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Abstract. Climate forcing data accuracy drives performance of hydrologic models and analyses, yet each investigator needs 

to select from among the numerous gridded climate dataset options and justify their selection for use in a particular hydrologic 10 

model or analysis. This study aims to provide a comprehensive compilation and overview of gridded datasets (precipitation, 

air temperature, humidity, windspeed, solar radiation) and considerations for historical climate product selection criteria for 

hydrologic modelling and analyses based on a review and synthesis of previous studies conducting dataset intercomparisons. 

All datasets summarized here span at least the conterminous U.S. (CONUS), and many are continental or global in extent. 

Gridded datasets built on ground-based observations (G; n=20), satellite imagery (S; n=20), and/or reanalysis products (R; 15 

n=23) are compiled and described, with focus on the characteristics that hydrologic investigators may find useful in discerning 

acceptable datasets (variables, coverage, resolution, accessibility, latency). We provide best-available-science 

recommendations for dataset selection based on a thorough review, interpretation, and synthesis of 29 recent studies (past 10 

years) that compared performance of various gridded climate datasets for hydrologic analyses. No single best source of gridded 

climate data exists, but we identified several common themes that may help guide dataset selection in future studies: 1) Gridded 20 

daily temperature datasets improved when derived over regions with greater station density. Similarly, 2) gridded daily 

precipitation data were more accurate when derived over regions with higher-density station data, when used in spatially less-

complex terrain, and when corrected using ground-based data. 3) In mountainous regions as well as humid regions, R 

precipitation datasets generally performed better than G when underlying data had low station density, but for higher station 

densities, there was no difference. 4) G datasets generally were more accurate in representing precipitation and temperature 25 

data than S or R datasets, though this did not always translate into better streamflow modelling. We conclude that hydrologic 

analyses would benefit from guided dataset selection by investigators, including justification for selecting a specific dataset, 

and improved gridded datasets that retain dependencies among climate variables and better represent small-scale spatial 

variability of climate variables in complex topography. Based on this study, the authors’ overall recommendations to 

hydrologic modelers are to select the gridded dataset (from Tables 1, 2, and 3) (a) having spatial and temporal resolutions that 30 

match modelling scales, (b) that are primarily (G) or secondarily (SG, RG) derived from ground-based observations, (c) with 
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sufficient spatial and temporal coverage for the analysis, (d) with adequate latency for analysis objectives, and (e) that includes 

all climate variables of interest, so as to better represent interdependencies. 

1 Introduction 

Hydrologists are faced with a dizzying variety of options when selecting climate data for water resource analyses. Climate 35 

drives hydrological processes, and accurate climate forcing data are essential for meaningful water resource investigations and 

modelling. However, it is arguable that no single source of climate data is universally appropriate, leading to a dearth of studies 

that make an effort to justify their dataset selection. Over recent decades, while ground-based observations from weather 

stations have decreased (Sun et al., 2018; Strangeways, 2006), gridded datasets built on ground-based observations, satellite 

imagery, and reanalysis products have increased.  40 

A well-maintained, long-term weather station, though not error-free (Gebremichael, 2010; Strangeways, 2006), provides 

direct, in-situ point measurements for a location. However, most hydrologic analyses address processes at locations and scales 

for which the point weather station data may not be representative. Gridded datasets offer several advantages over point station 

data (Essou et al., 2016a): gridded datasets are relatively easy to use, have uniform spatial coverage, provide consistent 

coverage over time (avoids the problem of non-reporting stations), and rarely have missing data. Uniform grids with temporal 45 

consistency allow simple averaging across a domain. However, gridded datasets often are not available in real-time (i.e., data 

latency), which might pose limitations for some hydrologic analyses (e.g., snowmelt and runoff forecasting, operational water 

resource decision making).  

Many studies (29 of which are reviewed in Section 4 of this article) have intercompared the accuracy of particular subsets of 

these gridded climate datasets for various regions, settings, and time frames across the globe with various insights and 50 

conclusions. However, no cataloguing and synthesis of these studies has been completed to date, presenting an important 

knowledge gap that may hinder well-informed dataset selection. To address this need, we completed a search of 

“intercomparison” AND “gridded AND climate AND data”, which yielded 202 documents using Scopus. Excluding “climate 

change” reduced this to 100 documents, and excluding “CMIP” produced 77 documents. Even with these filters, most studies 

focus on a limited number of datasets, lack generalizable recommendations, and do not consider the functional implications of 55 

dataset limitations on end-users’ hydrologic analysis. The present study aims to provide a comprehensive compilation, 

overview, and considerations for selection of gridded datasets with focus on selection for hydrologic modelling and analyses. 

Our focus is on historical datasets (not climate projections) at the conterminous U.S. (CONUS) to global extents.  

2 Gridded Dataset Sources 

Gridded historical climate datasets can be categorized as ground-based (G), satellite-based (S), or reanalysis-based (R) 60 

according to the sources of data and methods used in their derivation. Many datasets integrate multiple data sources and 
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methods in deriving the dataset; in this article, the primary data source/method in integrated datasets is listed first followed by 

secondary method(s) (e.g., SR, RG, RSG). We focus on gridded datasets available for five climatological variables that are 

essential to hydrological analyses: precipitation (P), air temperature (T), atmospheric moisture (relative humidity [rh], specific 

humidity [sh], dew-point T [Tdp], or vapor pressure [Vp]), windspeed (u), and solar radiation (Rs) or associated metrics (cloud 65 

cover [cc] or sky cover [sc]). Particular emphasis is on datasets that provide gridded P, a highly variable and critical driver in 

hydrological analyses. For more details, the reader is directed to an informative review of global P datasets, including a 

discussion of these dataset sources and estimation procedures (Sun et al., 2018). 

Although the grid resolution of each data product is clear, the support scale is generally vague. That is, the grid centroid is 

often treated as a point, which is then interpolated or regionalized to obtain areal averaged values at the scale of hydrologic 70 

model resolution (e.g., a hydrologic response unit or HRU). However, if the gridded data represent grid-scale (e.g., 4 km by 4 

km) areal averages, this should be considered during interpolation to the HRU scale. Scaling within and across grid cells has 

been explored for gridded soil moisture (Hoehn et al., 2017), but remains an issue for gridded climate products. In this study, 

we mention this as a precaution but do not offer scaling solutions. 

2.1 Ground-based (G) 75 

Ground-based gridded datasets (Table 1) are derived directly from observational data, typically from weather station networks. 

Various methods are used to interpolate data between stations and may account for orographic effects, lake effects, and other 

mesoscale meteorologic phenomena. These datasets benefit from direct application of data with relatively well-defined biases 

and uncertainty inherited from the instrumentation characteristics and errors. For example, P data collection has well-known 

errors at the station level from sources such as wind, evaporation, wetting, splashing, site location, instrument error, 80 

spatiotemporal variation in drop-size distribution, and frozen versus liquid P (Sun et al., 2018). Interpolating these data to a 

grid adds additional uncertainty to the extent that station density inadequately captures spatial variability of the climatic 

variable across the domain. Minimum recommended station densities vary by physiographic unit (mountains, plains, etc.) from 

1 to 4 stations per 1000 km2 (WMO, 2008). Essou et al. (2017) noted that most of the 316 watersheds in their comprehensive 

Canadian study had less than 1 station per 1000 km2, indicating a wider global concern. Increased station density generally 85 

improves gridded dataset quality, but it may be impractical to adequately cover regions with complex topography, localized 

convective storms, heat islands, blowing snow, or other micrometeorological heterogeneity. For example, snow gauge 

undercatch due to high windspeeds is an especially pronounced phenomenon that challenges accurate characterization of water 

storage in snow dominated basins (Fassnacht, 2004; Panahi & Behrangi, 2020). Station density and coverage also change over 

time as old stations are deprecated or new stations added, complicating interpolation schemes and often disproportionately 90 

diminishing coverage in remote areas. Sun et al. (2018) noted that the number of global stations in the GPCC v7 dataset has 

changed from 10,900 stations in 1901, to a maximum of 49,470 in 1970, decreasing to 30,000 in 2005, and only 10,000 in 

2012. This recent decline in station data not only impacts G datasets but also S and R datasets that rely on station data in their 
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dataset development. Uncertainty associated with these temporal changes in sampling density are further complicated by 

nonstationarity of climate and accelerated climate change in recent decades. 95 
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Table 1. Summary of ground-based (G) gridded datasets. 

Dataset 

Name 

Data 

Source 

Variables Spatial 

Resolution 

Temporal 

Resolution 

Spatial 

Coverage 

Temporal 

Coverage 

Latency Data 

Format 

Reference [Data Availability] 

BEST GR T 0.25°, 1° monthly Land 

Global 

1753-NP 

1850-NP 

months NetCDF Rohde & Hausfather (2020) 

[https://berkeleyearth.org/data/] 

CPC G P 0.25° 24 h Land 1948-NP 1 d NetCDF Chen et al. (2008), Xie et al. (2007) 

[https://ftp.cpc.ncep.noaa.gov/preci

p/CPC_UNI_PRCP/GAUGE_CONUS/] 

CPC-Unified G P 0.5° 24 h Land 1979-NP 1 d NetCDF Chen et al. (2008) 

[https://ftp.cpc.ncep.noaa.gov/preci

p/CPC_UNI_PRCP/GAUGE_GLB/RT] 

CRU-TS v4.6 G P, T 0.5° monthly Land 1901-

2021 

irreg. NetCDF Harris et al. (2020) 

[https://data.ceda.ac.uk/badc/cru/d

ata/cru_ts/cru_ts_4.06/data] 

Daymet G P, T, Vp, Rs 1 km 24 h CONUS 1980-NP CY NetCDF Thornton et al. (2021) 

[https://thredds.daac.ornl.gov/thred

ds/catalog/ornldaac/2129/catalog.ht

ml] 

EMDNA GR P, T 11 km 24 h N Amer 1979-

2018 

— NetCDF Tang et al. (2021) 

[https://gwfnet.net/Metadata/Recor

d/T-2020-11-25-

i1Fwxi32sBMU2GDhUZ6gAJEg] 

GLDAS GS P, T, sh, u, 

Rs 

0.125° 3 h Global 2000-NP 2 mo NetCDF Rodell et al. (2004) 

[https://hydro1.gesdisc.eosdis.nasa.

gov/opendap/GLDAS/] 

GPCC v7 G P 0.25°, 0.5°, 

1.0°, 2.5° 

monthly Land 1891-

2020 

— NetCDF Schneider et al. (2017, 2016) 

[https://opendata.dwd.de/climate_e

nvironment/GPCC/html/fulldata-

monthly_v2022_doi_download.html

] 

GPCC-FDD G P 1.0° 24 h Land 1982-

2020 

— NetCDF Schamm et al. (2014) 

[https://opendata.dwd.de/climate_e

nvironment/GPCC/html/fulldata-

daily_v2022_doi_download.html] 

gridMet G P, T, sh, u, 

Rs 

4 km 24-h CONUS 1979-NP 60 d NetCDF Abatzoglou (2013) 

[https://www.northwestknowledge.

