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Abstract. The simultaneous incorporation of streamflow and evaporation data into sensitivity analysis and calibration ap-

proaches has a great potential to improve the representation of hydrologic processes in modelling frameworks. This work aims

to investigate the capabilities of the Variable Infiltration Capacity (VIC) model in a large-sample application focused on the

joint integration of streamflow and evaporation data for 189 headwater catchments located in Spain. The study has been artic-

ulated into three parts: (1) a regional sensitivity analysis for a total of 20 soil, routing and vegetation parameters to select the5

most important parameters conducive to an adequate representation of the streamflow and evaporation dynamics; (2) a two-

fold calibration approach against daily streamflow and monthly evaporation data based on the previous parameter selection

for VIC, and (3) an evaluation of model performance based on a benchmark comparison against a well-established hydrologic

model for the Spanish domain and a cross-validation test using multiple meteorological datasets to assess the generalizability

of the calibrated parameters. The regional sensitivity analysis revealed that only two vegetation parameters – namely, the leaf10

area index and the minimum stomatal resistance – were sufficient to improve the performance of VIC for evaporation. These

parameters were added to the soil and routing parameter during the calibration stage. Results from the two calibration experi-

ments suggested that, while the streamflow performance remained close in both cases, the evaporation performance was highly

improved if the objectives for streamflow and evaporation were combined into a single composite function during optimization.

The VIC model outperfomed the reference benchmark and the independent meteorological datasets yielded a slight to moder-15

ate loss in model performance depending on the calibration experiment considered. This investigation will help gain a better

understanding of the hydrology of the Spanish catchments and will help prepare the ground for a fully gridded implementation

of the VIC model in Spain.

1 Introduction

Large-sample hydrology (Addor et al., 2020) and large-scale hydrology (e.g., Bierkens, 2015; Wood et al., 2011) aim to20

promote the transferability of knowledge between regions and assess the applicability of hydrologic models and theories at

regional, continental and global scales. Large-sample hydrology involves large sets (tens to thousands) of catchments, and its
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main focus is to provide generalizable knowledge of hydrological processes and models based on a large sample of catchments

representing different hydroclimatic conditions (Addor et al., 2020). Similarly, large-scale hydrology relies on simulations

from land-surface models carried out at the so-called spatial hyper-resolution (> 1 km) to quantify and monitor the terrestrial25

water cycle at multiple scales (Bierkens, 2015; Bierkens et al., 2015; Wood et al., 2011).

Large-sample and large-scale hydrologic studies play an important role in supporting water resources planning and quan-

tifying hydrologic changes across scales in the context of a changing climate (Addor et al., 2020; Wood et al., 2011). The

gap between both hydrologic fields is becoming increasingly reduced, and both can be considered as two complementary ap-

proaches that attempt to provide a solid understanding of the spatial variability of hydrologic processes and to facilitate the30

intercomparison of model structures across climates (Addor et al., 2020). This is also manifested in the greater areas covered

by hydrologic models (Beck et al., 2016, 2020), the development of gridded runoff observations (Gudmundsson and Senevi-

ratne, 2016; Ghiggi et al., 2019), the tendency towards finer resolutions in land-surface models (Bierkens, 2015; Wood et al.,

2011), and the use of macroscale hydrologic models in large-sample studies (e.g., Mizukami et al., 2017; Newman et al., 2017;

Rakovec et al., 2016a, b, 2019; Sepúlveda et al., 2022; Yeste et al., 2020, 2021).35

From a data perspective, large-sample hydrology encompasses hydrologic studies founded on large-sample datasets of

streamflow observations, hydrometeorological data and hydroclimatic and landscape attributes (Addor et al., 2020; Kratzert

et al., 2023). This includes investigations on extreme events (e.g., Blöschl et al., 2017; Do et al., 2017; Gudmundsson et al.,

2019), climate change impacts (e.g., Marx et al., 2018; Melsen et al., 2018; Vormoor et al., 2015), variations in terrestrial water

storage (e.g., Zhang et al., 2017), model evaluation and benchmarking (e.g., Aerts et al., 2022; Newman et al., 2017; Rakovec40

et al., 2019; Yeste et al., 2020), data and modelling uncertainties (e.g., Beck et al., 2017; Coxon et al., 2015), parameter es-

timates during calibration (e.g., Beck et al., 2016, 2020; Mizukami et al., 2017; Rakovec et al., 2016a, b), and transferability

of parameters in space based on parameter regionalization techniques (e.g., Beck et al., 2020; Pool et al., 2021; Rakovec

et al., 2019). But over and above the extensive hydroclimatic characterization commonly provided in large-sample datasets,

streamflow is considered a category of its own (Addor et al., 2020). Streamflow datasets are primarily based on individual45

contributions from national hydrologic services, which constitute the building blocks of continental and global streamflow

repositories. The role of national water archives is of capital importance in this respect, and ultimately, it is the international

collaboration among national authorities worldwide which makes it possible to tackle this complex challenge (Addor et al.,

2020).

Large-sample hydrologic studies can strongly benefit from the integration of satellite remote sensing data into modelling50

frameworks in order to draw more robust conclusions on catchment functioning (Clark et al., 2017; Rakovec et al., 2016a, b, 2019;

Yeste et al., 2020, 2021, 2023). In particular, the use of satellite-based algorithms to retrieve evaporation information represents

an unprecedented opportunity to monitor the dynamics and the climate-driven changes in evaporative fluxes (Konapala et al.,

2020; Koppa et al., 2022). Evaporation represents the second largest component of the global water balance and is expected

to increase as a consequence of global warming (IPCC, 2021). These changes can pose a challenge for future water security55

and water resources availability from regional to global scale (Lehner et al., 2019; Konapala et al., 2020; Koppa et al., 2022).

