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Abstract. The evaluation of model performance is an essen-
tial part of hydrological modeling. However, leveraging the
full information that performance criteria provide, requires a
deep understanding of their properties. This Technical Note
focuses on a rather counterintuitive aspect of the perhaps5

most widely used hydrological metric, the Nash-Sutcliffe Ef-
ficiency (NSE). Specifically, we demonstrate that the over-
all NSE of a dataset is not bounded by the NSEs of all its
partitions. We term this phenomenon the "Divide and Mea-
sure Nonconformity". It follows naturally from the definition10

of the NSE, yet because modelers often subdivide datasets
in a non-random way, the resulting behavior can have un-
intended consequences in practice. In this note we therefore
discuss the implications of the "Divide and Measure Noncon-
formity", examine its empirical and theoretical properties,15

and provide recommendations for modelers to avoid draw-
ing misleading conclusions.

1 Introduction

Measuring model performance is a foundational pillar of en-
vironmental modeling. For instance, in order to assure that20

a model is suited to simulate the rainfall-runoff relationship,
we have to test how “good” its predictions are. Hence, over
time, our community has established a set of performance
criteria that cover different aspects of modelling. We use
these criteria to draw conclusions with regard to the evalu-25

ation and the model. Therefore, criteria should exhibit con-
sistent behaviour that follows our intuitions. However, when
we use these criteria it is important to keep in mind that each

one has specific properties — certain advantages and disad-
vantages — that are relevant for interpreting results. 30

The Nash–Sutcliffe Efficiency (NSE; Nash and Sutcliffe,
1970) is the perhaps most used metric in hydrology. In this
contribution we show that the NSE exhibits a counterintu-
itive behavior (which, as far as we can tell, is so far undoc-
umented), captured by the following exemplary anecdote. A 35

hydrologist evaluates a model over a limited period of time
and obtains an NSE value of, say, 0.77 (Fig. 1, blue parti-
tion). Then, a large event occurs and an isolated evaluation
for that specific event results in the slightly worse model per-
formance of, say, 0.75 (Fig. 1, orange partition). One might 40

then expect that the overall performance (i.e., a model evalu-
ation over both the the blue and the orange partitions) should
be bound by the values obtained during evaluation over each
partition separately. However, the NSE over the entire time
series in this example is 0.80 (Fig. 1, purple partition), which 45

is higher than either partition.
We refer to the phenomenon that the overall NSE can be

higher than the NSEs of data subdivisions as the Divide and
Measure Nonconformity (DAMN). A natural question that
follows from here is: What is the cause for the “DAMN be- 50

havior” in the example? To give an answer it is useful to con-
sider the formal definition of the NSE:

NSE = 1−
∑T

t=1(ot − st)
2∑T

t=1(ot − ō)2
, (1)

where o are observations, s are simulations, t is an index
variable (usually assumed as time), T is the overall number 55

of time-steps the NSE is computed over, and ō is the average
of the observations.



2 Klotz et al.: The Divide and Measure Nonconformity

NSE 0.77 NSE 0.75

NSE 0.8

0

50

100

0 50 100 150 200

time (d)

st
re

am
flo

w
 (m

3 /s
)

obs

sim

Figure 1. Example of the part–whole relationship within the Divide and Measure Nonconformity. The blue data partition has an NSE of
0.77, the orange data partition (that contains the peak event) has an NSE of 0.75. However, the overall NSE is 0.8 (violet partition), which
is larger than both individual partitions.

This is the standard definition of the NSE and it contains
several different interpretations for the source of the “DAMN
behaviour”. One interpretation is that the new event shifted
the mean of the observational data (which the NSE uses
as a reference model for comparisons; Schaefli and Gupta,5

2007) so that the observational mean became a worse esti-
mate for the first partition (blue) as a portion of the super-
set (purple). Another way to explain this behavior is that the
NSE gives very different results for partitions with differ-
ent variability. The variance of the observations in the sec-10

ond (orange) partition is higher than the variance of observa-
tions over the superset (purple), meaning that the denomina-
tor in the NSE calculation is higher, if the numerator does not
change. One can imagine taking the squared error term (the
numerator of the NSE metric) over only the second (orange)15

partition, but using the observational variance (the denomina-
tor of the NSE metric) from the whole (purple) time period.
This would result in a value higher than the actual NSE value
in the second period (orange).