net/metdata/data/] 

Livneh G P, T, u 0.0625° 24 h CONUS 1915-

2011 

— NetCDF Livneh et al. (2013) 

[https://psl.noaa.gov/thredds/catalo

g/Datasets/livneh/metvars/catalog.h

tml] 

nClimGrid G P, T 48.3 km 24-h CONUS 1951-NP 1 d NetCDF Durre et al. (2022) 

[https://www.ncei.noaa.gov/data/nc

limgrid-daily/archive/] 

NDFD 1-d[a] 

NDFD 7-d[a] 

G T, Tdp, u, 

sc 

5 km[b] 3 h[b] 

6 h 

CONUS 2003-NP NRT GRIB2 Glahn & Ruth (2003) 

[https://vlab.noaa.gov/web/mdl/ndf

d-grid-data] 

NLDAS-2 GR P, T, sh, u, 

Rs 

0.125° 1 h N Amer 1979-NP 4 d GRIB, 

NetCDF 

Xia et al. (2012a, b) 

[https://hydro1.gesdisc.eosdis.nasa.

gov/data/NLDAS/] 
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PRISM G P, T, rh 4 km 24 h CONUS 1895-NP 1 yr ASCII, 

NetCDF, 

GeoTIFF 

Daly et al. (2008) 

[https://prism.oregonstate.edu/expl

orer/] 

RTMA G P, T, Tdp, 

u, cc 

2.5° 1 h CONUS 2006-NP NRT GRIB2 DePondeca et al. (2011) 

[https://www.nco.ncep.noaa.gov/p

mb/products/rtma/] 

Santa-Clara G P, T 0.125° 24 h CONUS 1949-

2010 

— ASCII, 

NetCDF 

Maurer et al. (2002) 

[https://www.engr.scu.edu/~emaure

r/gridded_obs/index_gridded_obs.ht

ml] 

TopoWx GR T 0.8 km 24 hr CONUS 1948-

2017 

— NetCDF Oyler et al. (2015) 

[https://www.scrim.psu.edu/resourc

es/topowx/] 

UDEL G P, T 0.5° monthly Land 1900-

2014 

— NetCDF Matsuura et al. (2023) 

[https://psl.noaa.gov/data/gridded/

data.UDel_AirT_Precip.html] 

Data Source: G=ground-based observations (with interpolation), S=satellite, R=reanalysis. Variables: P=precipitation, T=air temperature, 

rh=relative humidity, sh=specific humidity, Tdp=dew-point T, Vp=vapor pressure, u=windspeed, Rs=solar radiation, sc=sky cover, cc=cloud 

cover. Spatial Resolution: 1.0° latitude=111 km, 1.0° longitude=111 km at 0° latitude and 85 km at 40° latitude. Spatial Coverage: 100 

Land=Global land surfaces only (not ocean surfaces), CONUS=contiguous U.S. Temporal Coverage: NP=near present. Latency: NRT = 

near-real-time, CY=Available each calendar year, —=Static dataset. Data Format: NetCDF=Network Common Data Form, 

ASCII=American Standard Code for Information Interchange, GRIB=Gridded Binary, GeoTIFF=Georeferenced Tagged Image File Format. 

[a]NDFD provides 1- to 7-d lead-time forecasts. [b]NDFD spatial resolution changes to 2.5 km and 1-d forecast temporal resolution changes 

to 1 h after 08/19/2014. 105 

2.2 Satellite-based (S) 

Satellite-based gridded datasets (Table 2) are derived from various sensors onboard geostationary satellites (visible/infrared 

[IR] sensors) with rapid sampling frequency (30 minutes or less) and low-Earth orbit satellites (visible/IR, passive microwave 

[MW], and active MW) with lower temporal sampling frequency (Sun et al., 2018). Compared to G datasets, S datasets provide 

spatially homogenous coverage (the entire area within the coverage field has similar data density) and temporally continuous 110 

records but are limited in temporal coverage to the satellite era, with the first Television and IR Observation Satellite (TIROS) 

launched in 1960. Visible/IR methods detect cloud-top surface conditions and correlate colder/brighter cloud tops to greater 

convection and more P. Passive MW methods detect precipitation-sized particles, which provides a more-direct measure of P. 

Active MW methods allow measurement of the instantaneous three-dimensional structure of rainfall. Methods have been 

developed to merge these datasets to capitalize on the higher accuracy of MW methods and greater temporal frequency of 115 

visible/IR methods and increase overall product accuracy (Sun et al., 2018).  

A review by Maggioni et al. (2016) described satellite instruments and compared many of the algorithms used in current 

satellite P datasets. They found S datasets have larger overestimation bias in the warm season and lower positive bias in the 

cold season. Satellite datasets have high probability of capturing warm-season convective events; as a result, in the central 

https://www.nco.ncep.noaa.gov/pmb/products/rtma/
https://www.nco.ncep.noaa.gov/pmb/products/rtma/
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U.S., for example, S datasets have better agreement with ground-radar products than rain-gauge stations, which can miss 120 

localized convective storms. Satellite-based products tend to underestimate intense rainfall during extreme hurricane events; 

S also tends to underestimate light P at high elevations and overestimate P at low elevations in regions of complex topography 

in northwestern Mexico and the Appalachian Mountains, all of which may be attributed to IR sensors’ lack of discrimination 

between raining and non-raining clouds. 

Table 2. Summary of satellite-based (S) gridded datasets. 125 

Dataset 

Name 

Data 

Source 

Variables Spatial 

Resolution 

Temporal 

Resolution 

Spatial 

Coverage 

Temporal 

Coverage 

Latency Data 

Format 

Reference [Data Availability] 

CHIRP v2 SR P 0.05° 24 h Land, <50° 1981-NP 2 d GeoTIFF Funk et al. (2015) 

[https://data.chc.ucsb.edu/products

/CHIRP/] 

CHIRPS v2 SRG P 0.05° 24 h Land, <50° 1981-NP 1 mo GeoTIFF Funk et al. (2015) 

[https://data.chc.ucsb.edu/products

/CHIRPS-2.0/] 

CMORPH v1 S P 0.07°, 0.25° 0.5 h, 24 h <60° 1998-NP 5-6 mo NetCDF Joyce et al. (2004), Xie et al. (2017) 

[https://www.ncei.noaa.gov/data/c

morph-high-resolution-global-

precipitation-estimates/; 

https://noaa-cdr-precip-cmorph-

pds.s3.amazonaws.com/index.html] 

CMORPH-

BLD v1 

SG P 0.25° 24 h  <60° 2003-NP 1 mo GRIB, 

NetCDF 

Sun et al. (2016) 

[https://ftp.cpc.ncep.noaa.gov/preci

p/CMORPH_V1.0/BLD/] 

CMORPH-

CRT v1 

SG P 0.07°, 0.25° 0.5 h, 24 h <60° 1998-

2015 

— GRIB, 

NetCDF 

Joyce et al. (2004), Xie et al. (2017) 

[https://ftp.cpc.ncep.noaa.gov/preci

p/CMORPH_V1.0/CRT/] 

GPCPDAY/M

ON 

SG P 0.5° 24 h Global 2000-

2021 

— NetCDF Huffman et al. (2023) 

[https://measures.gesdisc.eosdis.nas

a.gov/data/GPCP/] 

GPCP-1DD 

v1.2 

SG P 1.0° 24 h Global 1996-

2015 

— NetCDF Huffman et al. (2001) 

[https://rda.ucar.edu/datasets/ds72

8.3/dataaccess/] 

GPM SG P 0.1° 0.5 h <60° 2014-NP 24 h HDF5, 

NetCDF 

Hou et al. (2014) 

[https://gpm1.gesdisc.eosdis.nasa.g

ov/data/] 

GSMaP v5/6 S P 0.1° 1 h <60° 2000-NP 30 min ASCII, 

GeoTIFF 

Ushio et al. (2009), Kubota et al. 

(2020) 

[https://sharaku.eorc.jaxa.jp/GSMaP

/] 

IMERG-Early 

v6 

S P 0.1° 0.5 h Global 2000-NP 4 h HDF5, 

NetCDF 

Tan et al. (2019), Huffman et al. 

(2020a,b) 

[https://gpm1.gesdisc.eosdis.nasa.g

ov/data/GPM_L3/GPM_3IMERGDE.0

6/] 

IMERG-Late 

v6 

S P 0.1° 0.5 h Global 2000-NP 14 h HDF5, 

NetCDF 

Tan et al. (2019), Huffman et al. 

(2020a,b) 

[https://gpm1.gesdisc.eosdis.nasa.g
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ov/data/GPM_L3/GPM_3IMERGDL.0

6/] 

IMERG-Final 

v6 

SG P 0.1° 0.5 h Global 2000-NP 3.5 mo HDF5, 

NetCDF 

Tan et al. (2019), Huffman et al. 

(2020a,b) 

[https://gpm1.gesdisc.eosdis.nasa.g

ov/data/GPM_L3/GPM_3IMERGDF.0

6/] 

MSWEP v2.2 SRG P 0.1° 3 h Global 1979-NP 3 h NetCDF Beck et al. (2017a, 2019) 

[https://www.gloh2o.org/mswep/] 

NSRDB SG P, T, rh, u, 

Rs 

4 km 1 h CONUS 1998-

2021 

— HDF5 Sengupta et al. (2018), Buster et al. 

(2022) [https://nsrdb.nrel.gov/data-

sets/how-to-access-data] 

PERSIANN SR P 0.25° 1 h <60° 2000-NP 1 h NetCDF Sorooshian et al. (2000) 

[https://persiann.eng.uci.edu/CHRSd

ata/PERSIANN/] 

PERSIANN-

CCS 

S P 0.04° 1 h <60° 2003-NP 1-2 d NetCDF Hong et al. (2004) 

[https://persiann.eng.uci.edu/CHRSd

ata/PERSIANN-CCS/] 

PERSIANN-

CDR 

SG P 0.25° 24 h <60° 1983-NP 1 mo NetCDF Ashouri et al. (2015) 

[https://www.ncei.noaa.gov/data/pr

ecipitation-persiann/access/2023/] 

SM2RAIN-

ASCAT 

S P 0.1° 24 h Land 2007-

2021 

— NetCDF Brocca et al. (2014) 

[https://zenodo.org/records/795010

3] 

TMPA-3B42 

v7 

SG P 0.25° 3 h <60° 2000-

2019 

— NetCDF Huffman et al. (2007), Gebremichael 

et al. (2010) 

[https://disc2.gesdisc.eosdis.nasa.go

v/opendap/TRMM_L3/TRMM_3B42

_Daily.7/] 

TMPA-

3B42RT v7 

S P 0.25° 3 h <60° 1998-

2019 

— NetCDF Huffman et al. (2007), Gebremichael 

et al. (2010) 

[https://disc2.gesdisc.eosdis.nasa.go

v/opendap/TRMM_RT/TRMM_3B42

RT.7/] 

Data Source: G=ground-based observations (with interpolation), S=satellite, R=reanalysis. Variables: P=precipitation, T=air temperature, 

rh=relative humidity, u=windspeed, Rs=solar radiation. Spatial Resolution: 1.0° latitude=111 km, 1.0° longitude=111 km at 0° latitude and 

85 km at 40° latitude. Spatial Coverage: Land=Global land surfaces only (not ocean surfaces). Temporal Coverage: NP=near present. 

