 
below are our responses (in blue) to the comments and suggestions of the reviewer. Line numbers 
refer to the ‘track changes’ version of the manuscript. 
 
We look forward to your feedback on the revised manuscript.  
 
Sincerely, 
Tabea Cache, on behalf of all co-authors 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Reviewer 1:  
The authors propose an improved version of a patch-based CNN that can include the terrain 
features at multiple scales, to predict the maximum inundation depths for several catchments 
and rainfall events. 
Moreover, they show that the model benefits from transfer learning, even with little data. 
The paper is overall well presented and with some interesting and original conclusions. However, 
there are also several minor changes that I believe would further improve the strengths of the 
paper and that must be addressed before publication. 
We would like to sincerely thank the reviewer for investing their time and eƯort to evaluate our 
manuscript, and for their favorable assessment. We highly appreciate the detailed and 
constructive feedback provided, which was of invaluable support in revising and improving the 
manuscript.  
 
General comments: 
In the introduction, there is no mention of other DL models for flood prediction. I would add a 
longer section that includes the recent developments not only for CNN-based models with terrain 
generalizability. You could, for example, add some of the following: (Fraehr et al., 2023; Bentivoglio 
et al., 2023; Berkhahn and Neuweiler, 2024; Liao et al., 2023; Burrichter et al., 2023; He et al., 
2023).  
We agree with the reviewer that the manuscript lacked the presentation of recent developments 
in DL models for flood predictions, also for non-CNN-based models. Accordingly, we have added 
a paragraph to the revised manuscript that includes a discussion on the generalizability potential 
and limitations of these models. We focused on models that were developed for the same or 
similar applications as our model, i.e. urban pluvial flood mapping. Additionally, and in response 
to another comment from Reviewer 1, we have included the paper by do Lago et al. (2023) in our 
discussion. The paragraph can be found in lines 58-73 of the ‘track change’ version of the 
manuscript: 
‘Löwe et al. (2021) developed a model for urban pluvial flood mapping and evaluated its prediction 
performance in a city in Denmark at 5 m resolution, reserving approximately 25% of the area for 
validation and testing. Although these areas were included in the validation, they were excluded 
from training, and the model still performed well in these areas. In another study, Guo et al. (2022) 
assessed the terrain generalizability of a data-driven flood model across 656 catchment areas in 
Switzerland. The model was able to adapt to new catchments, yet it did not incorporate rainfall as 
an input, limiting its predictions to the single rainfall event used for generating the training flood 
maps. More recent advances include the work of Seleem et al. (2023), in which a CNN-based 
approach was compared with a random forest approach for urban pluvial flood mapping in three 
study areas in Berlin at 1 m spatial resolution. The authors found that the CNN model could 
benefit from transfer learning to enhance performance in terrain on which the model was not 
trained. Generalizability to terrain was also investigated by do Lago et al. (2023), who developed a 
conditional generative adversarial network that distributes a previously known runoƯ volume over 
a given catchment. The generator was able to identify cells where the water level exceeds 0.3 m 
and to predict the water levels for cells below that threshold. Berkhahn et al. (2024) have used 
autoencoders to compress data contained in flood maps and a recursive time series prediction 
model to simulate water depth time series in urban areas, at 6 m resolutions. However, they did 
not consider generalizability to terrain. Lastly, the generalizability of flood models to both rainfall 
and terrain was investigated by Fraehr et al. (2023) who developed a fast model for flood 
inundation prediction at 20 m and 1 h resolution and applied it to two study areas with distinct 
topography’. 
 



 
In the introduction, you argue that there's a lack of generalizability to unseen case studies but then 
you also cite several papers that tackle this issue. While I agree that generalizability to unseen 
case studies is still an area of research, I would not frame it exactly as a gap in the research. This 
applies also to the generalizability for both terrain and rainfall that you mention in the abstract 
(lines 3-5) as there are already papers that deal with it, such as do Lago et al. (2023). 
We thank the reviewer for pointing out the lack of clarity and agree with the feedback. In addition 
to the paragraph discussing the recent advances in DL for urban pluvial flood modelling (in lines 
58-73), we have clarified the text, both in the abstract and in the introduction of the manuscript. 
In lines 3-5 of the abstract, we clarified the lack of generalizability as follows: ‘Yet the lack of 
generalizability of urban pluvial flood data-driven models to both varying rainfall and distinctively 
diƯerent terrain, at the fine resolution required for urban flood mapping, still limits their 
application’. In lines 75-78, a similar clarification was provided: ‘Despite the advancements made 
in recent years in developing data-driven models for flood predictions, there are still some major 
challenges to overcome. One of them is the generalizability of the models to unseen case studies, 
including both varying rainfall and distinctively diƯerent terrain, at the fine resolution required for 
urban flood mapping. This limits their application to real-case studies’. 
 