The reflection from the previous paragraph concludes our20

motivational introduction. In what follows we provide a more
in-depth exploration of the DAMN. We structure our exposi-
tion as follows: The remainder of the introduction discusses
related work (Sect. 1.1). Afterwards, we present our case
study. Therein, we show that the overall NSE can only be25

equal or higher then the NSE values of all possible parti-
tions (Sect. 2 and Sect. 3; Supplement S2 provides a cor-
responding theoretical treatment showing that this behavior
logically follows from the definition of the NSE). In the last
part we present a short discussion of the implication of our30

work (Sect. 4) and our conclusions along with some recom-
mendations for modellers (Sect. 5).

1.1 Related work

The NSE is so important to hydrological modelling that
there exist many publications that (critically) analyze its 35

properties (e.g., Schaefli and Gupta, 2007; Mizukami et al.,
2019; Clark et al., 2021; Gauch et al., 2023). Covering
the full extent of the scientific discussion is out of scope
for our Technical Note. Instead, we will mention the few
publications that are most relevant: Gupta et al. (2009) use a 40

decomposition of the NSE to show that the criterion favours
models that provide conservative estimates of extremes. In
contrast, our analysis provides a data-based view of how
the NSE behaves when data is divided or combined. There
also exists a line of work that focuses on the statistical 45

problems that arise with estimating model performance
in small and limited data settings that we often encounter
in hydrology (e.g., Lamontagne et al., 2020; Clark et al.,
2021). For example, Clark et al. (2021) demonstrate inherent
uncertainties of estimating the NSE and suggest using 50

distributions of performance metrics to understand the
inherent uncertainties. While their analysis focuses on the
difficulties of finding a hypothetical “true NSE value”, we
focus on a specific behavior that concerns the part-whole
relationship of the criterion. We thus view this research 55

avenue as perpendicular to ours. Lastly, we point to the
studies of Schaefli and Gupta (2007), Seibert (2001), and
more recently Duc and Sawada (2023), which argue that
the NSE is not necessarily well suited to compare rivers
that exhibit different streamflow variances. Indeed, one can 60

view the evaluation of multiple rivers as a form of assessing
multiple partitions (the same logic as in our introductory
example from Sect. 1 applies: Whether the mean of a time
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Figure 2. Toy example illustrating Simpson’s Paradox, showing
the relationship between the time spent studying and grades. Top:
The “global” evaluation of the data suggests a negative effect of
preparation time on the grade. Bottom: The “local” evaluation from
splitting students by exam class shows positive correlation between
study time and grades. Evaluators should account for both patterns
— the global and the local — depending on the purpose of the anal-
ysis. Adapted from Wayland (2018).

series is a better or worse estimator depends mainly on
variance of the observations).

Statistical paradoxes. Statisticians have coined many
paradoxes. In particular, the DAMN is closely related5

to Simpson’s Paradox (Simpson, 1951; Wagner, 1982).
Simpson’s Paradox illustrates how a positive statistical
associations can be inverted under (non-random) data parti-
tioning (Fig. 2). The DAMN can be seen as a special case of
Simpson’s Paradox, since it describes the behavior of model10

performance metrics when (non-random) partitions of the
data are combined (or, vice versa, when the data is divided
in partitions). Similarly, an amalgamation paradox (sensu
Good and Mittal, 1987) can be seen as more general form of
Simpson’s Paradox. It describes how statistical associations15

increase or decrease under different data combinations.
Hence, the DAMN can also be seen as a special case of an
amalgamation paradox, where the measured performance
can always only increase when we combine data, compared
to the lowest score found in the data subsets.20

Limited sample size. For model evaluation more data
typically helps. This also holds true for situations where
the DAMN is a concern, since the NSEs will behave less
erratic when more data is used (see Clark et al., 2021). 25