Therefore, the integration of evaporation data into large-sample modelling approaches is a promising solution to calibrate and
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evaluate models for more than one hydrologic variable (traditionally streamflow, Dembélé et al., 2020a, b) and thus achieve a

more reliable quantification of the water balance (Yeste et al., 2023).

This study aims to develop a hydrologic modelling framework to investigate the streamflow and evaporation dynamics for a60

large set of Spanish catchments. As part of the Iberian Peninsula, Spain constitutes a region where the effects of climate change

are already noticeable and are expected to be much more pronounced by the end of the 21th century (IPCC, 2021). The Iberian

Peninsula has been previously identified as a hotspot (Diffenbaugh and Giorgi, 2012; Vogel et al., 2021), and has manifested

recurrent droughts and an increasing tendency towards aridity conditions for the last decades (García-Valdecasas Ojeda et al.,

2021a, b; Páscoa et al., 2017). From a hydrologic perspective, the Spanish catchments have undergone dramatic streamflow65

decreases during the last decades (Lorenzo-Lacruz et al., 2012, 2013), and evaporative fluxes play a dominant role in the water

balance for the entire region (García-Valdecasas Ojeda et al., 2020a; Vicente-Serrano et al., 2014). These changes are expected

to exacerbate under climate change (García-Valdecasas Ojeda et al., 2020b, 2021a, b) and can pose an important threat for the

future water planning and management in the country.

The large-sample modelling approach followed in this work will be focused on the Variable Infiltration Capacity (VIC) model70

(Liang et al., 1994, 1996), one of the most widely used hydrologic models in hydrologic studies (Addor and Melsen, 2019). The

VIC model has been successfully implemented in many previous large-sample studies and large-scale applications (e.g., Melsen

et al., 2018; Mizukami et al., 2017; Rakovec et al., 2019; Sepúlveda et al., 2022), including in Spain (Yeste et al., 2020, 2021),

which makes it an excellent choice for the purpose of this investigation. The capabilities of VIC to integrate streamflow

observations and satellite-based evaporation data will be thoroughly examined and its performance will be compared against75

current modelling efforts providing the basis for water resource planning and management in Spain.

2 Study area and data

2.1 The Spanish catchments and streamflow dataset

This work is focused on a set of 189 headwater catchments defined for 94 reservoirs and 95 gauging stations belonging to the

main River Basin Districts in Spain (Fig. 1a, Table 1). These catchments are representative of the hydroclimatic variability80

within the country, and their physiography comprises areas ranging from 9 to 3825 km2, mean elevations from 147 to 1982 m

and mean slopes from 4 to 100 m/km (see also Fig. 3 and Table 3, which will be later introduced in Section 3.2). Streamflow

observations for the Spanish catchments are monitored in Automatic Hydrological Information Systems (SAIHs, Sistemas

Automáticos de Información Hidrológica) and in the Official Network of Gauging Stations (ROEA, Red Oficial de Estaciones

de Aforo) and are estimated via a daily water balance of water storages and releases for reservoirs and using rating curves for85

gauging stations.

The 189 study catchments were selected from the Integrated Network of Gauging Stations (SAIH-ROEA) dataset (https:

//www.miteco.gob.es/en/cartografia-y-sig/ide/descargas/agua/anuario-de-aforos.aspx), a national archive of streamflow obser-

vations maintained and annually updated by the Spanish Center for Public Work Experimentation and Study (CEDEX, Centro

de Estudios y Experimentación de Obras Públicas). Similarly to Yeste et al. (2018, 2020, 2023), the study catchments were90
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selected considering a maximum percentage of missing values in the streamflow series of 10% for the period Oct 1990 - Sep

2010, which was chosen as the study period in this work. Among those catchments, 171 (84 reservoirs + 87 gauging stations)

presented less than 5% of missing values, and 144 (80 reservoirs + 64 gauging stations) were below 1%.

An exploratory data analysis of negative values during the study period was subsequently conducted and revealed that 47

reservoirs presented up to a 5% of negative estimates of daily streamflow and 46 reservoirs more than 5%, whereas all the 9595

gauging stations and only 1 reservoir did not present values below 0 (Fig. 2a). In addition, the percentage ratio of negative to

positive values was calculated for each reservoir to quantify their relative importance, suggesting that negative values are close

to 0 for reservoirs with less than 5% of negative records and become more visible above 5% (the median percentage ratio of

negative to positive values for reservoirs with more than 5% of negative records is 2.9%).

One feasible explanation for the presence of negative values in the streamflow series of reservoirs in the SAIH-ROEA100

dataset is that inflow data are calculated applying a daily water balance exclusively to water storages and releases. As opposed

to gauging stations, where streamflow is derived from rating curves, the daily water balance in reservoirs can produce negative

estimates of streamflow (i.e. inflow) when the variation in the storage is negative and its magnitude is greater than the water

releases. Given the prominent role of evaporative fluxes in the Spanish catchments, the presence of negative values is likely

to happen in the warmest days of the hydrologic year, when streamflow is minimum or null and open water evaporation in105

reservoirs become relevant. To further test this hypothesis, the monthly distribution of negative values for all the catchments

was calculated and compared against the average hydrologic year of streamflow (Fig. 2b). Results confirm that most negative

values occur in summer months, emerging in late spring and extending to the beginning of the hydrologic year. The hypothesis

is also supported by the location of reservoirs with more than 5% of negative records as they are mostly concentrated in

Southern Spain (Fig. 2a) and are thus characterized by a warmer climate.110

Unfortunately, incorporating the effect of evaporative fluxes into the water balance requires additional data that are not

provided in the SAIH-ROEA dataset and that are neither publicly disclosed nor available for all the reservoirs, such as pan

evaporation measurements and elevation-area-capacity curves. Hence, this course of action could not be adopted and was left

out of the scope of this work. The effect of other potential driving factors for the negative records such as seepage losses

is supposed to be minor in comparison to open water evaporation as negative estimates tend to happen in summer for the115

southernmost reservoirs. Therefore, on the basis of this initial exploratory analysis, negative values were considered as null and

all the 189 headwater catchments were included in the modelling framework. The validity of such assumption will be further

discussed in the light of results from the modelling exercise.