Latency: —=Static dataset. Data Format: NetCDF=Network Common Data Form, HDF5=Hierarchical Data Format 5, ASCII=American 

Standard Code for Information Interchange, GRIB=Gridded Binary, GeoTIFF=Georeferenced Tagged Image File Format. 130 

2.3 Reanalysis-based (R) 

Reanalysis-based gridded datasets (Table 3) are synthesized from process-based climate models, often together with G and/or 

S observational data, with the goal of generating gridded datasets with spatially homogenous data density that are temporally 

continuous. A precipitation forecast is generated from complex interactions of a priori predictions from a physically based, 

dynamical process model (that can often account for orographic effects in topographically complex regions) and ingested 135 

observational data. Reanalysis systems use various models, observational datasets, and assimilation methods; can generate 
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many climate variables with inter-dependent variable consistency; and provide near-real-time datasets with latency periods 

from hours to months. Accuracy of R methods may be limited by the changing availability of observational data and biases in 

observations and models. 

Reanalysis datasets have been found to better capture winter P resulting from large-scale systems than summer P with greater 140 

influence of localized convective storms (Massmann, 2020; Beck et al., 2019). Similarly, Beck et al. (2017b) confirmed the 

conclusions of several other studies (Barrett et al., 1994; Xie and Arkin, 1997; Adler et al., 2001; Ebert et al., 2007; Massari 

et al., 2017) that demonstrate reanalysis underperformed MW- and IR-based datasets in the tropics and outperformed them in 

colder regions (> 40° latitude). Reanalysis demonstrated reduced bias compared to S datasets, with greater ranges of bias 

among all datasets in areas with complex topography (Rockies, Andes, and Hindu Kush) and arid regions (Sahara and the 145 

Arabian and Gobi deserts) (Beck et al., 2017b). 

Table 3. Summary of reanalysis-based (R) gridded datasets. 

Dataset Name Data 

Source 

Variables Spatial 

Resolution 

Temporal 

Resolution 

Spatial 

Coverage 

Temporal 

Coverage 

Latency Data 

Format 

Reference [Data Availability] 

20CR R P, T, rh, u, 

Rs 

1.0° 3 h, 24 h Global 1836-2015 — NetCDF Compo et al. (2011) 

[https://psl.noaa.gov/thredds/catalo

g/Datasets/20thC_ReanV3/miscSI/ca

talog.html] 

CERA-20C R P, T, rh, u 0.125° 24 h Global 1901-2010 — NetCDF Laloyaux et al. (2018) 

[https://apps.ecmwf.int/archive-

catalogue/?class=ep] 

ERA-20C R P 125 km 3 h Global 1900-2010 — GRIB Poli et al. (2016) 

[https://thredds.rda.ucar.edu/thredd

s/catalog/aggregations/g/ds626.0/5/

catalog.html] 

ERA5 R P, T, rh, u, 

Rs 

0.25° 1 h Global 1979-NP 6 d GRIB, 

NetCDF 

Hersbach et al. (2018, 2020) 

[https://thredds.rda.ucar.edu/thredd

s/catalog/files/g/ds633.0/catalog.ht

ml] 

ERA-Interim RS P, T, rh, u, 

Rs 

0.75° 3 h Global 1979-NP months GRIB Dee et al. (2011) 

[https://thredds.rda.ucar.edu/thredd

s/catalog/catalog_ds627.0.html] 

EWEMBI v1.1 RG P, T, rh, u, 

Rs 

0.5° 24 h Global 1976-2013 — NetCDF Warszawski et al. (2014) 

[https://data.isimip.org/10.5880/pik.

2019.004] 

GFD-HYDRO RSG P 0.5° 3 h Global 1979-NP 5 d NetCDF Berg et al. (2018, 2021) 

[https://zenodo.org/records/387170

7] 

GRASP R P, T 1.125° 24 h Global 1961-2010 — ? Iizumi et al. (2014) [Available upon 

request.] 

GSMaP-RNL RG P 0.1° 24 h <60° 2001-2013 — NetCDF Kubota et al. (2007), Iguchi et al. 

(2009) [https://thredds-

x.ipsl.fr/thredds/catalog/FROGs/GS

MAP-gauges-RNLv6.0/catalog.html; 

https://thredds-
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x.ipsl.fr/thredds/catalog/FROGs/GS

MAP-nogauges-

RNLv6.0/catalog.html] 

GSMaP-std v6 RG P 0.1° 24 h <60° 2001-2013 — NetCDF, 

GeoTIFF 

Ushio et al. (2019), Kubota et al. 

(2020) 

[https://sharaku.eorc.jaxa.jp/GSMaP

/] 

JRA-55 R P 0.56° 3 h Global 1958-NP days GRIB Kobayashi et al. (2015), Harada et al. 

(2016) 

[https://thredds.rda.ucar.edu/thredd

s/catalog/catalog_ds628.0.html] 

MERRA R P, T, sh, u; 

Rs 

0.67°x0.5°; 

1.0°x1.25° 

1 h (6 h?); 

3 h 

Global 1979-2016 — HDF Rienecker et al. (2011) 

[https://disc.gsfc.nasa.gov/datasets?

page=1&project=MERRA] 

MERRA-2 RSG P, T, sh, u 0.625°x0.5° 1 h Global 1980-NP 2 mo NetCDF Gelaro et al. (2017), Reichle et al. 

(2017) 

[https://disc.gsfc.nasa.gov/datasets?

keywords=MERRA-

2%20Products&page=1] 

NASA-POWER RS Rs, P, T 0.625°x0.5°, 

1.0° 

24 h Global 1980-NP 14 h - 3 

mo 

ASCII, CSV, 

NetCDF, 

GeoTIFF 

Zhang et al. (2009) 

[https://power.larc.nasa.gov/data-

access-viewer/] 

NCEP-CFSR RS P, T, sh, u, 

Rs 

0.3°, 0.5°, 

1.0°, 1.9°, 

2.5° 

6 h Global 1979-2011 — GRIB Saha et al. (2010), Decker et al. 

(2012) 

[https://thredds.rda.ucar.edu/thredd

s/catalog/files/g/ds093.0/catalog.ht

ml] 

NCEP-CFS v2 RS P, T, sh, u, 

Rs 

0.2°, 0.5°, 

1.0°, 2.5° 

6 h Global 2011-NP NRT - days GRIB Saha et al. (2014) 

[https://thredds.rda.ucar.edu/thredd

s/catalog/files/g/ds094.0/catalog.ht

ml] 

NCEP-NARR RG P, T, rh, u, 

Rs 

32 km 3 h N Amer 

<50° 

1979-NP months GRIB Mesinger et al. (2006) 

[https://thredds.rda.ucar.edu/thredd

s/catalog/files/g/ds608.0/catalog.ht

ml] 

PGMFD v2.1  RG P, T, rh, u, 

Rs 

0.5° 24 h Global 1901-2012 — NetCDF Sheffield et al. (2006) 

[https://data.isimip.org/search/simu

lation_round/ISIMIP2a/product/Inpu

tData/climate_forcing/princeton/] 

PGF v3 RG P, T 0.25° 3 h Global 1948-2012 — NetCDF Sheffield et al. (2006) 

[https://hydrology.soton.ac.uk/data/

pgf/] 

S14FD R P, T 0.5° 24 h Global 1958-2013 — NetCDF Iizumi et al. (2017) 

[https://search.diasjp.net/en/datase

t/S14FD] 

WFDEI R P, T, rh, u, 

Rs 

0.5° 3 h Global 1979-2016 — NetCDF Weedon et al. (2014) 

[https://thredds.rda.ucar.edu/thredd

s/catalog/files/g/ds314.2/catalog.ht

ml] 

WFD-20C R P, T, rh, u, 

Rs 

0.5° 6 h Global 1901-2016 — NetCDF Weedon et al. (2011) 

[https://data.isimip.org/search/simu
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lation_round/ISIMIP2a/product/Inpu

tData/climate_forcing/watch-wfdei/; 

https://www.data.gov.uk/dataset/a8

3eef6d-30d3-479d-90b3-

40c09c26d42c/watch-forcing-data-

wfd-20th-century-tair-air-

temperature-1901-2001] 

WRFCONUS40

4 

R P, T, rh, u, 

Rs 

4 km 1 h  CONUS 1980-2021 — NetCDF Liu et al. (2017) 

Rasmussen et al. (2023) 

[https://www.sciencebase.gov/catal

og/item/6372cd09d34ed907bf6c6ab

1; https://app.globus.org/file-

manager?origin_id=39161d64-419d-

4cc4-853f-

f6e737644eb4&origin_path=%2F] 

Data Source: G=ground-based observations (with interpolation), S=satellite, R=reanalysis. Variables: P=precipitation, T=air temperature, 

rh=relative humidity, sh=specific humidity, u=windspeed, Rs=solar radiation. Spatial Resolution: 1.0° latitude=111 km, 1.0° longitude=111 

km at 0° latitude and 85 km at 40° latitude. Spatial Coverage: Land=Global land surfaces only (not ocean surfaces). Temporal Coverage: 150 

NP=near present. Latency: —=Static dataset. Data Format: NetCDF=Network Common Data Form, HDF5=Hierarchical Data Format 5, 

ASCII=American Standard Code for Information Interchange, GRIB=Gridded Binary, GeoTIFF=Georeferenced Tagged Image File Format, 

CSV=comma separated variable, ?=unknown. 

2.4 Integrated Products 

Inherent limitations of individual data sources (G, S, or R) can be reduced by merging other data sources with complimentary 155 

advantages to reduce errors or biases. Some reanalysis datasets are used independently or merge multiple reanalysis products 

(denoted by R in Table 3). Reanalysis datasets commonly ingest ground-based observational data (RG), satellite data (RS), or 

both (RSG). Some S datasets also integrate G data (denoted by SG in Table 2), reanalysis data (SR), or both (SRG) to enhance 

accuracy and reduce bias. Several data sources, CHIRP, CMORPH, IMERG, PERSIANN, and TMPA, offer multiple products 

with increasing data source complexity, often with increased latency and different spatial and temporal resolutions. Each 160 

dataset follows a different workflow in developing the integrated product; in general, the primary method (in this article, the 

first abbreviation letter) is enhanced somewhat sequentially with various interpolation or bias-correction schemes using the 

secondary dataset(s). 