However, the DAMN as such is not a small-sample problem.
It will occur whenever we divide the data into situations
that have specific properties (e.g., when we divide the data
along the temperature, while having a model that has a
high predictive performance for low-temperature and low 30

predictive performance for high temperatures). For example,
the NSE remains susceptible to the DAMN independently
of how well we are able to estimate the mean (or variance)
of the data. That said, for the special case of time splits
(for a given basin) it is indeed possible to argue that the 35

occurrence of the DAMN is only due to limited data: If we
had unlimited data for each partition, the inherent correlation
structure (e.g., Shen et al., 2022) and the extreme value
distribution of the streamflow (e.g., Clark et al., 2021) would
not matter and our estimations of the mean (or variance) 40

would converge to the same value for each partition —
assuming no distribution shifts over time. Yet, sometimes
we are interested in the performance of a model on subsets
of the full available period, and for these cases no amount of
overall available data will save us from the DAMN. 45

Models with uncertainty predictions. With access to mod-
els that do not (only) provide point predictions, but richer
forms of prediction (say, interval or distributional predic-
tions), modelers get access to more model performance crite- 50

ria. Many of these criteria are evaluated first on a per sample
level (e.g., by comparing the distributional estimation with
the observed values) and then aggregated in a simple addi-
tive way (e.g., by taking the sum or the mean). Metrics based
on proper scoring rules — such as the Winkler Score (Win- 55

kler, 1972) for interval or the log-likelihood for distributional
predictions — or metrics derived from information theoreti-
cal consideration (such as the cross-entropy) generally follow
this scheme and are therefore typically not susceptible to the
DAMN (see Supplement S2). 60

2 Methods

We conduct two distinct experiments. The first experiment is
purely a synthetic study. It examines how the overall NSE re-
lates to different NSE values of the partitions. The goal is to
empirically show that the overall NSE can be higher (but not 65

lower) than all of the individual NSE values of a partition.
In the second experiment, we make a comparative analysis
of the NSE and a derived “DAMN safe” performance crite-
rion. This experiment is based on real world data. Our goal
is to examine the implications of the DAMN for a particular 70

example. In the following subsections we explain both exper-
imental parts in more detail.
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2.1 Synthetic study

Our synthetic experiment demonstrates that the overall per-
formance of a model (as measured by the NSE) is in many
cases higher than what all situational or data split perfor-
mances would suggest. The setup is loosely inspired by5

Matejka and Fitzmaurice (2017): All data for the experiment
derive from a single gauging station (namely, Priest Brook
Near Winchendon (USGS ID #01162500), from Addor et al.,
2017).
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Figure 3. Exemplary depiction of the experimental setup. (a) For
each model evaluation the data is split into two parts by a runoff
threshold and three NSEs are computed: NSElow for data below the
threshold, NSEhigh for data above the threshold, and NSEall for all
data. (b) Then, the interval score is computed as the signed distance
of NSEall from the interval between the NSElow and the NSEhigh.

To generate simulations we (1) copied the streamflow10

observation data, (2) added noise to that observation data,
(3) clipped any resulting negative values to zero (to avoid
streamflow that is trivially implausible), and (4) further op-
timize the resulting streamflow values themselves to reach a
certain, prescribed NSE by using gradient descent. That is,15

we modify the data points of the simulation (which in itself
is just the observation with some noise) along the gradient
given our loss function — and until the warranted perfor-
mance (say, an NSE of 0.7) is reached. This allows us to
build simulations that have defined NSE values for the data20

partitions. Specifically, we partition the observed streamflow
into two parts: (1) “low-flows” that fall below a threshold,
and (2) “high-flows” that are at or above said threshold. We
set the threshold using a desired fraction of data being des-
ignated as low- or high-flows. For example: w = 0.2 means25

the 20% smallest streamflow values are contained in the low-
flow partition. We will refer to the NSE of the low-flows
as NSElow and the NSE of the high-flows as NSEhigh. We
fix low-flow performance to NSElow = 0.5 using the proce-
dure outlined above (for runs with other fixed parameters see30

Supplement S3 provides similar results for NSElow = 0.25
and NSElow = 0.75). From a technical standpoint it is arbi-
trary for our experiment, which of the two partitions has a
fixed performance. However, we chose the low-flow partition
since it is perhaps easier to think about what would happen35

if we have more or less high-flow data. We vary both w and
NSEhigh between 0.1 and 0.9. For each point of the result-

ing grid we have three NSE values: (1) NSElow, (2) NSEhigh,
and (3) the overall NSEall. We measure the practical effect
of the DAMN using the signed distance of NSEall to the 40

nearest edge of the NSEs of the partitions (either NSElow
or NSEhigh):

