
Responses to Anonymous Referee #1

This  study  investigates  the  capacity  of  the  VIC  model  to  integrate  streamflow  and
evaporation data in a large-sample application, based on simulations for 189 headwater
catchments  in  Spain.  Utilizing  multiple  datasets  to  improve  model  performance  is  an
important  aspect  of  hydrological  modeling  research,  making  this  paper  potential  for
publication in HESS. However, some important issues are not discussed adequately, and
there  is  room  for  improvement.  Consequently,  I  recommend  a  major  revision  before
publication. 

We thank  the  reviewer  for  his/her  constructive  feedback  and  we  are  convinced it  will
contribute to improve the manuscript. We have indicated in our responses those references
that were not included in the initial version of the manuscript.

My major suggestions are as follows:

Given the general imbalances in Q, E, and P, I question whether it is reasonable to use the
evaporation dataset to evaluate the model directly. This brings another question: what is
the  most  important  signature  provided  by  the  evaporation  data?  Is  it  the  evaporation
amount or the temporal variation of evaporation? If the key information provided by the
evaporation data is the amount, we can expect that the E simulation obtained by Q-only
calibration will be good in the catchments with Q+E/P close to 1, and the NSE(Q) obtained
by Q-E calibration will be lower than that from Q-only calibration (perhaps the authors can
test whether the results indeed show this characteristic). Otherwise, if the key information
provided by the evaporation data is the variation, conducting a bias correction on E data
based on water balance before calibration makes more sense.

We thank the reviewer for pointing out this important issue regarding the imbalances in Q,
E and P. In our understanding, the key information provided by the evaporation dataset is
the  amount  of  evaporation.  This  does  not  mean  that  the  temporal  dynamics  are  not
important, but they are evaluated at the monthly time scale and thus are less relevant than
in the case of streamflow, which is evaluated at daily scale. The amount of evaporation
together  with  streamflow  and  precipitation  allow  for  identifying  gaining  and  losing
catchments as they constitute an indirect measure of the intercatchment groundwater flow
(Liu  et  al.,  2020).  Gaining  and  losing  catchments  are  therefore  characterized  by  an
unclosed water balance, which can potentially lead to an unrealistic representation of the
partitioning  of  precipitation  into  streamflow  and  evaporation  in  case  of  significant
imbalances when using a (closed) water balance hydrologic model.

This  issue  was  addressed  in  our  original  submission  by  performing  two  calibration
experiments, namely Q-only and Q-E calibration, in order to assess the relative gain/loss in
model  performance  in  terms  of  NSE(Q)  and  NSE(E).  Results  showed  that  NSE(Q)
remained similar for both calibrations, indicating that the imbalances in Q, E and P did not
deteriorate model performance for streamflow in a substantial manner. However, we agree
that there is room for improvement and that this issue is worthy of further examination. As
suggested by the reviewer, we have evaluated the performance for Q and E during both
calibration experiments considering the (Q+E)/P ratio as a signature of how far/close is the



water balance from being closed from a data perspective. We have performed the analysis
for NSE as well as for its decomposition into r, α, and β components for the 189 study
catchments (please, see also our response in relation to the decomposition of NSE into r,
α, and β). The results are depicted in the following figure:

Panels a-d) correspond to the Q-only calibration and panel e-h) correspond to the Q-E
calibration, and the different values have been calculated for the complete study period. As
rightly  pointed  out  by  the  reviewer,  the  NSE(E)  estimate  obtained  with  the  Q-only
calibration is better for the catchments with (Q+E)/P close to 1 (panel a), and the NSE(Q)
produced by the Q-E calibration is lower than that from the Q-only calibration (panel e). As
suggested in Yeste et al. (2023), the β component (i.e., the bias component) is of capital
importance from a water balance perspective as it is sensitive to the imbalances of the Q,
E and P data when Q and E are integrated into model calibration. As shown in panels d)
and h), β is closer to 1 for both Q and E for catchments with (Q+E)/P close to 1, with a
wider distribution of βQ for the Q-E calibration due to the imbalances of the Q, E and P
data. These imbalances, however, do not have a marked effect for the dynamics (i.e., r)
and the variability (i.e., α), as shown in panels b) and f), and c) and g), respectively. Hence,
although NSE(Q) values are slightly lower for the Q-E calibration, they remain similar for
both calibration experiments, as indicated before.