3 Considerations for Use of Gridded Dataset for Hydrologic Analyses 

Gridded datasets summarized in Tables 1, 2, and 3 span 0.8 to 278 km spatial resolutions, 0.5 to 720 h (monthly) temporal 165 

resolutions, 0.02 (30 min) to 365 d latencies, CONUS to global spatial coverage, and 10 to 271 year periods of record, starting 

as early as 1753 (Figure 1). Differences have emerged in the representation of G, S, and R datasets across many of these 

categories. G datasets have the finest spatial resolutions (1 km) and longest periods of record (> 240 years) and tend to have 
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the longest latency (average for G = 86 d, compared to S = 29 d and R = 36 d). A greater proportion of G datasets have less-

extensive spatial coverage (CONUS to North American continental in this study) whereas S and R datasets typically were 170 

global in extent. S datasets start no earlier than 1979 and no greater than 45-year period of record (through 2023). More R and 

S datasets have finer temporal resolution than G datasets, with average resolutions of 10 h for R and 9 h for S compared to 158 

h for G. 

No single best source of gridded climate data exists. Many characteristics of gridded datasets influence the best product for a 

given application or research question. We highlight several of the most important considerations in differentiating among the 175 

many possible gridded datasets. Most of these characteristics are detailed for each gridded dataset in Tables 1, 2, and 3.  

 

Figure 1. Distribution of (a) spatial resolution, (b) temporal resolution, (c) latency, (d) period start date, (e) period of 

record, and (f) spatial coverage for assessed ground-based (G), satellite-based (S), and reanalysis-based (R) gridded 180 

precipitation data sources. X axis labels are the upper limits of each categorical bin, exclusive of other bins. [CONUS = 

conterminous U.S., N AMER = North America, LAND = global land surfaces only (not ocean surfaces), GLOBAL = 

global land + ocean surfaces]  
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3.1 Variables and Interdependencies 

Hydrological investigations typically begin with selecting datasets for each important climate variable. Tables 1, 2, and 3 185 

summarize the variables included in each gridded dataset. Datasets that include all climate variables of interest may inherently 

represent appropriate interdependencies or cross-correlations among the variables. For example, periods of time with P are 

associated with cloud cover and decreased Rs and often higher humidity. Other types of dependency-related dilemmas may 

also occur in gridded datasets. Cold air drainage can invert the minimum T (Tmin)-elevation relationship in montane foothills, 

and daily Tmin may not equal daily average Tdp in semi-arid regions (Tmin decoupled from 100% rh), thus invalidating an 190 

assumption of commonly used schemes to spatially interpolate gridded Tdp data (McEvoy et al., 2014). Often these 

interdependencies are important to represent accurately in hydrologic analyses. 

3.2 Coverage 

Gridded datasets have a range of spatial and temporal extents. All datasets summarized in this article span at least the CONUS, 

and many are continental or global in extent. General guidelines by the World Meteorological Organization require a 30-year 195 

minimum period of record to reasonably represent climate variability. Non-stationarity of climate makes it even more 

important to consider whether longer periods representing climatic trends or periods more heavily weighted toward recent data 

are preferable for a given hydrologic study. Periods of record may be dictated by investigations focused on specific events or 

periods, such as studies of the hydrologic effects of wildfire or other disturbance events, calculations of the recurrence interval 

of a flood of a given severity, or studies assessing hydrologic responses over specific periods. 200 

3.3 Resolution 

Spatial and temporal resolution of the dataset should be adequate to represent the variability of the climate variable given the 

representational scale of the hydrologic model. The simulated spatial and temporal resolution of evapotranspiration (ET), 

runoff, and other hydrological elements in hydrologic models can be relatively fine (<1 km, subdaily), and model resolution 

is increasing in ways that capitalize on increasing computational power, process understanding, and data availability (Melsen 205 

et al., 2016). Hydrologic model output resolution and uncertainty are often limited by the spatial and temporal resolution of 

climate datasets. As such, the resolution of gridded climate datasets should be an important criterion to consider, especially in 

mountainous areas within complex terrain driving spatial heterogeneity in climate variables. Some gridded datasets sacrifice 

representation of extremes, both wet and dry, to better represent mean climatic conditions. Alternatively, increased temporal 

resolution may come at the cost of reduced spatial resolution. Creation of spatially continuous and consistent gridded response 210 

surfaces can result in point data extremes being smoothed during interpolation. Gridded data interpolation schemes can also 

influence representation of meteorologic variability; for example, Daymet uses a strict T-elevation relationship that limits its 

ability to represent T inversions relative to PRISM, which includes “climatologically aided interpolation” (McEvoy et al., 
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2014). Methods that create ensembles of multiple gridded datasets often better represent mean conditions across a domain at 

the expense of representing the full range of possible conditions within the domain. 215 

3.4 Format and Accessibility 

Data format and accessibility dictate how easily and effectively a dataset can be accessed, processed, and analysed for a specific 

hydrologic application. Several common data formats are described in Table A1. The data format must be compatible with 

software and tools used in the hydrologic analysis. Formats such as NetCDF and HDF5 are widely used in climate research 

because they are consistent with various processing tools and can efficiently store large multidimensional datasets. Adequate 220 

metadata are essential for understanding the dataset, including its origin, methodology, and any processing it has undergone. 

Investigators may consider the importance of datasets that can be compressed without significant data loss, are interoperable 

with the other datasets, and are freely available and easily accessible online. Some datasets have application programming 

interfaces (APIs) for automated data retrieval that can be useful. 

3.5 Site and Event Characteristics 225 

Preference may be given to datasets that reflect characteristic spatial and temporal dimensions of climatic processes in the 

domain, such as cool-air drainage patterns, orographic or convective P events, lake effects, and effects of altitude. Priority may 

be given to datasets that capture the most important aspects of climate variable magnitude and variability at appropriate scales, 

including daily/seasonal/annual averages, extreme event (high or low) magnitudes, or event sequences (continuous dry days 

[CDDs], continuous wet days [CWDs], etc.). For example, datasets with fine temporal resolution (~1 h) may be required to 230 

capture hydrological functioning when P is dominated by high intensity but short duration convective events. In hydrologic 

models, space-time scales are interdependent, and source data should be considered in watershed delineation. 

3.6 Process and Model Sensitivity, and Latency 

Hydrologic processes are differentially sensitive to climatic variables and characteristics. For example, a snowmelt runoff 

modelling study may prioritize a dataset with accurate, fine-spatial-resolution T and accurate Rs whereas a small-basin study 235 

of soil moisture or erosion dynamics may prioritize a fine-scale P dataset that maintains a full range of extreme events. A study 

focused on ET dynamics may prioritize a dataset that includes T, rh, u, and Rs and maintains appropriate inter-variable 

dependencies. Flood simulation may prioritize fine-temporal-resolution P data at a resolution matching the domain 

heterogeneity. Long-term water balance studies or large-scale river basin studies may prefer daily or monthly datasets with 

coarse spatial resolution. Often the selected model formulation will constrain the required variables, their characteristics, and 240 

the preferred data format.  

Latency, or the time lag in dataset availability, also may be an important consideration. Some modelling applications may 

require real-time or near-real-time results. Other applications designed to analyse historical trends or prior conditions can 
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tolerate long data latency periods. Gridded datasets may implement additional processing steps intended to increase accuracy 

or resolution but that increase the latency before data become available for use. In the gridded datasets summarized in Tables 245 

1-3, S datasets averaged the shortest latency periods (29 d) followed by R (36 d) and G (86 d). 

3.7 Time Zone Considerations 

When using climate and other hydrologic data from different sources, data time-period consistency is critical and too often 

overlooked. Particularly for data in a “daily” format, users must be cognizant of the zonal time period for each dataset. Station 

data varies on the reporting period for G data (e.g., daily periods beginning at midnight, 07:00 or 08:00 standard time or local 250 

time [i.e., with spring and fall daylight savings time shifts]). Gridded datasets may provide data for a standard time period 

(e.g., 24-hour period from 0:00 GMT) or adjusted for user-defined time zone. Hydrologic comparison datasets (e.g., 

streamflow) may be reported for 24 hours starting midnight standard or local time or for some other 24-hour period. 

Mismatched datasets may lead to systematic analysis errors. 

4 Review of Gridded Dataset Performance 255 

Appropriate selection from among the many available gridded meteorological datasets requires an understanding of how these 

datasets impact hydrologic modelling. To assist with the selection process, we conducted a thorough review and synthesis of 

the recent (past 10 years) literature comparing gridded meteorological datasets, with specific consideration of their influence 

on hydrologic modelling (Table 4). Studies were selected that (a) compared multiple gridded datasets, preferably including 

comparisons with different resolutions, scales, spatial contexts (topography, climate), goals, or hydrologic models; (b) 260 

compared the accuracy of those datasets to observed meteorological data; and (c) compared the performance of those datasets 

as forcing data for hydrologic model(s) or analyses. Most studies assessed and compared P datasets, some also assessed T 

datasets, and very few assessed rh, u, or Rs datasets. This relates, in equal measures, to the relative importance of P data in 

hydrologic analysis, the relative complexity of representing P in gridded datasets, and the relative availability of P, T, and 

other data across G, S, and R datasets (Tables 1, 2, 3).  265 

Table 4. Summary of recent (10 years, 2014-2023) literature on gridded dataset comparisons for hydrologic modelling. 

Reference 

[Location] 

Dataset Name Data 

Source 

Spatial Extent Temporal 

Extent 

Analysis Goals Hydrologic 

Model 

Hydrologic Outcomes 

Ang et al. 

(2022) 

[SE Asia] 

APHRODITE 

NCEP-CFS v2 

TMPA-3B42 v7 

IMERG-Final v6 

ERA5 

SA-OBS 

CPC 

G 

RS 

SG 

SG 

R 

G 

G 

83,107 km2, 

100-1,700 m 

asl, 1,354 

mm/y P 

1985-

2011 

Compare P, T 

datasets to 

gauge stations 

and evaluate 

Q, ET 

performance 

SWAT, daily, 

0.25° grid 

Good P (APHRODITE, 

ERA5, TMPA, IMERG), 

Good T (CPC, SA-OBS). 

TMPA and IMERG P with 

SA-OBS T provide reliable 

Q, ET. 
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Beck et al. 

(2017b)  

[Global] 

CHIRP v2 

CMORPH v1 

ERA-Interim 

GSMaP v5/6 

GridSat v1 

JRA-55 

MSWEP-ng v1.2 

MSWEP-ng v2 

NCEP-CFSR 

PERSIANN 

PERSIANN-CCS 

SM2RAIN-ASCAT 

TMPA-3B42RT v7 

CHIRPS v2 

CMORPH-CRT v1 

CPC-Unified 

GPCP-IDD v1.2 

MSWEP v1.2 

MSWEP v2 

PERSIANN-CDR v1r1 

TMPA-3B42 v7 

WFDEI-CRU 

SR 

S 

R 

S 

S 

R 

SR 

SR 

RS 

S 

S 

S 

S 

SRG 

SG 

G 

SG 

SRG 

SRG 

SG 

SG 

RG 

76,086 P 

stations; 

9,035 basins 

(<50,000 km2) 

P: 2000-

2016, Q: 

2000-

2012 

Compare P 

datasets to 

daily gauge 

stations and 

evaluate daily 

Q performance 

(via 3-day NSE) 

HBV, daily, 

conceptual 

G best (CPC), but not 

transferable to low gauge 

density areas. Next best 

was SRG, with direct G 

correction (MSWEP). 

Among non-G corrected, 

SR were best (MSWEP) 

followed by R (ERA, MRA, 

NCEP) then SR (CHIRP). 