Is =


NSEall −NSEmin if NSEall ≤NSEmin

0 if NSEmin <NSEall <NSEmax

NSEall −NSEmax if NSEall ≥NSEmax

,

(2)

where NSEmin =min(NSElow,NSEhigh) and NSEmax =
max(NSElow,NSEhigh) as shown in Fig. 3. 45

2.2 Comparative analysis

Our comparative analysis shows the influence of the DAMN
by juxtaposing the behavior of the NSE with a derived per-
formance criterion. This criterion is probably the simplest
modification of the NSE that renders it “DAMN safe”. How- 50

ever, our intention with the new criterion is not to propose
a new metric for hydrologists (even if it could be used as
such). Rather, we want to introduce the criterion as a tool for
thought to reason about the DAMN.

The most straightforward NSE modification we found 55

is to use a fixed reference partition for the denominator
of the NSE. That is, instead of re-estimating the observa-
tional mean within the NSE for each (new) partition, we first
choose a reference split and then compute the estimated vari-
ance from it (we also explored other, more complex modifi- 60

cations, but found them to be less insightful. Supplement S1
provides an example of such an exploration). Given the sim-
ple nature of the modification, we refer to the “new” perfor-
mance criterion as Low Effort NSE (LENSE):

LENSE = 1−
1
T

∑T
t=1(ot − st)

2

1
TR

∑TR
t=1(ot − õR)2

, (3) 65

where t is the sample index (which can but does not neces-
sarily have to be a time index), ōR is the mean of the ob-
servations from a to-be-chosen reference partition, T are the
total number of timesteps in the evaluated partition, and TR
are the number of timestep in the reference partition. In a 70

certain sense, both, T and TR, are a result of the modifica-
tion, since the different partitions for computing the errors
and the observational variance make it so that the fractions
to not necessarily reduce.

The LENSE follows a straightforward design principle: 75

We use a reference set that is independent of the partition
to transform the right-hand side of NSE into a special case
of a weighted mean squared error. This principle makes the
LENSE “DAMN safe” because the denominator does re-
normalize the squared error for each partition using the same 80

constant (Supplement S2.3 and S2.4 provide the correspond-
ing formal proofs for the weighted mean squared error and
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the LENSE respectively). In practice, the only advantage of
the LENSE to using the MSE for expressing the model per-
formance would be that the LENSE provides a similar range
of interpretation than the NSE.

The choice of the reference partition largely determines5

its interpretation. If, for example, the mean is supposed to
be an estimate for the (true) mean of an underlying distri-
bution (like, for example, in Schaefli and Gupta, 2007), then
we should use as much data as possible to estimate it. In this
case, it would be logical to use all data for the estimation —10

i.e.: training (in hydrology we refer to this partition as the cal-
ibration set), validation (in hydrology this partition typically
does not exist or is subsumed into the calibration set), and
test (in hydrology we refer to this partition as the validation
set). If, on the other hand, we interpret the mean as a base-15

line model (like, for example, in Knoben et al., 2019), then
it makes sense to use just the data that was used for model
selection also for the estimation of the mean. One could also
use the test split as a reference and recreate the NSE (the cru-
cial difference is that it is not allowed to update the reference20

split if new data arrives). Since the most convenient choice
for such a reference split is the training (calibration) split,
we propose to use it for the canonical application of LENSE
(also, this split remains unchanged when new data arrives for
the model to be used in the future).25

The LENSE is robust against the DAMN by design. Thus
measuring its interval score with our our synthetic setup will
yield zero values everywhere. We did indeed try this as a
check, but do not show these results explicitly since very lit-
tle information is provided (we nevertheless encourage inter-30

ested readers to explore this by using the code we provide).
However, it is still insightful to compare how the LENSE and
the NSE behave. Specifically, we explore two aspects. To that
end we use the model and real-world data from Kratzert et al.
(2019). First, we show how the performance criteria com-35

pare when we evaluate them for the 531 basins from Kratzert
et al. (2019). Here, we evaluate NSE as in Kratzert et al.
(2019) and use the training period as reference partition for
LENSE. Second, we inspect the overall performance accord-
ing to the NSE and LENSE related to the corresponding per-40

formances of different hydrological years for an arid catch-
ment. We specifically chose an arid catchment here, since the
mean of the runoff varies there more considerably between
individual hydrological years. As before, we use the training
period as reference partition for the LENSE.45