2.2 Meteorological forcings and evaporation dataset

Daily precipitation and temperature data were collected from the Spanish PREcipitation At Daily scale (SPREAD, Serrano-120

Notivoli et al., 2017) and the Spanish TEmperature At Daily scale (STEAD, Serrano-Notivoli et al., 2019) datasets, two gridded

products at ∼ 5 km resolution constructed by interpolating daily observations from a dense network of meteorological stations

distributed across Spain. Monthly evaporation data were collected at 0.25º resolution from the Global Land Evaporation Ams-

terdam Model (GLEAM) version 3.5a (Martens et al., 2017; Miralles et al., 2011) and were remapped to the study catchments
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following a first-order conservative approach. GLEAM has shown less uncertainty compared to other satellite-based evap-125

oration products (Xu et al., 2019) and has found extensive use within hydrologic studies for calibrating and evaluating of

hydrologic models (e.g., Bouaziz et al., 2021; Dembélé et al., 2020a, b; Koppa et al., 2019; Mei et al., 2023), particularly in

studies involving data-scarce areas (e.g., Dembélé et al., 2020a, b; López López et al., 2017) and/or regions where evaporative

fluxes are dominant (e.g., Dembélé et al., 2020a, b; Yeste et al., 2020, 2021, 2023).

Fig. 1b and Fig. 1c show the computed values of the runoff ratio (Q/P ) and the sum of the runoff and evaporation ratio130

to precipitation ((Q + E)/P ) for the study period and the hydroclimatic datasets described in this and the previous section.

Two thirds of the catchments manifested Q/P estimates below 0.4 and were predominantly located in the southeastern sector

of the country (Fig. 1b). Approximately 50% of the catchments produced (Q + E)/P estimates between 0.9 and 1.1, with

negative imbalances ((Q + E)/P < 1) mostly corresponding to catchments with a low runoff ratio and positive imbalances

((Q + E)/P > 1) towards the northwest (Fig. 1c). The effect of these imbalances will be thoroughly examined in the light of135

results.

3 Methods

3.1 The VIC model

The Variable Infiltration Capacity (VIC) model (Liang et al., 1994, 1996) version 4.2.d is a semi-distributed macroscale hy-

drologic model implementing the water and energy balances within a gridded domain at daily and subdaily time steps. The140

model utilizes a three-layer soil profile to conceptualize runoff generation. Surface runoff, based on the Xinanjiang formulation

(Zhao et al., 1980), occurs in the first two soil layers, while baseflow is generated in the bottom layer using the Arno equation

(Franchini and Pacciani, 1991). The VIC model considers the subgrid variability in land uses through vegetation tiles. Evap-

oration in each grid cell is calculated as the sum of evaporation from bare soil, evaporation from the canopy interception and

transpiration, and is constrained by the atmospheric demand for water vapor according to the Penman-Monteith equation. The145

model structure includes a snow model for accumulation and melting processes, employing snow bands to consider subgrid

variability in topography, land uses, and precipitation that makes it applicable across diverse geographical domains. While

originally designed as a land surface scheme for Earth system models, VIC has found extensive use globally as a hydrologic

model and stands out for its widespread usage within the hydrologic community (Addor and Melsen, 2019).

The VIC model was applied with a gridded configuration at 0.05º resolution (∼ 5 km) and choosing a spin-up period of150

10 years preceding the study period. Meteorological forcings were interpolated to the model resolution through a nearest

neighbor assignment. Notably, the VIC model lacks consideration for horizontal fluxes between adjacent grid cells, typically

addressed by coupling a routing model. A gamma function was selected in this study to post-process the runoff simulations and

account for the delay between runoff generation and catchment discharge (i.e., streamflow). The required soil and vegetation

parameters to run VIC were collected at 1 km resolution from the following datasets: bulk density and soil textural classes155

from SoilGrids1km (Hengl et al., 2014); porosity, saturated hydraulic conductivity, field capacity, and wilting point from

EU-SoilHydroGrids ver1.0 (Tóth et al., 2017); land uses from the UMD Global Land Cover Classification (Hansen et al.,
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2000), with associated vegetation parameters aligned with Global Land Data Assimilation System (GLDAS) specifications for

VIC (Rodell et al., 2004). Soil parameters were regridded to the model resolution using a first-order conservative remapping,

whereas land uses were kept at their original resolution as the subgrid variability in land uses is handled statistically within160

VIC.

3.2 Regional sensitivity analysis

Parameter sensitivities were analysed using the implementation of the Regional Sensitivity Analysis (RSA) method of Horn-

berger and Spear (1981) in the SAFE Toolbox (Pianosi et al., 2015). RSA is based on a classification of model simulations into

behavioral and non-behavioral according to one or more performance metrics and evaluates differences between parameter165

distributions corresponding to both classes. The RSA sensitivity index for a given parameter represents the maximum vertical

distance between the Cumulative Distribution Functions (CDFs) corresponding to the behavioral and non-behavioral classes,

which is equivalent to the Kolmogorov-Smirnov distance statistic computed in the Kolmogorov-Smirnov test. Hence, the RSA

sensitivity index ranges from 0 to 1, with values closer to 1 indicating a greater parameter sensitivity.

For each of the 189 catchments, the parametric space was explored conducting a Monte Carlo simulation for 10,000 Latin170

Hypercube samples (Iman and Conover, 1982) extracted from the parameter ranges of the 20 soil, vegetation and routing

parameters analysed in Yeste et al. (2023) and that are described in Table 2. RSA was applied to the Nash-Sutcliffe Efficiencies

for the Monte Carlo simulations of daily streamflow (NSE(Qd)) and monthly evaporation (NSE(Em)) calculated for the study

period, choosing the median NSE(Qd) and median NSE(Em) to classify behavioral and non-behavioral simulations.