Same goes for the idea of "contextual information". I would argue that this idea only/mainly 
applies to case studies with higher spatial resolution, as you have in your experiments. Thus, it 
does not seem fit for a gap in the literature. I would try to reformulate this gap by arguing that for 
high spatial resolution domains would benefit from including the information at lower spatial 
resolutions, because there are certain patterns in the topography that cannot be captured with 
patch-based models that use high-resolution data. 
We thank the reviewer for highlighting that the presented contextual information framework 
mainly applies to case studies that require high spatial resolution. In response, we have revised 
the text to clarify the necessity of high spatial resolution in the context of flood mapping in urban 
areas. Specifically, in lines 79 and 90, we emphasized the application to high-resolution flood 
models by explicitly mentioning that we apply the idea to 'high-resolution' models. Additionally, 
we included the resolution of the models discussed in the paragraph on recent developments in 
DL for urban flood mapping. We believe this revision addresses the reviewer's concern and 
enhances the clarity of our manuscript. 
 
The paper misses all formulas employed in the model. Despite the suƯiciently clear Figures 2 and 
S1, I would recommend adding the key equations employed by your model and also some 
equations for the metrics that you employ. 
Regarding the equations for the metrics, we have added the equation of the loss function used in 
the model’s training and the equations of the performance evaluation metrics (MSE in line 144, 
RMSE in line 252, and CSI in line 258). Additionally, we have added references to Fig. S1 in the 
manuscript (see the title of Fig. 2 and line 97) as Fig. S1 includes all operations of the model and 
the link to the model code (with relevant references and specific equations within) is provided at 
the end of the manuscript. 
 
All testing metrics are reported via the MSE, which makes the physical interpretation unclear. I 
would suggest changing the testing metrics to either root mean squared error or mean absolute 
error, which can both be in meters instead of meters squared. 
We agree that using the root mean squared error (RMSE) makes the physical interpretation of the 
error clearer, and more straightforward. As suggested, we replaced the MSE with the RMSE both 
in the manuscript and in the supplementary material, and in the text (see lines 251-253, 262-263, 
342 and 380) as well as in the figures (Fig. 6, Fig. 8, and Fig. S6). 



 
It's also not clear to me why you consider the MSE only for water depths larger than 0.1 m. This 
would make more sense for determining a spatial metric, which might be strongly influenced by 
those small values. But I would keep the regression metric (whichever you end up considering) 
evaluated over the whole domain, without thresholds. 
Indeed, a justification for this choice was missing. This choice was motivated by the combinations 
of (1) excellent predictions in the cells with target flood levels below 0.1 m (with CSI values for 
event P19-1 and P46-1 of respectively 0.98 and 0.97 in Zurich, and as shown in the violinplots of Fig.5); 
(2) there is a large imbalance in the water levels as shown in the pie charts in Fig. 5 (with target 
flood map cells below 0.1 m representing respectively 85% and 81% of all cells in Zurich); and (3) 
the threshold of 0.1 m is often used in urban pluvial flood mapping as it is considered to be the 
water level at which damage starts to occur (Kaspersen et al., 2017). Similar results apply for 
Luzern and Singapore as shown in (1) the violinplot in Fig. 7 and (2) the pie charts in Fig. 7. To 
address this imbalance, we have focused on the evaluation of the RMSE (previously MSE) in the 
analysis of the results. However, the RMSE for all cells is also provided for Zurich and shows that 
the RMSE for all cells is between 2 and 3 times lower than the RMSE0.1. A justification for this 
choice was added accordingly in lines 255-263: ‘Furthermore, the model accurately identifies 
cells below 0.1 m (Fig. 5). The critical success index (CSI), which measures the accuracy of the 
predictions, is defined as the ratio of correctly identified cells (i.e. true positives, TP) to the sum of 
correctly identified cells, missed target cells (i.e. false negatives, FN), and incorrectly identified 
cells (i.e. false positives, FP):  
CSI = TP/(TP + FN + FP) 
The CSI values for P19-1 and P46-1 are respectively 0.98 and 0.97. Additionally, the majority of the 
cells in the target flood maps fall below the 0.1 m threshold, representing respectively 84.6% and 
80.8% of all cells (Fig. 5). To address this imbalance and evaluate the prediction performance of 
the model above the critical 0.1 m wet threshold (Seleem et al. 2023, Skougaard et al., 2017), we 
also evaluated the RMSE values for cells exceeding 0.1 m in the target flood maps. The RMSE 
values for wet cells are respectively 55.9 x 10-3 m and 46.8 x 10-3 m’. 
 
Moreover, you should include some metric to assess the spatial accuracy, for example with the 
critical success index, which was used in several previous studies (e.g., Löwe et al., 2021; do Lago 
et al., 2023; Bentivoglio et al., 2023). Please also define all the metrics you employ before you 
discuss the results. 
The assessment of spatial accuracy was measured by the precision score. However, we agree with 
the reviewer that the use of a metric that is common across various studies is more valuable. We 
have therefore replaced the precision score with the critical success index and defined the metric 
in lines 255-258. The replacements can be found in lines 303-304, line 343 and lines 380-381. 
 