For both parts of the comparative analysis we use the en-
semble Long Short-Term Memory network (LSTM) from
Kratzert et al. (2019) as hydrological models, but note that
the model choice is not of importance (for comparison, Sup-
plement S3.1 provides some example cumulative distribution50

functions for other models).

3 Results

3.1 Synthetic study

Based on our synthetic experiment we find that NSEall can
be outside of the range of the the NSEs spanned by the par- 55

titions (Fig. 4). Furthermore, the absence of negative inter-
val scores indicates that the lowest-valued NSE of all parti-
tions is a lower bound for NSEall, which we confirm with
theoretical considerations (Supplement S2). Similarly, the
existence of positive interval scores indicates that there is 60

no trivial upper bound for the NSEall below its maximum
of 1. We can also see that the interval scores tend to be
highest when the NSEs of the partitions are equal, that is,
NSEhigh =NSElow = 0.5. Intuitively from a statistical per-
spective, this makes sense: this is where the interval is the 65

thinnest — and due to the lower bound, the NSEall can only
be above or exactly equal. Interestingly though, the highest
interval score is only reached with the largest lower partition
we considered (90% of the data). Here, we do not only have
the thin interval, but this is also the situation where we would 70

expect that the mean of the high-flow data is the furthest from
the mean of the low-flows (since the mean of the low-flows
does not change much with the additional high-flows, while
the highest high-flows have a substantially higher mean than
the lower ones). Thus, when we introduce the high-flow data 75

into the NSEall computation it yields the largest difference.
Further, if we look at the overall pattern of interval scores

in Fig. 4, we can see that even if the overall performance is
relatively good (say, an NSEhigh of 0.7) the interval scores
(and hence the distances to a situational NSE value) can be- 80

come quite large. As a matter of fact, in terms of situational
performances the interval score is only some sort of best-case
scenario, since it only measures the distance to the better of
the score of the partitions.

3.2 Comparative analysis: NSE and LENSE 85

The comparison of the NSE and the LENSE for the LSTM
ensemble and the 531 basins from Kratzert et al. (2019)
shows that the LENSE tends to yield lower values than the
NSE, except for the best performing basins (Fig. 5). There,
the LENSE values are slightly higher than the NSE values. 90

However, since the performance on these basins is already
very close to the theoretical best value (which is 1 for both
criteria) the differences there are tiny.

For the yearly evaluation on an individual basin the NSE
can vary substantially (Fig. 6). We note first that the LENSE 95

exhibits less variations over the years than the NSE. Further,
we can see the overall LENSE is nicely enclosed within the
the values from the individual years — while the overall NSE
is not. For four years the NSE values fall below 0.0, and for
two of the four they are below −0.5. These values are of 100

particular interest, because the overall NSE is above 0.7. A
naive interpretation would suggest that the model degrades
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Figure 4. Interval scores Is as defined by Eq. (2). NSElow is set
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lower partition (x-axis) are varied between 0.1 and 0.9.

in performance in these years. However, a comparison to the
respective LENSE values indicates that what we see here is
largely an effect of the DAMN.

Another interesting phenomenon is that the NSE values
from three hydrological years are higher than the correspond-5

ing LENSE values. The worst LENSE values (-0.5) corre-
sponds to an NSE that is above 0.0, which is far away from
the supposed worst performance in terms of the NSE. This
suggest that the year had a relatively high streamflow vari-
ance, with a relatively bad simulation.10

To conclude, we re-emphasize that the purpose of the
LENSE is not to propose a new metric or to replace the NSE.
The performance values from LENSE should not be consid-
ered “more true” than those of the NSE. Rather, they show
different aspects of the model behavior that are in the data,15

but easily overlooked if one only focuses on the NSE alone.