Similarly to Sepúlveda et al. (2022), the Spearman correlation coefficient (rS) between the RSA sensitivity indices for175

NSE(Qd) and NSE(Em) and the physiographic and hydroclimatic characteristics defined in Table 3 and depicted in Fig. 3 was

calculated. rS measures how similar the spatial patterns of the parameter sensitivities and the selected attributes are, their sign

being indicative of a matching pattern (i.e., positive sign) or an opposite pattern (i.e., negative sign). These attributes were

initially selected based on their ease of access for the study catchments and allowed for further investigating the potential

drivers of parameter sensitivities.180

The two most influential vegetation parameters to any of the two performance metrics were finally selected for each catch-

ment and incorporated together with the five soil parameters and the two routing parameters (SR parameterization hereafter)

into the calibration stage. Adding two extra VIC vegetation parameters to the SR parameterization is sufficient to improve the

joint performance against streamflow and evaporation data according to previous research in Yeste et al. (2023).

3.3 Calibration and evaluation approach185

A Split-Sample Test (SST, Klemeš, 1986) was applied to calibrate and evaluate VIC considering two independent periods of

equal duration belonging to the study period: a calibration period from Oct 1990 to Sep 2000 and a evaluation period from

Oct 2000 to Sep 2010. A spin-up simulation of 10 hydrologic years preceding both the calibration and evaluation periods was

conducted to provide initial states of model storages free from the effect of initial conditions (this strategy was also applied
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to the Monte Carlo simulation described in the previous section). The performance of the VIC model was evaluated through190

NSE(Qd) and NSE(Em) and their decomposition into correlation r, variability α and bias β.

The calibration was performed using the Shuffled-Complex-Evolution Algorithm (SCE-UA) of Duan et al. (1994) and fol-

lowing a single-objective optimization approach for the nine selected parameters (five soil parameters, two routing parameters

and two vegetation parameters) to minimize a composite function that aggregates the performance metrics for streamflow and

evaporation:195

Minimize
√

wQ · (1−NSE(Qd))2 + wE · (1−NSE(Em))2 (1)

This problem minimizes the two-dimensional weighted Euclidean to the ideal vector (1,1) and belongs to the more general

weighted-metric method to minimize distances (see Yeste et al., 2023, for a detailed implementation of this problem to integrate

streamflow and evaporation data). In this work, two calibration experiments for different weights combinations in Eq. 1 were

applied to the VIC model: firstly, a streamflow-only calibration (Q-only calibration hereafter) was performed by choosing200

wQ = 1 and wE = 0. Secondly, the model was calibrated for a weighted Euclidean distance (Q-E calibration hereafter) selecting

two equal weights wQ = wE = 0.5. The case of two equal weights is equivalent to minimizing the pure Euclidean distance, that

is, wQ = wE = 1, as equal weights do not affect the optimization problem in Eq. 1.

The results of the Split-Sample Test were benchmarked against the streamflow and evaporation outputs from the Inte-

grated System for Rainfall-Runoff Modeling (SIMPA) model (Estrela and Quintas, 1996; Alvarez et al., 2005) for the study205

catchments. SIMPA is a well-established hydrologic model calibrated for the Spanish catchments and yearly updated which

provides the foundation for water planning and management in the country (see https://www.miteco.gob.es/en/agua/temas/

evaluacion-de-los-recursos-hidricos/evaluacion-recursos-hidricos-regimen-natural.html for additional information). The SIMPA

simulations are run at a monthly time step, and therefore the performances of VIC and SIMPA were compared for the Nash-

Sutcliffe Efficiency of monthly streamflow (NSE(Qm)) and NSE(Em).210

Furthermore, the effect of considering the negative values in the streamflow series of reservoirs as null (see Section 2.2)

was tested in an additional implementation of the Q-only calibration experiment for the 47 catchments with less than 5% of

negative records and the 46 catchments with more than 5% of negative records (Fig. 2) after considering the negative values as

gaps. This strategy made it possible to evaluate the extent to which the performance of VIC was affected by the data processing

approach followed for the negative records.215

Finally, a cross-validation test using multiple meteorological datasets was carried out to assess the generalizability of the

calibrated parameters. Thus, the performance of the VIC model during the study period was further evaluated for the Q-only and

Q-E calibration experiments using precipitation and temperature data gathered from a gridded dataset provided by the Spanish

Meteorological Agency (AEMET, see https://www.aemet.es/en/serviciosclimaticos/cambio_climat/datos_diarios?w=2) and E-

OBS (Cornes et al., 2018).220
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4 Results

4.1 RSA sensitivity analysis

The RSA sensitivity indices for NSE(Qd) and NSE(Em) are depicted in Fig. 4 and Fig. 5, respectively. NSE(Qd) sensitivities

were mostly related to the five soil parameters and the two routing parameters (i.e. SR parameterization), with little or no

influence from the vegetation parameters and no clear spatial pattern for the RSA indices (Fig. 4). Among these parameters, the225

highest sensitivities corresponded to d2, rout1 and rout2, although bi, DS, W S and Dm were also influential to the streamflow

metric according to several local estimates.

Contrarily to NSE(Qd), NSE(Em) scores were greatly influenced by the vegetation parameters (Fig. 5). In this case, the

highest sensitivities corresponded to rminf and LAI f and manifested a latitudinal gradient with minimum sensitivities occur-

ring for the northern catchments. This pattern is also noticeable, but to a lesser extent, for depth1f, rarcf, albedof, roughf and230

RGLf. d2 was revealed as the most important soil parameter to NSE(Em), and as expected from the VIC model implemen-

tation, the routing parameters had a null effect due to the routing scheme being exclusively applied to post-process the runoff

simulations.