I think sections S1 and S2 can be merged within the main text, since they both include some useful 
information and they are not that long. 
We agree with the added value of incorporating some information currently in the supporting 
material into the manuscript. Specifically, we brought the sections S1 and S2 in the revised 
version of the manuscript. Section S1 was merged to the manuscript in lines 127-131: ‘The output 
of the RNN is then scaled by the normalized accumulated rainfall. This multiplicative scaling 
ensures that the rainfall forcing from the RNN is proportional to the accumulated rainfall, resulting 
in zero forcing when there is zero rainfall. The scaling is defined for rainfall event i as:   
𝑆௜ =

௉೔,ೌ೎೎

௉೙೚ೝ೘
, with 𝑃௜,௔௖௖ =  ∑ 𝑃௜,௧௧  and 𝑃௡௢௥௠ =  ∑ 𝑃௠௜௡,௧௧  where t is the time step and Pmin refers to 

the rainfall event with minimum accumulated rainfall in the training set’. 
Section S2 was merged to the manuscript in lines 195-203: ‘First, the rainfall events must be 
partitioned in a way that ensures independence among training, validation, and testing rainfall 



events, with respective proportions of 67%, 11% and 22%. Then, the patch characteristics (i.e., 
patch location and patch augmentation combinations) are randomly divided into training (90%) 
and validation (10%) sets. Lastly, some of the training data, consisting of the combination of both 
patch characteristics and rainfall events, are allocated to the validation dataset. Following this 
workflow, the data in the training and validation sets are allocated in an 80%-20% ratio. This 
partitioning strategy ensures that the testing rainfall events remain unseen by the model until 
evaluation, thereby maintaining the validity of the rainfall generalizability assessment. 
Consequently, the validation set includes the following combinations of data: (1) new rain and 
new terrain patch, (2) training rain and new terrain patch, and (3) new rain and training terrain 
patch’. 
 
I also think Table S1 should be included in the main manuscript as it shows a valuable comparison 
with another model, which is generally lacking in the rest of the paper. On this regard, I believe 
your paper would benefit by comparing with the study from Guo et al. 2021, which you cite several 
times. You also state that you outperform this model (line 350), so I would add a longer analysis if 
you want to claim that, comparing for example diƯerent metrics over the whole test dataset, on 
both models. 
We would like to thank the reviewer for their suggestion. However, we would like to keep our 
manuscript's focus on our model, its applications, and its performance, rather than doing a 
comparative analysis with other models. Thus, we believe that it is best to keep Table S1 (now 
Table S3) in the supplementary material. However, we would still like to keep a broad comparison 
that can convey the essential aspects that demonstrate the improvements compared to a similar 
single-batch-based model. To support this assertion, we have included a reference to Fig. S4 in 
line 405. As such, the primary emphasis of our study lies in evaluating the model's generalizability 
to diƯerent terrains while eƯectively communicating improvement through Table S1 (now Table 
S3) and Fig. S4 without the need for additional metrics or analyses across the entire test dataset. 
 
Specific comments: 
Line 6: it is not clear what you refer to with contextual information. This becomes more clear only 
later on in the paper, but since it's one of your main improvements I would try to clarify it better 
also in the abstract. This idea of "context" also emerges when you describe your model in section 
2. In a similar fashion, I would clarify better what you mean by context. For example, in line 76 "... 
extract and combine the information from the high-resolution local patch, its context and the 
rainfall times series to emulate the corresponding flood map" the term context seems very 
generic. You could use the notion of multi-scale spatial features (that you use in line 79) to help 
you clarify (or substitute) your notion of context. 
We thank the reviewer for pointing this issue out. We agree and revised the text accordingly in line 
9 and line 97 by replacing the word ‘context’ with ‘surrounding area’; in line 81 by clarifying 
‘contextual information from the surrounding terrain’ and in line 95 by clarifying ‘surrounding 
terrain (or context)’.  
 
Line 54: I would add in the patch-based methods also the CGAN from do Lago et al. (2023). 
We added the reference to this paper in line 55 and have included it in the new paragraph of the 
introduction discussing the recent developments in DL in urban pluvial flood mapping.  
 
Line 71: I would add at least a reference here. 
We added a reference to the paper from Sirinukunwattana et al. (2018) that compares diƯerent 
multi-scale approaches with a single-scale approach for medical image segmentation (in line 89 
of the ‘track change’ manuscript). 



 
End of introduction: not necessarily needed but you could add a paragraph that specifies how the 
rest of the paper is structured. 
We thank the reviewer and appreciate the suggestion, but we prefer not to add this paragraph. 
Instead, we have split the last paragraph into two paragraphs to underscore the succinct outline 
of the study.  
 