4 Discussion

Some specific examples where modellers should consider
DAMN-like phenomena: (1) Approaches that rely on sliding
windows (e.g., Wagener et al., 2003). Here, one cannot de-20

rive the overall performance from the performances over dif-
ferent windows of the data, and NSE values calculated over
sliding windows might appear smaller than the ones calcu-
lated over longer time periods of the same data. (2) Aggre-
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Figure 5. The plot above shows the empirical cumulative distri-
bution functions of the NSE (black, dotted line) and the LENSE
(green line) for the 531 CAMELS basins and the LSTM ensem-
ble from Kratzert et al. (2019). The scatter plot below of the non-
cumulative relation between the NSE and the LENSE.

gating or comparing separate evaluation of different rivers — 25

for example, as was done by Kratzert et al. (2019). For basins
with low runoff variability, the mean is a better estimator than
for basins with high variability. Our analysis suggest that in
this case the relative performance does not necessarily sug-
gest model failure, but could also be related to the DAMN, 30

since the mean is a very strong baseline for the arid catch-
ment (which induces erratic NSE behavior). (3) Differential-
split settings that divide the hydrograph into low flows and
high flows (e.g., Klemeš, 1986). In this case, the low-flow
NSE can be prone to having low values because the mean is 35

a good estimator. Yet, high-flow NSEs will often suffer from
larger overall errors.

These examples represent settings where the DAMN ap-
pears very prominently. However, our findings generalize to
any study that draws conclusions about model performance 40

while using "DAMN-susceptible" metrics over different pe-
riods. For example, the Kling-Gupta Efficiency (KGE; Gupta
et al., 2009) exhibits similar empirical behavior to the NSE
(we do not show this explicitly in this note, but encourage
readers to explore it, e.g., by using our code, which provides 45

an implementation of the KGE for testing). That said, sim-
ple average-based metrics such as MSE are not subject to the
DAMN (see Supplement S2.2).
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Figure 6. Comparison of NSE and LENSE in an arid basin. The
colored dots show the performance for different hydrological years
in the validation period (the color indicates the magnitude of the
performance difference); the crosses show the respective perfor-
mances for the entire validation period. We truncated the values to
-0.5 to show the pattern more clearly. The relatively large downward
variability of NSE values exists because for some years the mean
becomes an extremely good estimate for the daily runoff within cer-
tain periods. The LENSE, on the other hand, does not recompute
the mean in the denominator for each validation year and has a sta-
ble estimation of the observational variance; see Eq. (3). It is there-
fore more stable and less susceptible to such outlier years.

Random partitions and data splitting. Data splitting is
common practice in machine learning and data analysis. To
our knowledge, the oldest records of data splitting go back
in the early 20th century (Larson, 1931; Highleyman, 1962;
Stone, 1974; Vapnik, 1991). These classical cases and the5

approaches that derived from them use random splitting. Al-
beit the DAMN can also occur with random subsets of the
data (our theory applies also there; Supplement S2) it is less
of a concern there, since for independent sampling the over-
all NSE value should not deviate too much from the NSE10

values of the partitions. The intuition here follows the one
given in our exemplary introduction (Sect. 1): In expectation,
the means of two random partitions provide the same refer-
ence models. In hydrology, there exist two common situa-
tional (i.e., non-random) data splits: (1) the spatial data-split15

between catchments (e.g., Kratzert et al., 2019; Mai et al.,
2022) and (2) the temporal data-split for validating (for a re-
cent discussion see Shen et al., 2022). Regarding (1), Feng
et al. (2023) recently proposed an ad-hoc regional data par-
titioning for model evaluation. A perhaps more principled20

form of this technique can be found in the data-based split-
ting that have been put forward independently by Mayr et al.
(2018) and Sweet et al. (2023). Both, on their own terms,
propose to partition the data based on feature clusters. Ei-
ther way, this type of informed (non-random) splitting is sus-25

ceptible to the DAMN. Regarding (2), Klemeš (1986) intro-

duced a style of two-fold (cross-) validation to hydrology.
Inter alia, he proposed the so-called differential split sample
test. It is a type of non-random split that subdivides a hydro-
graph into parts that reflect specific hydrological processes 30

— say, low flow and high flow periods. This type of split-
ting is common in hydrology, but since it is also an informed
(non-random) splitting it is indeed exposed to the DAMN.
Here, we do not want to say that the community should ab-
stain from differential split sampling. On the opposite, we 35

believe that it should remain a part of the hydrological model
building toolbox. However, when using it modelers should be
aware of the DAMN and how it limits potential conclusions
for model comparisons.