Fig. 6 shows the Spearman correlation coefficient (rS) between the RSA sensitivity indices calculated for NSE(Qd) and

NSE(Em) and the physiographic and hydroclimatic characteristics in Fig. 3. The NSE(Qd) sensitivities for the soil parameters235

presented an opposite pattern (i.e., negative correlations) to mean annual precipitation, aridity index, NDVI and to a lesser

extent slope. A similar behavior can be observed for various vegetation parameters such as rminf and LAI f, although they were

not identified as important to NSE(Qd) (Fig. 4). Conversely, both routing parameters exhibited a matching pattern (i.e., positive

correlations) to the previous four attributes but their magnitude was higher for rout1. Concerning NSE(Em) sensitivities,

the soil parameters produced positive correlations with respect to those characteristics, whereas the vegetation parameters240

still reflected an opposite pattern. The correlations for mean temperature and saturated hydraulic conductivity (KS) became

noticeable for the NSE(Em) sensitivities and revealed an opposite pattern to the soil parameters and a matching pattern to most

of the vegetation parameters.

The two most influential vegetation parameters to any of the two performance metrics under study were lastly selected

according to the values of the RSA index and were added to the SR parameterization during the calibration stage. Fig. 7245

indicates that LAI f and rminf were the two most influential parameters for the vast majority of the catchments with little

influence from other vegetation parameters.

4.2 Split-Sample Test: calibration and evaluation

Fig. 8 shows the spatial distributions of NSE(Qd) and NSE(Em) corresponding to the Q-only (Fig. 8a,c) and Q-E (Fig. 8b,d)

calibration experiments for the calibration period. The relative gain/loss in model performance suggests that, while NSE(Qd)250

remained similar for both calibrations (Fig. 8a,b), NSE(Em) was highly improved after calibrating VIC against streamflow and

evaporation data simultaneously (Fig. 8c,d).
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This can also be appreciated in the CDFs of NSE(Qd) and NSE(Em) depicted in Fig. 9a,i. The median NSE(Qd) was close to

0.6 for both experiments during the calibration period (Fig. 9a), although the streamflow performance was slightly deteriorated

for the Q-E calibration. On the other hand, the median NSE(Em) for the Q-E calibration was 0.67 during the calibration period255

(Fig. 9i), while the median NSE(Em) for the Q-only calibration did not exceed 0. As for the evaluation period, the slight

to moderate loss in model performance for NSE(Qd) and NSE(Em) was indicative of an acceptable implementation and an

adequate predictive capability.

The decomposition of NSE(Qd) revealed similar rQd estimates for both calibration experiments (Fig. 9b) and αQd values

generally below 1 (Fig. 9c). The βQd distribution is approximately symmetric around the median for both calibrations but260

reflects a steeper CDF closer to 1 for the Q-only calibration (Fig. 9d). The NSE(Em) improvement for the Q-E calibration

is also evinced in its decomposition, rEm being the component subject to the greatest enhancement (Fig. 9j). αEm and βEm

estimates are comparable for both experiments with values slightly closer to 1 corresponding to the Q-E calibration (Fig. 9k,l),

and point to a generalized overestimation of the variability and a slight underestimation of the bias, respectively.

The results of the Split-Sample Test were subsequently benchmarked against the performance of the SIMPA model for265

monthly streamflow (Fig. 9e-h) and monthly evaporation (Fig. 9i-l). Both calibration experiments outperformed SIMPA in

terms of NSE(Qm) and its decomposition, and although the poor performance of SIMPA for monthly evaporation was compa-

rable to that of the Q-only calibration, the Q-E calibration produced much higher NSE(Em) estimates.

Finally, the effect of handling the negative records in the streamflow series of 93 reservoirs (Fig. 2) was evaluated after

considering them as gaps and re-implementing the Q-only calibration experiment. Fig. 10a-d shows almost identical distribu-270

tions for NSE(Qd) and its decomposition for the 47 reservoirs with less than 5% of negative records, suggesting that the data

processing strategy applied to the negative values had a minimum impact on the performance of VIC and thus corroborating

the validity of considering them as null. This is also observable for the 46 reservoirs with more than 5% of negative records

(Fig. 10e-h), although slight differences became apparent for the bias component (i.e., βQd ) as the number of records modified

was greater.275

4.3 Cross-validation test using multiple meteorological datasets

To cross-validate the results from the Split-Sample Test, the Q/P bias was firstly calculated as the Q/P ratio difference

between the calibrated VIC and the observations using SPREAD/STEAD, AEMET and E-OBS data as the meteorological

forcings of VIC for the complete study period (Fig. 11). Q/P biases corresponding to the Q-only calibrated parameters were

broadly in the range ±0.1 for all the datasets (Fig. 11a-c), while the Q-E calibrated parameters produced increased deviations280

(Fig. 11d-f).

Results for SPREAD/STEAD and the Q-only calibration suggest that negative biases tend to be associated with higher Q/P

values and vice versa (see Fig. 11a and compare to Fig. 1b), whereas the Q/P biases corresponding to the Q-E calibration

display an opposite spatial distribution to that observed for the (Q + E)/P values (see Fig. 11d and compare to Fig. 1c) and

exhibit a high negative correlation (r =−0.91). There is a predominance of negative Q/P biases for both AEMET (Fig. 11b,e)285
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and E-OBS (Fig. 11c,f), even though these differences became exacerbated when forcing VIC with E-OBS and reached values

below −0.3 in many of the northern catchments for the Q-E calibration.

The distributions of NSE(Qd), NSE(Em) and their decomposition for each meteorological dataset are depicted in Fig. 12.

The performance attained for NSE(Qd) using SPREAD/STEAD was closely followed by AEMET, but reflected a moderate

deterioration in the case of E-OBS (Fig. 12a). The daily streamflow dynamics were generally well captured with the three290

datasets (Fig. 12b), in particular with SPREAD/STEAD and AEMET, although an enhanced underestimation of the variability

together with an underestimation of the bias became noticeable for AEMET and E-OBS (Fig. 12c,d).