Blankenau 

et al. 

(2020) 

GLDAS 

NCEP-CFS v2 

NLDAS-2 

gridMET 

RTMA 

NDFD 1-d 

NDFD 7-d 

GS 

RS 

GR 

G 

G 

G 

G 

103 weather 

stations, US, 

Guam, Puerto 

Rico 

2013-

2015 

Calibrate ETo Penman-

Monteith 

ETo 

Gridded datasets 

overestimated ETo vs. 

using station data (12-31% 

median bias). 

Dembélé 

et al. 

(2020)  

[W Africa] 

TAMSAT v3 

CHIRPS v2 

ARC v2 

RFE v2 

MSWEP v2.2 

GSMaP-std v6 

PERSIANN-CDR 

CMORPH-CRT v1 

TMPA-3B42RT v7 

TMPA-3B42 v7 

JRA-55 

EWEMBI v1.1 

WFDEI-CRU 

WFDEI-GPCC 

MERRA-2 

PGF v3 

ERA5  

SG 

SRG 

SG 

SG 

SRG 

RG 

SG 

SG 

S 

SG 

R 

RG 

RG 

RG 

RSG 

RG 

R 

415,000 km2, 

<400 m asl. 

2000-

2012 

Calibrate daily 

Q, monthly Ea, 

Su, St 

mHM, 

daily, 0.25° 

(28 km) 

discretizati

on. 

Best performing P 

datasets differed for: Q 

(TAMSAT, CHIRPS, 

PERSIANN-CDR), temporal 

Su (EWEMBI, WFDEI-

GPCC, PGF), spatial Su 

(MSWEP, TAMSAT, ARC) 

temporal Ea (ARC, RFE, 

GSMaP), and spatial Ea 

(MSWEP, TAMSAT, 

MERRA-2) 
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Essou et 

al. (2016a)  

[CONUS] 

MOPEX 

Santa-Clara 

CPC 

Daymet 

G 

G 

G 

G 

424 basins 

(66-10,325 

km2), 5 

climate 

regions 

1980-

2003 

Compare 

among 

observed 

climate data 

and simulated 

Q 

HSAMI, 

daily, 

conceptual 

Differences in P and T did 

not translate to 

differences in Q. 

Essou et 

al. 

(2016b)  

[CONUS] 

Santa-Clara 

ERA-Interim 

NCEP-CFSR 

MERRA 

NCEP-NARR 

WFDEI-CRU 

WFDEI-GPCC  

G 

R 

RS 

R 

RG 

RG 

RG 

370 basins 

(104-10,325 

km2), 5 

climate 

regions 

1979-

2003 

Compare to 

observed 

climate data 

(Santa Clara) 

and Q 

(MOPEX) 

HSAMI, 

daily, 

conceptual 

Overall, global reanalyses 

were good proxies for 

observed P and T data. 

Essou et 

al. (2017)  

[Canada] 

ERA-Interim 

NCEP-CFSR 

MERRA 

NRCan 

R 

RS 

R 

G 

316 basins 

(440-127,635 

km2), 3 

climate 

regions 

1979-

2010 

Compare P, T 

reanalyses to 

NRCan, and Q 

to CANOPEX. 

HSAMI, 

daily, 

conceptual 

Reanalysis performs 

better than gridded for 

low station density (1 per 

1000 km2). 

Gampe & 

Ludwig 

(2017)  

[Italy] 

MESAN 

APGD 

E-OBS 

PERSIANN-CDR 

MERRA-2 

ERA-Interim 

GPCC-FDD 

ERA-20C  

DRG 

G 

G 

SG 

RSG 

R 

G 

R 

12,100 km2, 

0-3865 m asl, 

500-1600 

mm/y P 

1989-

2008 

Compare to 

observed 

climate data. 

WaSiM, 

daily, 1 km 

resolution 

(not used 

in this 

study) 

Recommend using an 

ensemble, excluding 

datasets with seasonal 

deviations (PERSIANN, 

ERA-Interim, ERA-20C). 

Gupta & 

Tarboton 

(2016)  

[W US] 

MERRA 

RFE v2 

R 

SG 

1,000,000 

km2 region 

2009-

2010 

Compare 

downscaled 

climate data to 

SNOTEL. 

UEB 

snowmelt 

(SWE), 3 h, 

120 m 

climate 

downscale. 

Good SWE simulation 

(NSE-0.67). Downscaling 

limitations noted. 

Hafzi & 

Sorman 

(2022)  

[Turkey] 

CPC v1 

MSWEP v2.8 

ERA5 

CHIRPS v2 

CHIRP v2 

IMERG-Early v6 

IMERG-Late v6 

IMERG-Final v6 

TMPA-3B42RT v7 

TMPA-3B42 v7 

PERSIANN-CDR 

PERSIANN-CCS 

PERSIANN 

G 

SRG 

R 

SRG 

SR 

S 

S 

SG 

SG 

S 

SG 

S 

S 

10,250 km2, 

1130-3500 m 

asl 

2015-

2019 

Evaluate 

climate data 

consistency 

and simulated 

Q 

TUW, daily, 

conceptual 

Most gridded P data were 

poor, but Q simulation 

quite accurate. 

Recommend calibrating Q 

model with same gridded 

data used to run 

simulation (not observed 

P data). 
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Henn et 

al. (2018)  

[W US] 

H10 

L15 

PRISM-M 

NLDAS-2 

N15 

Daymet 

G 

G 

G 

G 

G 

G 

Western US 

(32-49°N, 

105-125°W) 

1982-

2006 

Intercompare 

spatial 

patterns, 

interannual 

variability, and 

multi-year 

trends in P 

Limited 

comparison 

to Swe, Q. 

Differences among 

datasets (especially high 

elevation, arid) may 

introduce substantial 

uncertainty. 

Kouakou 

et al. 

(2023)  

[W, C 

Africa] 

ARC v2 

CHIRP v2 

CHIRPS v2 

PERSIANN-CDR 

MSWEP v2.2 

TAMSAT v3 

ERA5 

JRA-55 Adj 

MERRA-2 P-TOT 

MERRA-2 P-COR 

WFDEI-CRU 

WFDEI-GPCC 

CPC v1 

CRU-TS v4 

GPCC v7 

SG 

SR 

SRG 

SG 

SRG 

SG 

R 

RG 

RSG 

RSG 

RG 

RG 

G 

G 

G 

68 basins 

(1,279-

600,000 km2), 

200-5,000 

mm/y P 

1984-

2005 

Evaluate P 

datasets, 

monthly Q 

simulation. 

GR2M, 

monthly, 

lumped 

Best P from G datasets. 

CHIRPS best for Q. 

Laiti et al. 

(2018)  

[Italy] 

E-OBS 

MSWEP 

MESAN 

APGD 

ADIGE 

G 

SRG 

DRG 

G 

G 

12,100 km2, 

185-3,500 m 

asl 

1989-

2008 

Assess 

hydrologic 

coherence of 

gridded data 

for daily Q. 

HYPERstrea

m + SCS-

CN, daily, 5 

km grid 

The higher-res G datasets 

had best Q. 

Massman

n (2020)  

[CONUS] 

CERA-20C 

20CR 

Livneh 

R 

R 

G 

168 basins 1900s-

2010s 

Assess century 

datasets for P, 

T (vs. Daymet), 

Q simulation 

HBV, daily, 

conceptual 

Quality decreases further 

back in history; T better 

than P. G better than R. 

Mazzoleni 

et al. 

(2019)  

[Global] 

CHIRP v2 

CMORPH v1 

PERSIANN 

PERSIANN-CCS 

SM2RAIN-ASCAT 

TMPA-3B42RT v7 

CHIRPS v2 

CMORPH-CRT v1 

GPCP1DD v1.2 

MSWEP v2.1 

PERSIANN-CDR 

TMPA-3B42 v7 

CPC Glob Unified 

GPCC 

GSMaP-RNL 

SR 

S 

S 

S 

S 

S 

SRG 

SG 

SG 

SRG 

SG 

SG 

RG 

RG 

RG 

8 basins, 200-

6,150,000 

km2, tropical 

to temperate 

climate zones 

2007-

2013 

Compare P 

datasets for Q 

simulation, 

assess P 

density, model 

effects 

HBV-96, 

daily?, 

conceptual, 

~0.25° grid 

No single best P dataset. 

Basin characteristics 

important. Q affected by 

basin scale, human 

footprint, climate. S 

poorest, most variable. SG 

best in Tropical, 

Temperate-arid climates. 

RG best in Temperate, 

Temperate-cold climates 

and densely gauged P 

basins. Subbasins had 

different best P dataset 

than outlet (distributed 
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PFD 

WFDEI CRU 

WFDEI GPCC 

RG 

RG 

RG 

model better than 

lumped). 

Mei et al. 

(2022)  

[Texas] 

TMPA-3B42 

NCEP-CFSR 

PRISM 

SG 

RS 

G 

535.76 km2, 

176-548 m asl 

1989-

2009 

Compare P 

data to NOAA, 

modeled Q in 

urban basin. 

SWAT, daily, 

subbasins 

21.4 km2 

(4.6 km)2, 

and ANN, 

daily, 

lumped 

PRISM had best P, TMPA 

underestimated P, PRISM 

and TMPA outperformed 

CFR or gauge data for Q. 

SWAT and ANN had 

similar results for same P 

data. 

Meng et 

al. (2014)  

[NE 

Tibetan 

Plateau] 

TMPA-3B42 v6 SG 122,000 km2, 

4,000 m asl, 

250-750 

mm/y P 

1998-

2008 

Compare P to 

NCC gauge and 

simulated Q 

CREST, 

daily, 

distributed, 

1 km2 grid 

TMPA daily P less than 

monthly P. TMPA 

unsatisfactory for daily Q, 

acceptable for monthly Q 

simulation. 

Mourtzini

s et al. 

(2017) 

[Midwest 

US] 

Daymet 

PRISM 

NASA-POWER 

G 

G 

RS 

45 stations in 

US Corn Belt. 

1980-

2014 (12-

35 yrs) 

Compare ETo 

calculated with 

station and 

gridded data. 

FAO-PM 

ETo. 

Poor ETo related to poor 

rh, esp. for PRISM. 

Muche et 

al. (2020) 

[Kansas] 

Daymet 

PRISM 

NLDAS 

GLDAS 

G 

G 

G 

G 

2,988 km2, 

252-428 m asl 

1983-

2013 

Compare to 

GHNC. 

Calibrate 

monthly Q, 

simulate daily 

Q. 

SWAT, daily, 

subbasins 

76.6 km2 

(8.8 km)2 

All monthly Q simulation 

similar (except GLDAS). 

Pokorny 

et al. 

(2020)  

[Canada] 

ANUSPLIN 

NCEP-NARR 

ERA-Interim 

WFDEI 

GFD-HYDRO 

G 

RG 

RS 

RG 

RSG 

1,400,000 

km2 basin (7 

subbasins), 

diverse 

climate 

regions 

1984-

2010 

Compare P 

data 

aggregations. 