Line 103: you mention that you include an RNN because it allows you to model rainfall for diƯerent 
events' duration, yet you only consider events of 1 hour. Moreover, depending on the type of RNN 
you are using (which is not clear from the architecture) you might have a number of outputs which 
depend on the length of your input sequence, despite it is true that your RNN in theory works with 
any input length. How would you deal with input hyetographs that have diƯerent durations? 
We agree with the reviewer that the manuscript was missing an explanation of the feasibility of 
using the model for rainfall events longer than 1 hour. To test that the RNN could deal with input 
hyetographs that have diƯerent durations, we included some of the rainfall with zero-padding as 
detailed in lines 234-236 of the manuscript: ‘To ensure the model's equivariance to zero-padding 
and its ability to handle rainfall events of diƯering durations, we randomly selected three rainfall 
events with varying mean intensities and introduced random zero-padding at the beginning and 
end of these events. Lastly, we introduced an event with zero rainfall and a corresponding flood 
map showing no flooding.’. We revised Fig. 3 accordingly, to showcase the zero-padded events, as 
well as the event with zero rainfall.  
 
Figure 2: I would add a reference to the more complete version of the architecture that is in the 
supplementary material, as it helps clarifying how do the scaled dot-product attention and the 
multi-context fusion work. 
We thank the reviewer for this suggestion. The title of Fig. 2 was changed accordingly, to include 
a reference to Fig. S1: ‘A more detailed schematic of the architecture is provided in Fig. S1’. 
 
I would also specify somewhere (and not only in the manuscript) that you don't only take the DEM 
as input, but also other several ones (despite obtained from the DEM). 
The clarification was included accordingly both in the manuscript and in the supplementary 
material. In line 110 of the manuscript, we clarified: ‘The multi-scale image patches, consisting of 
the terrain features derived from the DEM, are fed to convolutional encoders that are composed 
of stacked convolutional layers and pooling layers.’; and in the title of Fig. S1 in the supplementary 
material, we added: ‘The 6 channels of the input images are the terrain features derived from the 
DEM: DEM, mean curvature, aspect (sine and cosine), depth of the sinks and the slope (in 
radians).’ 
 
Line 107: I think that section S1 can be merged with section 2.5, since it is quite small and would 
help understanding right away what the normalized accumulated rainfall is. 
We agree with this suggestion. We found section 2.4 to be a better fit and merged section S1 as 
follows (lines 127-132): ‘The output of the RNN is then scaled by the normalized accumulated 
rainfall. This multiplicative scaling ensures that the rainfall forcing from the RNN is proportional 
to the accumulated rainfall, resulting in zero forcing when there is zero rainfall. The scaling is 
defined for rainfall event i as:  
𝑆௜ =

௉೔,ೌ೎೎

௉೙೚ೝ೘
, with 𝑃௜,௔௖௖ =  ∑ 𝑃௜,௧௧  and 𝑃௡௢௥௠ =  ∑ 𝑃௠௜௡,௧௧  where t is the time step and Pmin refers to 

the rainfall event with minimum accumulated rainfall in the training set. We normalized the 
scaling in order to avoid vanishing or exploding gradients issues. Ultimately, this procedure led to 
a model with better performance (Table S2).’ 
 



Section S1: it is not clear if Pmin refers to the event with the least accumulated rainfall for all 
simulations (training and testing) or just the training ones. 
This clarification was missing and was added in the text accordingly (lines 130-131): ‘rainfall event 
with minimum accumulated rainfall in the training set’. 
 
Line 108: adding the adjective "locality-aware contextual" to the output of the attention, makes it 
seem like there is another operation in between. Consider removing it for clarity. 
We have rephrased lines 134-135 to: ‘Lastly, the scaled RNN output is concatenated with the 
locality-aware features extracted from the scaled dot-product attention.’. We have kept the 
adjective ‘locality-aware’ to provide an explanation of the eƯect of the scaled-dot-product 
attention on the features, which we found to be lacking otherwise.  
 
Line 110: please define what you consider as upsampling layer. 
We have defined what we consider as an upsampling layer in lines 135-136: ‘the decoder consists 
of stacked upsampling layers, each comprising one deconvolution (convolutional transpose) 
layer followed by two convolution layers.’ 
 
Line 135: I assume that the upscaling is done via a sort of mean pooling, but in the text it's not 
clear if you are using another strategy. 
We thank the reviewer for pointing out that the upscaling method was missing. This was clarified 
in lines 105-107: ‘To reduce computational costs, context images are rescaled to the same size as 
the local patch (256 x 256) using Lanczos downsampling filters.’ 
 
Line 147: I suppose you mean that the model should be equivariant to rotations, i.e., a rotation of 
the input should result in an equivalent rotation of the output. 
We would like to kindly thank the reviewer for noticing this mistake. We replaced the wording 
accordingly in line 175: ‘The model should be equivariant to rotation and flip transformations. 
 