The performance of VIC for NSE(Em), in turn, was similar for all the datasets and clearly demonstrated the effect of both

calibration experiments (Fig. 12e). The monthly evaporation dynamics were well reproduced for the Q-E calibration in all

cases (Fig. 12f), with estimates of the variability and the bias close to 1 (Fig. 12g,h).295

5 Discussion

5.1 Parameter sensitivities

This study expands on previous investigations using VIC for the Duero River Basin in Yeste et al. (2020, 2021, 2023) by

involving the main River Basin Districts in Spain. The large-sample approach followed in this work allowed for drawing more

robust conclusions on model realism and the hydrologic functioning of a wide range catchments representing the hydroclimatic300

variability within the country. Parameter sensitivities were quantified according to the RSA sensitivity analysis method for the

189 study catchments and the various soil, routing and vegetation parameters indicated in Table 2. As in Yeste et al. (2023),

sensitivities were calculated with respect to NSE(Qd) and NSE(Em), which were the performance metrics selected to evaluate

the goodness-of-fit of VIC for streamflow and evaporation, respectively.

d2 and the two routing parameters governing the gamma distribution function (i.e., rout1 and rout2) were identified as305

the most important parameters to NSE(Qd) (Fig. 4), highlighting the importance of applying a routing procedure to improve

model performance for daily streamflow. The rest of the soil parameters were also identified as important to NSE(Qd) and

yielded comparable sensitivities to those uncovered in previous studies (e.g., Gou et al., 2020; Lilhare et al., 2020; Melsen and

Guse, 2019; Mendoza et al., 2015; Yeste et al., 2020, 2023). The influence of the vegetation parameters on NSE(Qd), however,

was negligible, resembling the findings of Sepúlveda et al. (2022) for a large-sample application of VIC in Chile. The strong310

dependencies of the NSE(Qd) sensitivities for the soil and vegetation parameters on mean annual precipitation, aridity index

and NDVI were manifested as either highly positive (i.e., a matching pattern) or highly negative (i.e., an opposite pattern)

Spearman correlations (Fig. 6a), thus corroborating the interdependency between parameter sensitivities and climate variables

found in Sepúlveda et al. (2022) for the Chilean catchments.

On the contrary, NSE(Em) was found to be most sensitive to the vegetation parameters, LAI f and rminf being the most im-315

portant vegetation parameters according to the RSA sensitivity indices (Fig. 5, 7). This is in line with the parameter sensitivities

reported in Sepúlveda et al. (2022) and Yeste et al. (2023), suggesting that the VIC vegetation parameters have a significant

potential to improve the representation of evaporative processes if included in model calibration. From among soil parameters,
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d2 was the most important parameter to NSE(Em), which could be related to the water uptake by vegetation in the root zone as

it is directly affected by the thickness of the VIC soil layers.320

5.2 Model performance during the Split-Sample Test and the cross-validation test

The large-sample application of the VIC model provided valuable insights into its performance for streamflow and evaporation

in the 189 study catchments. The capability of VIC to produce satisfactory estimates of NSE(Qd) and NSE(Em) simultaneously

was tested through a Split-Sample Test encompassing two calibration experiments based on the weighted Euclidean distance

definition for two objectives (Eq. 1), namely Q-only and Q-E calibration. While the Q-only calibration led to NSE(Em) scores325

below 0 for more than half of the catchments, the Q-E calibration substantially increased the performance for NSE(Em)

and concomitantly produced NSE(Qd) values closed to those corresponding to the Q-only calibration (Fig. 8, 9). Similar

conclusions were reached in Yeste et al. (2023) according to five single-objective calibration experiments carried out for one

test catchment located in the Guadalquivir River Basin.

The benchmark comparison of VIC against the performance of SIMPA for NSE(Qm) and NSE(Em) clearly indicated an330

increased performance for both metrics when using VIC (Fig. 9). The monthly simulations from SIMPA stand as the greatest

modelling effort available for the Spanish domain and play a fundamental role in supporting water resource planning at the

national and river basin scales. Therefore, the implementation of VIC developed in this work constitutes an important leap

forward in comparison with the SIMPA simulations as VIC was run at a finer temporal resolution and improved the individual

and joint representation of streamflow and evaporation. Moreover, the performance of VIC for daily streamflow and monthly335

evaporation was similar to that reflected in large-sample applications using VIC over the CONUS domain in Mizukami et al.

(2017) and Rakovec et al. (2019). The streamflow performance was also comparable to other modelling efforts involving the

Duero River Basin (Morán-Tejeda et al., 2014; Yeste et al., 2020, 2023), Tajo (Pellicer-Martínez and Martínez-Paz, 2018;

Pellicer-Martínez et al., 2021), Guadalquivir (Yeste et al., 2018), Segura (Pellicer-Martinez and Martínez-Paz, 2015; Pellicer-

Martínez et al., 2015) and Júcar (Marcos-Garcia et al., 2017; Suárez-Almiñana et al., 2020).340

As described in Section 2.2, the presence of negative values in the streamflow series of 93 reservoirs (Fig. 2, 10) is likely

related to the indirect estimation of inflow data through a daily water balance of water storages and releases without considering

the evaporative fluxes from the reservoir. In this respect, the initial exploratory data analysis for the negative records represents

a call for action for future releases of the SAIH-ROEA dataset as it is not feasible to handle this issue on the basis of current

hydrologic information provided there. The effect of considering the negative values as null was evaluated during the Split-345

Sample Test for the Q-only calibration experiment to quantify their relative significance in terms of model performance. The

distributions of NSE(Qd) and its decomposition were virtually identical after considering the negative values both as null and

as gaps, suggesting that the simulated streamflow is also null or low during the warmest part of the hydrologic year.