-- All gridded datasets 

showed spatial 

performance variations. 

Some aggregation reduces 

input uncertainty, but info 

lost as aggr. incr.  

Radcliffe 

& 

Mukunda

n (2017) 

[Georgia] 

PRISM 

NCEP-CFSR 

G 

RS 

44.7 km2 2003-

2010 

Assess P 

datasets for Q 

simulation. 

SWAT, daily, 

subbasins 

1.4 km2 

(1.2 km)2. 

P: CFSR better. Q: PRISM 

better. Note: PRISM data 

do not appear to be time-

shifted. 

Raimonet 

et al. 

(2017)  

[France] 

SAFRAN 

MESAN 

E-OBS 

WFDEI-GPCC 

RG 

DRG 

G 

RG 

931 stations, 

10-10,000 

km2, diversity 

of climate, 

topo, elev. 

1989-

2010 

Evaluate P 

datasets, daily 

Q simulation. 

GR4J, daily, 

conceptual,  

High-res and reanalysis Q 

performed better. 

Essential to account for 

high-res topo. 

Ray et al. 

(2022)  

[Texas] 

Daymet v3 

PRISM 

IMERG-Early v6 

G 

G 

S 

4,300 km2, 

111-596 m asl 

2000-

2019 

Assess P 

datasets for Q 

simulation. 

SWAT, daily, 

subbasins 

Daymet, PRISM, CHIRPS 

best for Q. 
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IMERG-Late v6 

IMERG-Final v6 

PERSIANN 

PERSIANN-CCS 

PERSIANN-CDR 

CHIRPS v2 

S 

SG 

S 

S 

SG 

SRG 

50 km2 

(7 km)2 

Setti et al. 

(2020)  

[India] 

IMD 

TMPA-3B42RT 

TMPA-3B42 

NCEP-CFSR 

G 

S 

SG 

RS 

9,056 km2, 

152-1600 m 

asl, 1,140 

mm/y P 

1998-

2012 

Assess P 

datasets for Q 

simulation. 

SWAT, daily, 

subbasins 

211 km2 

(14.5 km)2 

Good P for all datasets. Q 

simulation (monthly 

calibration) good for all 

(IMD best).  

Shuai et 

al. (2022)  

[Colorado] 

PRISM 

Daymet 

NLDAS-2 

G 

G 

G 

53.2 km2 2016-

2019 

(PRISM 

shift 1 d) 

Assess datasets 

for P (7 sta), T 

(4 sta), 

simulated Q, 

SWE, ET. 

ATS, hourly, 

resolution 

0.005-0.05 

km2, 

distributed 

Small T diff (r>0.95). 

Strong P corr (r>0.9) for 

PRISM 93 sites), Daymet 

(1 site), NLDAS (0 sites). Q 

(hourly): Daymet > PRISM 

> NLDAS. 

Singh & 

Najafi 

(2020)  

[Canada] 

NRCan 

NCEP-CFSR 

GRASP 

NCEP-NARR 

S14FD 

G 

RS 

R 

RG 

DR 

113 stations, 

3 basins: 

46,600 km2, 

2130-3700 m 

asl; 600 km2, 

0-2,000 m asl; 

261 km2, 0.4-

1584 m asl. 

1980-

2010 

Assess P, T 

covariability 

Raven, 

daily, 

lumped/se

mi-

distributed 

Gridded T shows cold bias 

over Rockies vs warm bias 

over Prairies. NRCan (and 

S14FD) best T.  

Tarek et 

al. (2020)  

[N Amer] 

EPA-Interim  

EPA5 

R 

R 

3,138 basins 

in US, Canada 

1979-

2018 

Evaluate ERA5 

vs observations 

with emphasis 

on Q modelling 

GR4J, 

HMETS, 

daily, 

conceptual  

ERA5 improved over ERA-

Interim, with biases in SE 

US, W coast of N Amer. 

Translated into Q skill, 

except E US. 

Yang et al. 

(2014)  

[China] 

NCEP-CFSR 

APHRODITE 

China-trend 

RS 

G 

G 

2 basins: 1098 

km2, 366 km2 

2000-

2006 

Calibrate daily 

Q simulation 

SWAT, daily, 

subbasins 

29 km2 

(5.4 km)2 

China-trend was best. 

Poor results in areas with 

topo influence on P. 

Zhu et al. 

(2018)  

[NE China] 

Fengyun 

TMPA-3B42RT 

TMPA-3B42 

CMORPH-BLD v1 

CMORPH v1 

SRG 

S 

SG 

SG 

S 

12,385 km2, 

172-1391 m 

asl, 776 mm/y 

P 

2006-

2010 

Evaluate five P 

datasets with 

gauge P and 

simulated Q. 

SWAT, daily, 

monthly, 

subbasins 

~459 km2 

(~21 km)2 

Better P agreement from 

Fengyun, TMPA-3B42, 

CMORPH-BLD (all gauge-

adjusted). Daily Q 

satisfactory for Fengyun, 

TMPA-3B42. Model 

parameters were only 

applicable for dataset 

used for calibration. 

Reference: [Location]=General region of study. Data Source: G=ground-based observations (with interpolation), S=satellite, R=reanalysis, 

D=downscaling. Analysis Goals, Hydrologic Outcomes: NSE=Nash-Sutcliffe efficiency 
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4.1 Humidity, Wind, and Solar Radiation Dataset Assessment 

Two of the 29 studies summarized in Table 4 assessed and compared humidity (rh, sh, Tdp, or Vp), windspeed (u), and/or 270 

solar radiation (Rs, sc, cc) to station data or their effects on hydrologic analyses. Mourtzinis et al. (2017) assessed and compared 

G gridded datasets for rh (Daymet [derived from Vp], PRISM [derived from Tmin, Tmax]) and Rs (Daymet, NASA-POWER 

[RS]) to observed data from 45 stations in the midwest U.S. They found good agreement between daily Rs and station data 

(RMSE = 8% for both datasets) with 98% of data within 15% of the measured data. However, daily rh agreement was poor for 

both Daymet (RMSE = 13%) and PRISM (RMSE = 18%). Blankenau et al. (2020) compared six G datasets to 3 years of data 275 

at 103 weather stations across the U.S., Guam, and Puerto Rico. For Vp, u, and Rs, performance was best for RTMA and 

NDFD 1-d forecasts and worst for NLDAS. High spatial resolution did not necessarily confer accuracy, as coarser GLDAS 

(28 km) and NCEP-CFS v2 (22 km) datasets outperformed finer NLDAS (14 km). Bandaru et al. (2017) compared four gridded 

datasets (three G, one RG) to observed monthly data from five flux towers in the northwest U.S. and found different results 

for humidity (Tdp) and Rs. For Tdp, performance decreased from NCEP-NARR (RG) to PRISM to Daymet to NLDAS (G). 280 

Conversely for Rs, performance decreased from NLDAS to Daymet (both with negative bias) to NCEP-NARR (positive bias). 

McEvoy et al. (2014) compared P, T and rh data from four G datasets to 14 stations in Nevada. Gridded datasets, particularly 

Daymet, had difficulty representing cold-air drainage in this mountainous terrain; PRISM incorporates methods to represent 

inversions and performed better across the 1-year comparison study. Finer resolution (PRISM: 800 m, Daymet: 1 km) had less 

bias than coarser resolution (PRISM, gridMet: 4 km) datasets. Also, the common assumption that daily Tmin approximates 285 

Tdp (used by Daymet) was unrealistic in this semiarid environment.  

Current literature is too limited to provide a consensus for humidity, u, or Rs gridded dataset selection. More studies are needed 

both to assess the accuracy of available humidity, u, or Rs gridded datasets (Tables 1, 2, 3) and to assess their impacts on 

hydrologic model performance. A key conclusion was that analyses where rh, u, and Rs are primary forcing variables (e.g., 

ET, airshed, snowpack, or surface soil moisture dynamic analyses) would benefit from an assessment of available dataset 290 

suitability (e.g., comparison of the gridded dataset to reference, ground-based weather stations in or around the study area) and 

a sensitivity analysis of the model (how responsive is the response variable to the noted gridded climate dataset uncertainty) 

prior to dataset selection. Hybrid data sources (station and gridded) need to be considered regarding both model skill for 

simulating hydrology and optimal model parameter sets, because effects of mixing data sources are generally unknown. 

Dependencies among climate variables (such as discussed in Section 4.4 for P-T dependencies) may also be an important 295 

consideration for humidity, u, and Rs and lead to prioritizing a gridded dataset that represents covariances among variables of 

concern. As such, methods to retain coupling of climate variables in gridded datasets are needed. 

4.2 Temperature (T) Dataset Assessment 

Accuracy and agreement of gridded datasets of air temperature (T) at 2 m above ground (Table 4), about crop canopy height, 

were dependent on many factors, including spatial region of interest and topography. Essou et al. (2016b) found T from six R 300 
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datasets generally were comparable to station data in 370 basins across the CONUS. Behnke et al. (2016) evaluated eight G 

datasets and found gridded T data highly correlated (r > 0.9) with station data, but biased towards cooler T, across the CONUS; 

the best dataset differed by region, and spatial resolution was not an important factor. Massmann (2020) analysed three datasets 

(two R, one G) with long (century) periods of record in 168 basins throughout the CONUS and found T datasets generally 

were adequate across the U.S. but were less adequate (lower daily rank correlation, higher long-term bias) in the Rocky 305 

Mountains. In the Rockies, Shuai et al. (2022) found strong correlation (r > 0.95) with measured station data in Colorado for 

G datasets (PRISM, Daymet, NLDAS-2). In the Midwest U.S., Mourtzinis et al. (2017) found good agreement (RMSE < 5%) 

for both PRISM and Daymet. Tercek et al. (2021) revealed a characteristic of G datasets tending to underrepresent higher 

elevation point locations (e.g., mountain tops), which corresponded to gridded monthly maximum T data. McEvoy et al. (2014) 

found G datasets (PRISM, Daymet, gridMet) in montane regions underestimated inversion strength and Tmin in foothills. As 310 

expected, datasets resulting from downscaling methods were constrained by inherent inaccuracies of the original gridded T 

dataset (Gupta & Tarboton, 2016).  

Several studies specifically addressed gridded T dataset contribution to hydrologic model performance. A consensus across 

many studies was that T dataset selection was less influential on hydrologic simulation accuracy than P dataset selection 

(Dembélé et al., 2020; Essou et al., 2016a; Mei et al., 2022; Shuai et al., 2022). Laiti et al. (2018) evaluated five gridded daily 315 

T datasets covering a basin in the Italian Alps, with elevations ranging from 185 to 3,500 m. They found G datasets with higher 

resolution produced the best streamflow (Q) simulation, but suggested T datasets from various sources (G, S, R) can be used 

interchangeably, with negligible impacts on simulation results. The consensus from these nine studies (discussed in this section 

and cited in Table 4) suggests that gridded T datasets generally can be used interchangeably for hydrologic analyses in most 

parts of the CONUS or globally, but differences in hydrologic response may arise in areas of more complex (i.e., mountain) 320 

topography. 