It would be interesting to also see what is the eƯect of adding this data augmentation to your 
training dataset (either in the results section or in the supplementary material). 
In our study, the eƯect of adding the data augmentation mainly allows to have the same amount 
of training data as in similar studies (e.g. 10,000 patches in Guo et al, 2021 and Seleem et al., 
2023) while avoiding large patch overlaps. This allows for more independent training and 
validation patches. Another crucial consideration is related to a scenario where the model would 
be trained in a city with a predominant slope and flow direction. The data augmentation is 
important in this case because the model may learn biases that do not accurately reflect flow 
accumulation otherwise. For example, in a city with a north-south slope, the model might learn 
that water always accumulates on the lower boundary of the image. We have verified this by 
training a model with an architecture identical to the one described in the manuscript but 
adopting a patch sampling procedure similar to the one from previous studies (Guo et al., 2021; 
Seleem et al., 2023), and testing the model on the city of Zurich, with and without flipping and 
rotating the city. The procedure and results are detailed in section S1: ‘We trained a model with 
identical architecture to the one described in the manuscript but adopting a patch sampling 
procedure similar to the one from previous studies (Guo et al., 2021; Seleem et al., 2023). We 
randomly sampled 10’000 patches without patch overlap threshold, with minimum study area 
coverage of 10% for each individual patch and without data augmentation, i.e. no flip and 
rotations of the patches. The training and validation losses of the model trained with this 
alternative patch sampling procedure are reported in Table S1 and suggest a good performance 
of the model. However, after further analysis of the model performance, it appears that the model 
is overfitting. In fact, we evaluated the model under two conditions: (1) using the city of Zurich as 



input, (2) using the city of Zurich with some changes in orientation as input (Table S1). For the 
latter, we tested the model on two orientation changes (randomly selected; Zurich rotated by 90° 
and Zurich flipped and rotated by 180°) for the rainfall event P46-1. While the city on which the 
model is tested is identical to the one used to train and validate the model, the orientation of the 
city is modified. From the metrics reported in Table S1, we see that the model performs well in 
Zurich when the city’s orientation is not modified (MSE = 0.08·10-3 m2 and RMSE0.1 = 18.2·10-3 m), 
but that the performance drops when the input city is flipped and rotated, with an MSE in the order 
of 100 times the MSE for the city without flips and rotations, and an RMSE0.1 in the order of 13 times 
the RMSE0.1 for the city without flips and rotations. This suggests that the model is overfitting to 
the training patches.’ 
 
Line 156: normalization and min-max scaling are not equivalent. Min-max scaling is a type of 
normalization. Please clarify it in the text. 
The text  was modified accordingly in line 185: ‘Lastly, all multi-channel image patches are 
transformed through min-max scaling.’ 
 
Sections 4 and 5.1 can probably be merged with section 3. 
We thank the reviewer for the suggestion. We have carefully considered various structures for the 
manuscript to ensure a clear flow of the analysis conducted in the study. The current structure 
appeared to be the most coherent and eƯective one. We would therefore prefer to keep the 
structure as it is. 
 
Lines 210-211: the shape notation seems to range from 1 to 9 instead of from 1 to 3, cfr. Fig. 3. In 
general, the notation $P_ms$ seems confusing at times. 
We kindly thank the reviewer for bringing this typo to our attention. The manuscript has been 
corrected in line 245: ‘Pm-s’. We realize that the missing hyphen in the pre-print could have led to 
confusion, but we believe that this has now been rectified.  
 
Figure 5: I am not convinced by the overlapping of pie charts and violin plots. I would either 
separate them in two figures so that the pie chart becomes clearer or improve the legend for the 
pie chart. 
We thank the reviewer for sharing this suggestion. We have enhanced the visual separation 
between the pie charts and the violinplots by isolating the pie-charts within a rectangle with 
borders in both Fig. 5 and Fig. 7. Additionally, and following the suggestion of the reviewer, we 
added the following clarification in the title of the figure: ‘The pie charts illustrate the proportion 
of cells in each water depth range in the target flood maps. The water depth ranges are indicated 
by diƯerent shading levels: lower water depths are represented by more transparent colors, while 
higher water depths are depicted with darker colors.’ 
 
Lines 230-237: I think Table S1 should be included in the main manuscript as it shows a valuable 
comparison with another model, which is generally lacking in the rest of the paper. 
As detailed above, we would like to keep our manuscript's focus on our model, its applications, 
and its performance, rather than doing a comparative analysis with other models. We would 
therefore like to keep Table S1 (now Table S3) in the supplementary material to the manuscript. 
 
Line 245: you mention that the resolution for Singapore is 2m. Does this mean that the large-
scales are at 4 and 8 meters now? Shouldn't this aƯect the performance of your deep learning 
model since you are capturing diƯerent processes now? 



Yes, the 2 m resolution for Singapore does indeed mean that the large scales are 4 m and 8 m now. 
This has been clarified in lines 290-291: ‘meaning the multi-channel image patches for Singapore 
have resolutions of 2 m, 4 m and 8 m.’ 
Additionally, the fact that it did not aƯect the model’s resolution has been emphasized and 
discussed in lines 295-296 as well as in lines 308-310: ‘Despite the diƯerences in terrain, and 
especially the representation of the built environment in the DEMs and the spatial resolution, the 
model broadly captures the areas of water accumulation and the flood hazard levels in both new 
cities.’ (lines 295-296) and ‘Despite the more pronounced terrain diƯerences between Zurich and 
Singapore and the diƯerent spatial resolutions of the terrain data, with Singapore having a 2 m 
DEM and both Zurich and Luzern having 1 m DEMs, the CSI values indicate that the model's 
performance is similar in Luzern and Singapore.’ (lines 308-310).  
 