Finally, the generalizability of the calibrated parameters was evaluated by means of a cross-validation test using meteoro-

logical information gathered from AEMET and E-OBS. As demonstrated in Yeste et al. (2023), the integration of streamflow350

and evaporation data into model calibration is ultimately subject to the law of conservation of mass and the magnitude of the

imbalance stemming from merging three independent datasets of precipitation, streamflow and evaporation. This limitation
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was thoroughly checked for the Q-only and Q-E calibration experiments and all the meteorological datasets, with results point-

ing to a higher Q/P bias (Fig. 11) and a slight to moderate loss in model performance for the Q-E calibration (Fig. 12) as a

consequence of calibrating VIC against streamflow and evaporation data simultaneously. The potential of the calibrated param-355

eters as well as the trade-off in model performance arising during the Q-E calibration experiment will be further explored in

future implementations of VIC for the Spanish catchments to produce seamless distributed parameters maps and Spanish-wide

simulations based on a fully gridded implementation.

6 Conclusions

In this work, a large-sample application of the VIC model was carried out for 189 headwater catchments belonging to the main360

River Basin Districts in Spain. The potential of combining streamflow and evaporation data into the hydrologic modelling exer-

cise was explored for the sensitivity analysis stage, the calibration of the VIC parameters and the evaluation of its performance

for the streamflow and evaporation simulations. The key findings of this study can be summarized as follows:

– A regional sensitivity analysis allowed for identifying the parameter sensitivities with respect to the selected metrics to

evaluate the performance of VIC against daily streamflow and monthly evaporation data for all the study catchments. The365

soil and routing parameters were revealed as the most important parameters to the streamflow performance, while the

influence from the vegetation parameters was negligible. The performance of VIC for evaporation was mostly controlled

by the soil parameters and two of the vegetation parameters.

– The calibration of the VIC model was performed by following two single-objective calibration experiments: a calibration

against daily streamflow data exclusively and a calibration against daily streamflow and monthly evaporation data simul-370

taneously. The performance of VIC was assessed for two independent periods, suggesting that it is possible to achieve

satisfactory adjustment to both hydrologic variables at the same time if their performance metrics are combined into a

composite function based on a weighted Euclidean distance definition.

– A benchmark comparison was made between the performance of VIC and the monthly simulations from the SIMPA

model, the latter constituting the greatest modelling effort available to date for the Spanish domain. The VIC model375

led to an increased performance for both streamflow and evaporation compared to SIMPA, thus indicating a promising

potential for a fully gridded implementation of VIC in the future to carry out Spanish-wide simulations.

– An additional evaluation of the performance of the VIC model was performed using meteorological observations from

two independent gridded datasets in order to assess the generalizability of the calibrated parameters. The slight to mod-

erate loss in model performance at this stage was subject to the calibration experiment under study, with a greater im-380

balance and a trade-off in model performance becoming apparent for the calibration against streamflow and evaporation

data simultaneously.
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Code and data availability. Computer code for VIC (Liang et al., 1994, 1996) version 4.2.d can be downloaded from https://github.com/

UW-Hydro/VIC/tree/support/VIC.4.2.d. Scripts to perform the RSA sensitivity analysis are included in the SAFE Toolbox (Pianosi et al.,

2015). Precipitation and temperature data were collected from SPREAD (Serrano-Notivoli et al., 2017) and STEAD (Serrano-Notivoli et al.,385

2019). Streamflow time series were obtained from the SAIH-ROEA dataset (https://www.miteco.gob.es/en/cartografia-y-sig/ide/descargas/

agua/anuario-de-aforos.aspx). The required soil and vegetation parameters to run VIC were gathered from SoilGrids1km (Hengl et al., 2014)

and EU-SoilHydroGrids ver1.0 (Tóth et al., 2017), and land uses were extracted from the UMD Global Land Cover Classification (Hansen

et al., 2000). Data supplementing this study are available in the Zenodo repository https://doi.org/10.5281/zenodo.10670292 (Yeste et al.,

2024).390
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I., Castellarin, A., Chirico, G. B., Claps, P., Fiala, K., Frolova, N., Gorbachova, L., Gül, A., Hannaford, J., Harrigan, S., Kireeva, M.,430

Kiss, A., Kjeldsen, T. R., Kohnová, S., Koskela, J. J., Ledvinka, O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R.,

Molnar, P., Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Rogger, M., Salinas, J. L., Sauquet, E., Šraj, M., Szolgay,
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Figure 1. (a) Topographic boundaries of the 189 headwater catchments and the main River Basin Districts in Spain. (b) Spatial distribution

of the runoff ratio (Q/P ). (c) Spatial distribution of the sum of the runoff and the evaporation ratios to precipitation ((Q+E)/P ). Values in

(b) and (c) were calculated for the study period and the hydroclimatic datasets considered in this work.
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Figure 2. Exploratory data analysis of the negative values in the daily time series of streamflow gathered from the SAIH-ROEA dataset

for the 189 studied catchments during the study period. (a) Scatter plot representation of the percentage ratio of negative to positive values

(y-axis) against the percentage ratio of the number of negative values to the number of records (x-axis) for each catchment. “R” denotes

“Reservoir” and “GS” denotes “Gauging Station”. (b) Monthly distribution of the percentage ratio of the number of negative values per

month to the total number of negative values. Blue line corresponds to the average hydrologic year of streamflow expressed as the monthly

mean percentage of annual streamflow calculated over all the catchments.
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Figure 3. Spatial distribution of the physiographic and hydroclimatic characteristics analysed in this work as potential drivers of parameter

sensitivities. These attributes are defined in Table 3.
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Figure 4. Spatial distribution of the RSA sensitivity indices calculated for NSE(Qd).
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Figure 5. Spatial distribution of the RSA sensitivity indices calculated for NSE(Em).
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Figure 6. Spearman correlation coefficient (rS) between the RSA sensitivity indices calculated for (a) NSE(Qd) and (b) NSE(Em) and the

physiographic and hydroclimatic characteristics defined in Table 3 and depicted in Fig. 3. Full-size circles indicate statistically significant rS

estimates at the 95% confidence level.
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Figure 7. Frequency of the (first) most influential and second most influential vegetation parameters according to the RSA sensitivity indices

calculated for NSE(Qd) and NSE(Em).
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Figure 8. Spatial distribution of NSE(Qd) and NSE(Em) for (a,c) the Q-only calibration and (b,d) the Q-E calibration during the calibration

period.
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Figure 9. CDFs of NSE and its decomposition calculated for (a-d) daily streamflow, (e-h) monthly streamflow and (i-l) monthly evaporation.