4.3 Precipitation (P) Dataset Assessment 

Precipitation (P) datasets were less reliable than T datasets both in their accuracy and in their performance forcing hydrologic 

models. P data often lack accuracy and spatial variability in complex, mountain topography (Hafzi & Sorman, 2022; Henn et 

al., 2018) and need to be gauge corrected (Raimonet et al., 2017; Mazzoleni et al., 2019; Laiti et al., 2018; Essou et al., 2017; 325 

Hafzi & Sorman, 2022). In mountainous regions as well as humid regions, R datasets generally performed better than G in 

areas with low station density (< 1 per 1000 km2), but for higher station densities (> 3 per 1000 km2), there was no difference 

(Essou et al., 2017). Gampe & Ludwig (2017) and Essou et al. (2016b) found that R datasets show great potential to provide 

reasonable P data where station location and density cause high errors and uncertainty, especially in higher elevations and 

topographically complex regions. Ang et al. (2022) found P data from G (APHRODITE), SG (TMPA-3B42, IMERG) and R 330 

(ERA5) datasets all performed well (r > 0.75) in a data-sparse region (< 3 per 1000 km2) of southeast Asia. Essou et al. (2016b) 

judged that differences between R and observed G data across the CONUS were small enough to allow direct use of R-based 
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P and T data for hydrologic modelling without bias correction. Satellite datasets corrected with either R or G datasets increased 

P accuracy (Hafzi & Sorman, 2022). In hydrologic models, inputs of daily or hourly P are partitioned into rain (liquid) and 

snow (solid) based primarily on T (daily Tmin), but little information exists on the relative accuracy of P for rain, snow, and 335 

rain/snow mixes. See Sections 4.4 and 4.6 for P-T interactions and estimation of snow-water equivalent (SWE). 

The G methods provided the most accurate gridded P data (Kouakou et al., 2023; Massmann, 2020), although performance of 

G datasets deteriorate in gauge-sparse regions (Beck et al., 2017b). With adequate station density, weather-station network 

data were superior at local to regional scales (Tarek et al., 2020; Meng et al., 2014; Yang et al., 2014). Datasets that directly 

integrated higher temporal resolution gauge data performed best, with decreasing performance from those incorporating daily 340 

gauge data (CPC-Unified, MSWEP v1.2 and v2) compared to 5-day gauge data (CHIRPS v2), monthly gauge data (GPCP-

1DD v1.2, TMPA-3B42 v7, WFDEI-CRU), or monthly SG GPCP product (PERSIANN) (Beck et al., 2017b). 

Global R datasets often were good proxies for P data (Essou et al., 2016b). Massmann (2020) found R datasets were more 

appropriate for short-term P in the northwest U.S., with some difficulties in representing P in the south and east U.S. From a 

comparison of 18 gridded datasets, Mazzoleni et al. (2019) found no single best P dataset. The R datasets performed better 345 

than G datasets for low station density (< 1 per 1000 km2); otherwise, little difference was observed (Essou et al., 2017; Tarek 

et al., 2020). Gampe & Ludwig (2017) found higher resolution P data performed better, but coarse data provided close 

representation of overall, longer-term climate characteristics. Raimonet et al. (2017) demonstrated the importance of 

accounting for the impacts of high-resolution topography on P gridded data, and that low-altitude, less-complex topographies 

were less sensitive to the choice of gridded dataset. Similar results were reported by Laiti et al. (2018), who added that simple 350 

bias correction cannot overcome P dataset deficiencies. 

Overall, the literature suggests the interaction of station density and basin characteristics, primarily topography, is of central 

importance and can drive performance. In regions with high station density (> 3 per 1000 km2), G datasets or those corrected 

using G data (SG, RG, SRG, RSG) perform similarly. However, in areas with lower station density (< 1 per 1000 km2) as well 

as in higher elevations and topographically complex regions, R datasets perform better. Unadjusted S datasets, without G or R 355 

correction, generally were least reliable. Other site and dataset considerations may also be important for specific hydrologic 

modelling applications and are discussed in the following sections. 

4.4 P-T Dependency 

Climatological dependencies can exist between P and T. Gridded datasets decouple P and T, which can cause problems with 

hydrologic simulation (Singh & Najafi, 2020). For example, Singh & Najafi (2020) noted failure of gridded datasets to 360 

represent warm-wet dependencies in north and southwest Canada and hot-dry dependencies in spring and summer seasons in 

the Canadian prairies that were present in the observed data. This led to inaccurate modelling of hydrologic processes 

(rain/snow partitioning, extreme events), which may be particularly important in representing hydrological reality under a 

changing climate. In response to this need for coupled P and T data, Raimonet et al. (2017) suggested a process of dynamically 
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calibrating a conceptual hydrological model on meteorological datasets, which was able to assess consistency of the 365 

meteorological datasets, including covariance of P and T, as well as improve streamflow simulation performance. Again, these 

results suggest that methods to retain coupling of climate variables in gridded datasets are needed. 

4.5 Streamflow (Q) Modelling 

Not surprisingly, as noted above, Q was more responsive to P than T (Dembélé et al., 2020; Essou et al., 2016a; Mei et al., 

2022; Shuai et al., 2022). Most gridded P datasets were adequate for Q simulation at the monthly scale and spatial scales 370 

ranging from 3,000 to 122,000 km2 (Ray et al., 2022; Meng et al., 2014; Muche et al., 2020; Setti et al., 2020). Some studies 

found that G-based P datasets generally were better than S or R datasets for hydrological modelling (Ray et al., 2022; Meng 

et al., 2014; Kouakou et al., 2023; Massmann, 2020), especially for high spatial resolution datasets (Laiti et al. 2018). In 

addition, hydrologic performance using G datasets was not affected by basin size, but that performance of the G datasets did 

improve slightly as the weather station density of their source data increased (Essou et al., 2017). However, total basin size 375 

did not influence Q performance (Tarek et al., 2020). In a study of 8 large-scale basins globally, Mazzoleni et al. (2019) found 

Q simulation was affected by basin scale, human footprint, and climate: S datasets had the poorest performance and were the 

most variable; SG datasets were the best performers in tropical and temperate-arid climates; and RG datasets were the best 

performers in temperate and temperate-cold climates and within basins having densely gauged P.  

In a study of 9 gridded datasets applied with a conceptual hydrologic model to simulate streamflow in 9,053 basins (< 50,000 380 

km2) worldwide, Beck et al. (2017b) found MSWEP v2 P dataset provided consistently better performance than other products 

across North America, Europe, Japan, Australia, New Zealand, and southern and western Brazil, whereas CHIRPS v2 

performed better than other products in Central America, and central and eastern Brazil, but no one dataset performed best 

everywhere. They also concluded, based on good performance of CPC-United, CHIRPS v2, and MSWEP v1.2 and v2, that 

incorporation of sub-monthly gauge data improved Q simulation.  385 

Interestingly, the best P dataset was not always the best for Q modelling (Yang et al., 2014), and lower P and T performance 

did not always translate into lower Q performance (Essou et al., 2016a; Hafzi & Sorman, 2022). Similarly, Ang et al. (2022) 

found that S datasets corrected with G observations had better Q performance than other G or R datasets that performed 

similarly in comparison to observed P data.  

Datasets with the best representation of temporal dynamics did not necessarily align with those with the best representation of 390 

spatial patterns, with more hydrologic uncertainty associated with misrepresenting spatial patterns than temporal dynamics 

(Dembélé et al., 2020). Hafzi & Sorman (2022) found most gridded P datasets had low performance in representing daily P 

over space and time, but some still had accurate Q simulation. Mazzoleni et al. (2019) found that the best P dataset for a basin 

outlet was not necessarily the best for its subbasins, which reflects the influence of scale and suggests a benefit to distributed 

hydrologic modelling over lumped modelling approaches. 395 
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Hydrologic model calibration approaches were also sensitive to selection of gridded dataset. Ray et al. (2022) found that model 

parameter uncertainty decreased when calibrating the SWAT model using G-based P datasets. In addition, hydrologic models 

calibrated using one gridded dataset did not work as well when applied using forcings from other datasets (Zhu et al., 2018; 

Hafzi & Sorman, 2022). 

Dependency between P and T did not appear to affect Q simulation. Shuai et al. (2022) found that inter-mixing T datasets 400 

among PRISM, Daymet, and NLDAS P datasets had little effect on Q. 

4.6 ET and SWE Modelling 

Few studies were found that compared the effects of gridded datasets on simulation of other spatially distributed hydrologic 

variables, such as ET or SWE. Mourtzinis et al. (2017) found Daymet outperformed PRISM in calculating FAO-Penman-

Monteith reference ET (ETo) in the midwest U.S. Although both were similar in comparisons of P and T, ETo bias was less 405 

for Daymet (-4 mm) than PRISM (+253 mm), and both had poor agreement in the high and low ranges of measured ETo. 

Errors were related to poor agreement with rh, especially for PRISM. Similarly, ETo was generally overestimated (relative to 

ETo from weather station data) by all six G datasets evaluated by Blankenau et al. (2020), with median biases from 12 to 31%, 

consistent with overestimation of T, u, and Rs and underestimation of Vp. In a comparison of different gridded datasets forcing 

ET simulation in SWAT, Ang et al. (2022) found that using P from TRMM and IMERG with T from a Southeast Asia 410 

observational network (SA-OBS) outperformed other gridded datasets (P: Aphrodite, ERA5, NCEP CFS v2, T: CPC) in this 

tropical region. Poor performance of gridded dataset P and T was credited with the poor ET simulation. Shuai et al. (2022) 

found little difference between simulation of ET from PRISM, Daymet, and NLDAS in Colorado and assumed the similarity 

was related to using the same Rs forcing. Shuai et al. (2022) also evaluated the effects of G datasets on SWE in Colorado. 

They found fine spatial scale helped PRISM (0.8 km) and Daymet (1 km) outperform NLDAS (12 km) in simulating spatial 415 

SWE, with the highest correlation from PRISM. Gupta & Tarboton (2016) used spatially downscaled R datasets (MERRA 

data for T, rh, u, and Rs; RFE v2 data for P) and found good SWE simulation compared to SNOTEL data (mean NSE = 0.67 

across 8 sites). Key sources of discrepancies were from P and Rs data uncertainty. These results indicate that accuracy in 

climate data translated into accuracy in ET and SWE simulation and suggest that all gridded data be scrutinized, and possibly 

bias corrected, before use in ET and SWE modeling. 420 

4.7 P Ensembles 

Ensembles of gridded datasets often were recommended to account for gridded dataset uncertainty and better represent overall 

climatology (Gampe & Ludwig, 2017; Pokorny et al., 2020), but with some caveats. For example, Gampe & Ludwig (2017) 

found R data (compared to station data) showed fewer consecutive dry days (CDDs, P < 1 mm), more consecutive wet days 

(CWDs, P > 1 mm), and lower contribution of heavy P events (i.e., more low but steady P events) to annual P, which has the 425 

potential to impact hydrologic simulation (more infiltration, less streamflow, greater baseflow, fewer floods, etc.). They 
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recommended identification and removal of such non-representative datasets from ensembles. Pokorny et al. (2020) suggested 

that data should be assessed in relation to the target hydrologic model’s spatio-temporal scale. Notably, ensembles dampen 

extreme events and decrease the frequency of low/high P events, which can lead to non-representative hydrological simulation 

(Pokorny et al., 2020). Laiti et al. (2018) demonstrated a Hydrologic Coherence Test (HyCoT), essentially a metric-430 

independent method of comparing gridded datasets according to their performance in a hydrologic model, to exclude 

meteorological data less capable of reproducing a hydrologic outcome. 