Section 6.1.1: did you also keep the same learning rate? Generally a high learning rate might cause 
your model's weights to deviate substantially from the pre-trained model. 
Indeed, the learning rate was maintained at 0.0001, which is not regarded as a high learning rate. 
This choice prevents weights from deviating substantially from the pre-trained model. The 
retraining process was completed in less than 15 epochs for both Luzern and Singapore. 
 
Figure 7: I would specify that this figure is using the transferred model. 
We agree with the reviewer that the figure’s title was missing the information that the results were 
related to the model using transfer learning. The title of Fig. 7 was changed as suggested by the 
reviewer: ‘Violinplot of the simulation error in (a.) Luzern and (b.) Singapore, using the models 
retrained for the event P31-2 in each city respectively.’ 
 
Lines 367-368: I got a bit confused with the term diƯerent topographical features. You could 
maybe use some diƯerent term such as "a broader variety of topographical features". 
We kindly thank the reviewer for bringing this lack of clarity in the formulation to our attention. 
Following the suggestion, we revised the text accordingly in line 421: ‘trained on a city that 
presents a broader variety of topographical features’. 
 
Lines 368-369: do you have any supporting data for this claim? I don't recall seeing in the 
manuscript any analysis on the amount of overlapping or over-sampling. 
The amount of overlapping was demonstrated in Fig. S3 in the supplementary material. We 
noticed that a reference to this figure was missing in line 423, which has now been added. 
Furthermore, the text in lines 368-369 of the pre-print to which the reviewer refers are related to 
the text in lines 180-184 of the ‘track change’ version of the manuscript. The rationale behind this 
claim is that if the overlap between the training and validation patches is too important, the two 
sets are not independent anymore. This has been added in a discussion in section S1, with 
supporting analysis in Table S1. A reference to section S1 was also added in line 423.  
 
Lines 386-392: I am not sure this analysis adds much to the discussion, though I agree that there 
is a lack of a common benchmark dataset. 
We thank the reviewer for their comment, but we see this paragraph as relevant and important to 
the manuscript. 
 
Maybe consider also merging discussions and conclusions since there are some overlaps and the 
conclusions themselves are not too long. 
We appreciate the reviewer’s suggestion, but we would prefer to maintain the current structure. 
This allows to have a clear separation between the discussion points and the concluding remarks.  
 



Technical corrections: 
line 43: there seems to be an extra "(" 
We could not find the extra ‘(‘ to which the reviewer refers.   
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Reviewer 2:  
This paper proposes a new machine learning architecture for predicting pluvial flood maps with 
the aim of achieving better transferability of the models between catchments. The authors also 
explore the value of transfer earning when applying the model to a new city. The paper is generally 
interesting and the suggested approaches are quite innovative. I do however have several major 
criticisms that I think should be addressed before publishing.  
We would like to thank the reviewer for the thoughtful evaluation of our manuscript and the 
constructive feedback provided. We have addressed them in detail in the revised version of the 
manuscript and hereby improved the manuscript.  
 
Major comments:  
These are: 
The paper makes a number of methodological innovations, but their value is not demonstrated 
anywhere. How do we know if e.g. the combination of three encoders is responsible for the more 
spatially balanced prediction errors than Guo 2021 or the RNN time series encoder with 
normalisation? I think some comparisons between old and new model architecture that help us 
understand what has actually improved + why, should be included in the paper. The transfer 
learning results could be shortened to make space in the paper. 
We kindly thank the reviewer for this comment. We have addressed it through various revisions in 
the manuscript. First, we have included a comparison of the losses of models with isolated and 
diƯerent methodological innovations in Table S2 of the supplementary material. Additionally, we 
have detailed the reason for introducing the scaling of the RNN outputs in lines 126-132 and in 
lines 234-236. This scaling was introduced to prevent non-zero forcing from the RNN when there 
is zero rainfall. However, as mentioned hereabove, we would like to avoid a lengthy model-to-
model comparison and keep our manuscript's focus on our model, its applications, and its 
performance.  
 
The use case of the approach is not fully clear to me. I can agree with climate impact studies, 
while I think that the value of urbanisation studies has not been demonstrated. I think the latter 
would require implementing some changes in the terrain or the runoƯ behaviour of the same city 
and testing if the model can still predict the flood maps. This can be addressed by either clarifying 
the framing in the introduction/discussion, or by including additional results. 
We appreciate the reviewer bringing this issue to our attention. We have revised the framing in the 
discussion of the revised manuscript, as suggested by the reviewer, in lines 447-448: ‘The lack of 
representation of the drainage network could represent a limit to the transferability of the model 
to cities where the drainage network plays a significant role, or in urbanization scenarios where 
the drainage capacity is changed’. 
 