Blue lines and green lines indicate the performance of VIC for the Q-only and Q-E calibration experiments, respectively, while grey lines

correspond to the performance of SIMPA (note that the SIMPA simulations are only available at a monthly time step). Results for the

calibration (evaluation) period are represented with solid (dashed) lines.
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Figure 10. CDFs of NSE(Qd) and its decomposition for the Q-only calibration experiment in reservoirs presenting negative records of daily

streamflow: (a-d) 47 reservoirs with less than 5% of negative records and (e-h) 46 reservoirs with more than 5% of negative records (see

also Fig. 2). Dark blue lines and light blue lines indicate the performance of VIC after considering the negative values as 0 and as gaps,

respectively. Results for the calibration (evaluation) period are represented with solid (dashed) lines.
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Figure 11. Spatial distribution of the Q/P bias calculated as the Q/P ratio difference between the calibrated model and the observations

(see Fig. 1b) using meteorological data from SPREAD/STEAD, AEMET and E-OBS to force VIC for the complete study period. (a to c)

Q/P bias corresponding to the Q-only calibrated parameters. (d to f) Q/P bias corresponding to the Q-E calibrated parameters.
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Figure 12. Distributions of NSE and its decomposition calculated for (a-d) daily streamflow and (e-h) monthly evaporation using the

SPREAD/STEAD (SPST), AEMET and E-OBS datasets for the complete study period. Blue, red and purple boxplots (i.e., boxplots to

the left in each pair group) correspond to the Q-only calibration experiment. Green, orange and pink boxplots (i.e., boxplots to the right in

each pair group) correspond to the Q-E calibration experiment.
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Table 1. Number of headwater reservoirs and gauging stations per River Basin District included in this study.

River Basin District Reservoirs Gauging stations Total

Northern Districts 13 15 28

Duero District 11 12 23

Tajo District 14 35 49

Guadiana District 2 0 2

Guadalquivir District 27 0 27

Segura District 6 0 6

Júcar District 8 5 13

Ebro District 13 28 41

Total 94 95 189
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Table 2. Parameters included in the RSA sensitivity analysis. As in Yeste et al. (2023), subscript “f” corresponds to the VIC vegetation

parameters that were modified using dimensionless multiplication factors.

Parameter Units Min value Max value Description

bi - 10-5 0.4 Variable infiltration shape parameter

DS - 10-9 1 Fraction of Dm where non-linear baseflow begins

WS - 10-9 1 Fraction of the porosity of the bottom soil layer where non-linear baseflow begins

Dm mm/day 10-9 30 Maximum baseflow

d2 m 0.1 0.9 Thickness of soil layer 2

rout1 - 10-9 10 Shape parameter of gamma function

rout2 days 10-9 2 Scale parameter of gamma function

depth1f - 0.5 1.5 Thickness of root zone for layer 1

depth2f - 0.5 1.5 Thickness of root zone for layer 2

rarcf - 0.5 1.5 Architectural resistance

rminf - 0.5 1.5 Minimum stomatal resistance

LAIf - 0.5 1.5 Leaf-area index

albedof - 0.5 1.5 Albedo

roughf - 0.5 1.5 Vegetation roughness

dispf - 0.5 1.5 Vegetation displacement

wind_hf - 0.5 1.5 Height of wind speed measures

RGLf - 0.5 1.5 Minimum incoming shortwave radiation for transpiration

rad_attenf - 0.5 1.5 Radiation attenuation

wind_attenf - 0.5 1.5 Wind speed attenuation through overstory

trunk_ratiof - 0.5 1.5 Ratio of total tree height that is trunk
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Table 3. Definition of the physiographic and hydroclimatic characteristics analysed in this work as potential drivers of parameter sensitivities.

Characteristic Type Definition Source

Elevation Physiographic Mean catchment elevation (m.a.s.l.) Digital Elevation Model (DEM) EU-DEM 30m

(now at https://spacedata.copernicus.eu/collections/

copernicus-digital-elevation-model)

Slope Physiographic Mean catchment slope (m/km) Derived from DEM

Area Physiographic Catchment area (km2) Derived from DEM

Precipitation Hydroclimatic Mean annual precipitation (mm/yr) SPREAD (Serrano-Notivoli et al., 2017)

Temperature Hydroclimatic Mean temperature (ºC) STEAD (Serrano-Notivoli et al., 2019)

Aridity Hydroclimatic Aridity index, calculated as the

ratio of precipitation to potential

evaporation (-)

Potential evaporation calculated internally in VIC; precipi-

tation from SPREAD (Serrano-Notivoli et al., 2017)

Snowfall ratio Hydroclimatic Snowfall ratio to precipitation dur-

ing winter months (i.e. December,

January and February) (-)

Snowfall calculated internally in VIC; precipitation from

SPREAD (Serrano-Notivoli et al., 2017)

NDVI Physiographic Normalized Difference Vegetation

Index (-)

Copernicus Global Land Service (https://land.copernicus.

eu/global/products/NDVI)

KS Physiographic Saturated hydraulic conductivity

(mm/d)

EU-SoilHydroGrids (Tóth et al., 2017)
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