Likewise, we do not argue against using the NSE for 40

model comparisons. Even if there are limits to what the met-
ric can express, we assert that NSE remains a well estab-
lished assessment tool with many desired properties (in this
context we would also like to refer readers to Schaefli and
Gupta, 2007, for a more specific discussion of the limits of 45

the NSE for comparing model performance across different
basins). Hence, our goal is to shine light on the specific be-
havior of metrics that are not “DAMN safe” (the NSE being
the most prominent example thereof). That is, the DAMN can
make comparisons get more difficult when data is split into 50

partitions with widely different statistical properties (say,
rivers/periods with very low variance and rivers/periods with
very high variance in streamflow).

5 Conclusions

This contribution examines a part-whole relation that we coin 55

“Divide and Measure Nonconformity” (DAMN). Specifi-
cally, the DAMN describes the phenomenon that the NSE
of all the data can be higher than all the NSEs of subsets that
together comprise the full dataset. That is, the global NSE
can show counter-intuitive behaviour by not being bounded 60

by the NSE values in all it’s subsets. From a statistical
point of view, the DAMN can therefore be seen as a sort of
amalgamation paradox (Good and Mittal, 1987); and despite
its counterintuitive appearance, the behavior can be well-
explained. Our goal with this Technical Note is not to elimi- 65

nate the DAMN, but rather to make modellers more aware of
it, explain how it manifests itself, and provide tools to check
and think about it. If we study model behavior in specific
situations, we need to be aware of the DAMN.

Albeit our treatment revolves almost exclusively around 70

NSE, many performance criteria are “DAMN susceptible”.
As demonstrated by our introduction of LENSE (a pseudo-
performance criterion that serves as a thinking tool in our
discussion), the strength of the effect depends mainly on the
design of a given criterion. If a performance criterion is prone 75

to the DAMN it implies that we cannot infer the global per-
formance from looking at local performances.
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With regard to follow-up work, we believe that our ex-
perimental setup suggests an interesting avenue for inquiry,
which we shall call “NSE kinetics”. That is, to study how
easy it is to improve or worsen the NSE by changing the ob-
servations or simulations with a given budget or constraints.5

For example, it might be easy to improve (worsen) the per-
formance for basins where a model is weak by randomly
improving some time points (by just adding noise). How-
ever, if one wants to improve (worsen) the simulation for
a basin with pronounced seasonality and large amounts of10

high-quality data it might require a larger budget and changes
to specific events. Studies like that might have potential to
render the behavior of the NSE clearer. They might even
allow the community to derive (quantitative) comparisons
for the "flexibility/response" of different metrics. Scientists15

have studied the sensitivity and uncertainty of the NSE (e.g.,
Wright et al., 2015; Clark et al., 2021, respectively). Yet, as
far as we know, no one has yet examined a principled ap-
proach that is able to quantify the ease of change with respect
to a given direction.20

We conclude with the observation that the existence of
phenomena like the DAMN underlines the importance of
evaluating models with a range of different metrics — prefer-
ably tailored to the specific application at hand (Gauch et al.,
2023). On top of that, we would like to push the community25

(and ourselves) to also always evaluate models with regard
to the predictive uncertainty when doing model comparisons
and benchmarking exercises (e.g., Nearing et al., 2016, 2018;
Mai et al., 2022; Beven, 2023). Typically, this will result in
an additional workload for modellers, since it often means30

that a method for providing uncertainty estimates needs to
be built (on top of a hydrological model that gives point pre-
dictions). However, existing uncertainty performance criteria
(e.g., the log-likelihood, the Winkler score, or the continuous
ranked probability score) not only provide additional infor-35

mation, but also are largely robust against the DAMN (this
is because they are usually computed for each datapoint and
then aggregated by taking a sum or an average). Further, un-
certainty plays an important role for hydrological predictions
and should thus be included in our benchmarking efforts.40
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