Like R1, I also think that some of the supporting information clearly belongs into the paper 
(Section S2, Take S1) 
We agree with the added value of incorporating some information currently in the supporting 
material into the manuscript. Specifically, we have brought sections S1 and S2 in the revised 
version of the manuscript (respectively in lines 126-132 and lines 196-203). 
 
Detailed comments: 
Line 58-66: Another approach to including context information is to engineer features that provide 
this information on the pixel level. For example providing flow accumulations or similar as input. 
I'm lacking a sentence on why you think this approach is not good enough and some references 



to related work (e.g. Pham 2020, Zhao 2020, there might be newer work that provides better 
examples) 
We kindly thank the reviewer for bringing this gap to our attention. Though using engineered 
features as input to the model was tested, this had not been outlined in the manuscript. In fact, 
we have tested the use of flow accumulation, or similar information, as input to the model and we 
found that this did not lead to the best performing model. We have analyzed FLSLO (flow 
accumulation weighted by slope; found to lead to best performing model in Löwe et al., 2021) to 
understand why this was the case and found that one possible reason for this is the high 
correlation of FLSLO with other terrain variables such as mean curvature and slope (Spearman's 
rank correlation coeƯicient of FLSLO with mean curvature and slope are respectively -0.32 and -
0.72 in Zurich), while these terrain variables provide complementary information (Spearman's 
rank correlation coeƯicient of mean curvature and slope is 0.02 in Zurich).  
Another possible reason why FLSLO was not increasing our model’s performance is related to the 
scaling procedure. We tested our model using FLSLO both with city-level scaling and patch-level 
scaling. The former procedure leads to input patches with very diƯerent scales while the latter 
procedure leads to the loss of information from the surrounding areas, as detailed in lines 187-
194: ‘We also tested its application across the entire study area, i.e., extracting patches after 
normalizing the feature images of the full study area, similar to previous studies (Guo et al., 2021; 
Löwe et al., 2021). While this could help preserve some information about the position of the 
patch in its larger context, it also forces patches to have values falling in a very small range (e.g., 
full study area DEM with values between 0 and 1, and DEM patches with values between 0.455 
and 0.495), therefore considerably decreasing the performance of the model.’) 
We agree with the reviewer that a discussion on the topic was missing and included a detailed 
explanation in the discussion in lines 424-439: ‘We evaluated the model using various 
combinations of terrain features used in previous studies (Guo et al. 2021, Löwe et al. 2021) such 
as DEM, mask (a binary image of the catchment area), curvature (plan, profile and mean), aspect 
(in radians and degrees), depth of the sinks, slope (in radians and degrees), flow accumulation 
(standard, cuberoot transform and weighted by the slope in each cell) and the topographic 
wetness index (standard and squareroot transform; Löwe et al., 2021). We evaluated only DEM-
derived features as other features such as imperviousness or the design of the drainage network 
might not be freely and easily available. However, if these features influence the hydraulics and 
hydrology in the training flood maps, their impact will be indirectly captured in the model's 
predictions. From initial tests (not shown), we found that feeding the model with the DEM, mean 
curvature, aspect (sine and cosine), depth of the sinks and the slope (in radians) helped the model 
learn best. Unlike (Löwe et al., 2021), we found that using the cuberoot transform of flow 
accumulation weighted by slope (FLSLO) did not lead to the best performing model. One possible 
reason is that FLSLO is highly correlated with other terrain variables (e.g. Spearman's rank 
correlation coeƯicient of FLSLO with mean curvature and slope are respectively -0.32 and -0.72 
in Zurich), while these other terrain variables provide complementary information (Spearman's 
rank correlation coeƯicient of mean curvature and slope is 0.02 in Zurich). Additionally, machine 
learning algorithms often perform poorly on inputs with very diƯerent scales (Géron, 2019). This 
could explain why using non-normalized FLSLO could not improve our model's performance, 
while normalizing FLSLO results in the loss of contextual information. Lastly, the terrain features 
that result in the best performing model may vary depending on the city, and diƯerent feature 
scaling methods could be considered’. 
 
Line 108: Section S1 belongs into the paper. Why is scaling applied to the RNN output (which will 
be in some latent space) and not the input? 
We agree with the reviewer that section S1 fits well into the paper, and we have moved it into the 
section 2.4 of the manuscript. Additionally, we have included a clarification for the motivation to 
scale the RNN output; this was motivated by preventing non-zero forcing from the RNN when there 



is zero rainfall. These were added as follows in lines 126-130: ‘The output of the RNN is then scaled 
by the normalized accumulated rainfall. This multiplicative scaling ensures that the rainfall forcing 
from the RNN is proportional to the accumulated rainfall, resulting in zero forcing when there is 
zero rainfall. The scaling is defined for rainfall event i as:  
𝑆௜ =

௉೔,ೌ೎೎

௉೙೚ೝ೘
, with 𝑃௜,௔௖௖ =  ∑ 𝑃௜,௧௧  and 𝑃௡௢௥௠ =  ∑ 𝑃௠௜௡,௧௧  where t is the time step and Pmin refers to 

the rainfall event with minimum accumulated rainfall in the training set.’ 
 