4.8 Latency 

The latency with which gridded datasets become available for use may be a critical factor in gridded dataset selection. Few 

studies assessed latency effects. Hafzi & Sorman (2022) found that some real-time datasets that were available with short 435 

latency (e.g., 1-h lag, PERSIANN-CSS with 0.04°) sacrificed accuracy compared to coarser, longer-latency datasets, such as 

IMERG-Late v6 (14-h lag, 0.1°), MSWEP v2.8 (few-month lag, 0.1°) and CHIRPS v2 (1-month lag, 0.05°). 

5 Conclusions 

This study summarized characteristics, primary references, and data availability of 63 gridded datasets at CONUS to global 

extents to assist in dataset selection by hydrologic investigators. Our review of information from 29 recent (past 10 years) 440 

intercomparison studies spans a wide range of gridded datasets, study settings and scales, and hydrologic modelling objectives. 

Readers are referred to these studies for a wealth of details on their results and recommendations; we encourage particular 

focus on studies with similar climatic setting and hydrologic objectives to the planned investigation. From this review and 

synthesis we formulated the following interpretations and, where appropriate, guidelines: 

No single gridded climate dataset or data source was universally superior for hydrologic analyses. Several common themes 445 

arose among the 29 studies reviewed. Gridded daily temperature (T) datasets improved when derived from greater station 

density, though they were relatively interchangeable in hydrologic analyses. Gridded daily precipitation (P) data were more 

accurate when derived from higher-density station data, when used in spatially less-complex terrain, and when corrected using 

ground-based (G) data. In mountainous or humid regions, reanalysis-based (R) gridded datasets generally performed better 

than G gridded datasets when the underlying station density was low; but when station densities were higher, there was no 450 

difference. Ground-based (G) gridded P datasets generally performed better than satellite-based (S) or R datasets, though better 

P and T datasets did not always translate into better streamflow modelling. Hydrologic analyses would benefit from advances 

in creating gridded datasets that retain climate variable interdependencies and better represent climate variables in complex 

topography. The caveat that some studies were insensitive to using independent sources of P and T may not be a good rationale 

for ignoring possible cross-correlations between climate variables. Rather, this result may point to the insensitivity of 455 

hydrologic models that don’t necessarily capture space-time process interactions within a watershed. Use of hybrids of gridded 
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datasets and station data for a particular region remains a topic for further investigation because there can be substantial 

differences between data at a particular station and its corresponding grid-cell data. 

Hydrologic studies rarely defend their selection of a particular dataset to address research questions, but investigators should 

justify their selection of a particular gridded dataset with full consideration of both the climatologic setting and the hydrologic 460 

analysis type and objectives. Through a thorough review of the recent literature, this study provides general consensus 

recommendations for dataset selection, though characteristics of a given hydrologic analysis or study may warrant more 

specific selection processes and criteria. The authors’ overall recommendations to hydrologic modellers are to select the 

gridded dataset (from Tables 1, 2, and 3) (a) having spatial and temporal resolutions that match modelling scales, (b) that are 

primarily (G) or secondarily (SG, RG) derived from ground-based observations, especially in areas of high topographic relief, 465 

(c) with sufficient spatial and temporal coverage for the analysis, (d) with adequate latency for analysis objectives, and (e) that 

includes all climate variables of interest, so as to better represent interdependencies. 

Appendix 

Table A1. Summary of Different Data Formats, Descriptions, and Processing Approaches for Gridded Climate Datasets 

using Programming Languages and Software 470 

Data Format 

Name 

Description 

NetCDF  

(Network 

Common Data 

Form) 

The NetCDF format was first developed in the 1980s by researchers at the Unidata Program Center at the 

University Corporation for Atmospheric Research (UCAR). Since then, it has undergone several revisions and 

updates to address technology and user needs changes. The latest version, NetCDF-4, includes support for 

compression, chunking, and parallel I/O, as well as new data types and features for handling large and complex 

datasets. NetCDF files are widely used in the atmospheric and climate science communities and are supported by 

many software packages. They include metadata that describe the file's contents and allow easy data access. 

NetCDF is a self-describing format, meaning the metadata are embedded within the file. This makes sharing and 

using the data more accessible, as the metadata travel with the data. NetCDF files can be read and written using a 

variety of software packages, including Python, R, and MATLAB.  

The NetCDF format can be accessed and manipulated using a variety of software packages, including: 

● NetCDF software library: A library of programming functions for working with NetCDF files in C, Fortran, 

and other programming languages. 

● NetCDF4-Python: A Python package that provides access to NetCDF files using the NetCDF-4 library. 

● RNetCDF: An R package that provides access to NetCDF files using the NetCDF library. 

● Panoply: A Java-based application for visualizing and analyzing NetCDF files. 

Some tutorials on working with NetCDF files include:  
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● Unidata NetCDF tutorials: http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial/  

● Python NetCDF4 tutorial: https://unidata.github.io/netcdf4-python/netCDF4/index.html  

● RNetCDF tutorial: https://www.r-bloggers.com/2019/08/working-with-netcdf-files-in-r/  

HDF5  

(Hierarchical 

Data Format 5) 

The HDF5 format was first introduced in 1997 by the National Center for Supercomputing Applications (NCSA) 

at the University of Illinois at Urbana-Champaign. Since then, it has become a widely used format for scientific 

data, including climate data. HDF5 has undergone several revisions and updates, including supporting 

compression, chunking, parallel I/O, and new features for managing large and complex datasets. HDF5 is a flexible 

and efficient format that can handle various data types, including climate data. It includes features for managing 

large and complex datasets, such as compression, chunking, and parallel I/O. HDF5 files are portable across 

platforms and can be accessed using a variety of programming languages, including Python, R, and MATLAB. 

However, HDF5 can be more complex to work with than other formats, and the metadata are not always embedded 

within the file itself, making it harder to share and use the data.  

The HDF5 format can be accessed and manipulated using a variety of software packages, including: 

● HDF5 software library: A library of programming functions for working with HDF5 files in C, C++, 

Fortran, and other programming languages. 

● h5py: A Python package that provides access to HDF5 files using the HDF5 library. 

● rhdf5: An R package that provides access to HDF5 files using the HDF5 library. 

● HDF Compass: A graphical tool for exploring and editing HDF5 files.  

Some tutorials on working with HDF files include:  

● HDF Group HDF5 tutorial: https://portal.hdfgroup.org/display/HDF5/Tutorials  

● Python h5py tutorial: https://www.h5py.org/docs/  

● R hdf5r tutorial: https://cran.r-project.org/web/packages/hdf5r/vignettes/hdf5r.pdf  

ASCII  

(American 

Standard Code 

for Information 

Interchange) 

ASCII is a simple text format that has been in use for decades. While there have been no significant changes to 

the format, technological advances have made working with large datasets in ASCII format easier. ASCII files are 

easy to read and write but can be less efficient for storing large datasets. ASCII files can be opened and edited 

using any text editor, but additional processing may be required in other software packages.  

Some tutorials to handle simple text files include:  

● Python CSV tutorial: https://realpython.com/python-csv/  

● R readr tutorial: https://readr.tidyverse.org/articles/readr.html  

● MATLAB import data function documentation: 

https://www.mathworks.com/help/matlab/ref/importdata.html  

GRIB  

(Gridded 

Binary) 

The GRIB format was first introduced in the 1980s by the World Meteorological Organization (WMO) to 

standardize the exchange of weather and climate data. Since then, it has undergone several revisions and updates 

to address technology and user needs changes. The latest version, GRIB2, includes support for new data types and 

features for encoding and compressing data, which can make them more compact than other formats. However, 

GRIB files can be more complex than other formats and may require specialized software to read and write.  

The GRIB format can be accessed and manipulated using a variety of software packages, including: 

http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial/
https://unidata.github.io/netcdf4-python/netCDF4/index.html
https://www.r-bloggers.com/2019/08/working-with-netcdf-files-in-r/
https://portal.hdfgroup.org/display/HDF5/Tutorials
https://www.h5py.org/docs/
https://cran.r-project.org/web/packages/hdf5r/vignettes/hdf5r.pdf
https://realpython.com/python-csv/
https://readr.tidyverse.org/articles/readr.html
https://www.mathworks.com/help/matlab/ref/importdata.html
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● ECMWF GRIB API: A software library for working with GRIB files developed by the European Centre 

for Medium-Range Weather Forecasts (ECMWF). 

● PyGRIB: A Python package that provides access to GRIB files using the ECMWF GRIB API. 

● R package "gribtools": Provides tools to manipulate, read and write GRIB files. 

● wgrib2: A command-line tool for manipulating and converting GRIB files.  

Some tutorials on working with GRIB files include:  

● ECMWF GRIB API tutorial: https://software.ecmwf.int/wiki/display/GRIB/GRIB+API+tutorial 

● Python PyGRIB tutorial: https://jswhit.github.io/pygrib/docs/pygrib.html 

● R rNOMADS tutorial: https://cran.r-project.org/web/packages/rNOMADS/vignettes/rNOMADS.html  

GeoTIFF  

(Georeferenced 

Tagged Image 

File Format) 

The GeoTIFF format was first introduced in the 1990s to include georeferencing information in TIFF image files. 

Since then, it has become a widely used format for storing and analyzing spatial data, including climate data. 

GeoTIFF has undergone several revisions and updates, including the addition of support for new coordinate 

systems and projections and new features for managing large and complex datasets. GeoTIFF files include spatial 

information, making them useful for storing and analyzing climate data that are geographically referenced. GIS 

software packages widely support them and include metadata describing the coordinate system, projection, and 

other data attributes. However, GeoTIFF files can be larger than other formats and may require specialized 

software to read and write.  

The GeoTIFF format can be accessed and manipulated using a variety of software packages, including: 

● GDAL (Geospatial Data Abstraction Library): A software library for reading and writing geospatial data, 

including GeoTIFF files. GDAL can be accessed using Python, R, and other programming languages. 

● R package "raster": Provides tools to manipulate, read, and write GeoTIFF files in R. 

● QGIS: A free and open-source GIS software package that includes tools for working with GeoTIFF files. 

● ArcGIS: A proprietary GIS software package that includes tools for working with GeoTIFF files. 

Some tutorials to help understand working with GeoTIFF files include: 

● GDAL/OGR tutorial: https://gdal.org/tutorials/raster_api_tut.html 

● Python rasterio tutorial: https://rasterio.readthedocs.io/en/latest/topics/index.html 

● QGIS training manual: https://docs.qgis.org/3.16/en/docs/training_manual/index.html  
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