Line 142: the reason for including imperviousness in some of the other models is that it enables 
us to distinguish that some pixels generate more runoƯ than others. That is not related to the 
terrain features that you describe here. In fact, as far as I can see, you are relying on the "glass 
surface assumption" when calculating runoƯ. It would be good to clarify this 
We kindly thank the reviewer for bringing this point to our attention. We had clarified the use of a 
uniform infiltration rate in space in line 444 of the manuscript, and justified it as follows in lines 
447-450: ‘On the other hand, the lack of realistic infiltration rates should not be a limitation as 
urban pluvial floods occur in response to heavy rainfall that becomes saturated and behave as 
impervious surfaces (Hollis, 1975; Leopold, 1968)’. Additionally, if these features influence the 
target flood maps (i.e. if these are accounted for in deriving the training flood maps, which is the 
case in our study even though the representation is simplified as the imperviousness is uniform), 
then the model should non-explicitly learn to account for it. We agree with the reviewer that this 
justification was missing in the manuscript, and we have added it in lines 427-430: ‘We evaluated 
only DEM-derived features as other features such as imperviousness or the design of the drainage 
network might not be freely and easily available. However, if these features influence the 
hydraulics and hydrology in the training flood maps, their impact will be indirectly captured in the 
model's predictions.’ 
 
Line 153: Actually, the UFlood paper makes quite a big eƯort to avoid overlaps between training 
and validation patches. You can criticise it for using the validation data for both test and 
validation, but the validation data were fully independent from the training data 
We thank the reviewer for noticing this error. We had confused the reference with the one from 
Seleem et al. (2023) and have implemented the change in the revised manuscript (line 182). 
 
Line 159: This is very interesting. It implies that the convolution kernels must be learning 
diƯerences between the features, not the absolute values. I think this should be elaborated more 
in the paper. Do we also see better performance in the results for Zurich? Could we get the same 
or better results by using localized terrain data (terrain minus minimum elevation in the patch)? 
We highly appreciate the reviewer’s interest in these findings. To showcase the changes in 
performance for a model using features scaled on a city scale, we have trained a model with the 
exact same architecture, data pre-processing and hyperparameters as the ones from the model 
presented in the manuscript, but with the exception that the features were scaled at city level. The 
training and validation losses are reported in Table S2, to which a reference was added in line 193 
of the ‘track change’ version of the manuscript.  
The results presented in the manuscript were obtained using localized terrain data (i.e. 
normalization at the patch level), using min-max scaling, which is close to the reviewer’s 
suggested normalization. The type of normalization chosen can be viewed as a hyperparameter 
of the model, and we expect that it should not change the performance of our model significantly, 
as long as it is performed on the patch-level. This could be evaluated by retraining multiple models 
with diƯerent normalization techniques, but we prefer not to include this in the paper as we want 
to avoid a model-to-model comparison.  



However, we have revised the manuscript in lines 438-439 to address the reviewer’s comment: 
‘Lastly, the terrain features that result in the best performing model may vary depending on the 
city, and diƯerent feature scaling methods could be considered’. 
 
Line 214: How do you define wet cells? Based on the labels, predictions or both? 
We thank the reviewer for bringing this lack of clarity to our attention. Wet cells were defined as 
cells above the 0.1 m threshold based on the labels (i.e. target flood maps). A clarification was 
added accordingly in lines 259-260 and line 263: ‘in the target flood maps’. 
 
Line 302: Don't we see in the figures that the models even after transfer learning perform quite a 
bit worse than in Zurich, and therefore we have not yet succeeded in creating models that can be 
applied in other cities? 
We kindly thank the reviewer for their question. The retrained models perform indeed a bit worse 
in Luzern and Singapore than the model trained and tested in Zurich. However, the absolute 
median errors for the retrained model in Luzern and Singapore are below 0.1 m for target water 
depths of up to 1 m (except for event P46-1 in Luzern which has a median error of approximately -
0.15 m) and an absolute median error are below 0.2 m in cells with target water depths exceeding 
1 m (except for event P19-1 which has a median error of -0.22 m in Luzern and -0.33 m in Singapore). 
This is a good performance that shows that the retrained model can be applied in the respective 
cities, even if the performance is not exactly as good as for the model trained and tested in Zurich.     
 
I'm addition, in Figure 7 I'm missing the results for Luzern and Singapore without transfer learning, 
so that we can see the impact of the transfer.  
We agree with the reviewer of the added value of a figure showing the same results as in Fig. 7 for 
the model without transfer learning. We have added it in Fig. S5 in the supplementary material 
and have referred to it in the revised manuscript in line 340 and line 378.  
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