This figure will be introduced in Section 4.2 and will be discussed in Section 5.2 in the
revised version of the manuscript.
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An important role of adopting multiple datasets is to reduce equifinality, i.e., to reject some
parameters that perform well in the simulation of only one objective. However, the authors
didn’t  address  this  issue,  stopping  at  presenting  good  simulations  for  streamflow and
evaporation. I encourage the authors to discuss the value of the evaporation dataset in
reducing equifinality. A potential way to address this issue is to analyze the sensitivity of
the integrated objective function to the parameters and compare it with the sensitivity of
NSE(Q).

This is ideally done following a Pareto optimization approach for both NSE(Q) and NSE(E)
as in Yeste et al.  (2023). Pareto optimization is known for reducing equafinality as the
model is optimized for two or more objective functions simultaneously, resulting in a lower
number of behavioural parameter sets (Efstratiadis and Koutsoyiannis, 2010). Although we
have not implemented a full Pareto optimization, it is still possible to address this issue only
considering the two calibration experiments in this work as they represent two important
solutions belonging to the Pareto front: the corner corresponding to the maximum NSE(Q)
performance and the compromise solution for NSE(Q) and NSE(E) considering a weighted
Euclidean distance with equal weights for both. 

We value the suggestion from the reviewer to compare the sensitivity indices of NSE(Q)
and the integrated objective function. However, the sensitivities indices are based on the
Monte Carlo experiment comprising 10000 Latin Hybercube samples, and therefore they
are  representative  of  the  complete  parameter  and  objective  space.  As  equafinality  is
concerned with behavioural parameter combinations, we propose that such comparison
should be carried out only for the region where the best candidate solutions are located. 

Following  this  reasoning,  we  have  calculated  for  every  catchment  the  mean  absolute
deviation of NSE(Q) from the maximum NSE(Q) considering the 1%, 2% and 5% best
performing simulations from the Monte Carlo experiment and according to two criteria: 1)
NSE(Q) itself and 2) the Euclidean distance for NSE(Q) and NSE(E). Results are shown in
the following figure:

The boxplot above shows two effects: 1) as the percentage of best performers considered
increases, the deviations from the maximum NSE(Q) become higher; 2) the deviations are



more pronounced when the best performing criterion is based on the Euclidean distance
for NSE(Q) and NSE(E). The first effect is a straightforward consequence of considering
an increasing number of simulations to calculate the mean absolute deviation from the
maximum NSE(Q). The second effect is an indicator of less equifinality as there are fewer
parameter combinations yielding a performance close to  the maximum NSE(Q),  which
highlights the value of using multiple datasets in reducing equifinality.

This figure will be introduced in Section 4.1 and will be discussed in Section 5.1 in the
revised version of the manuscript.
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Other minor and moderate issues:

- Data

There are negative records at some stations, which can be attributed to the reservoir. So a
question is whether the influence of the reservoir on streamflow is significant and whether
the  reservoir  is  simulated  in  the  model.  To  my  knowledge,  some  rivers  significantly
influenced by reservoirs have an extremely even interannual streamflow distribution, which
is impossible to reproduce if the reservoir is not considered in the model.

The streamflow dataset is not affected by river regulation as the study catchments selected
in this work are located in headwater areas and there are no dams within them. Some of
the catchments were delineated considering the reservoirs as outlets, and these are the
stations that the reviewer is referring to. As described in Section 2.1, the streamflow time
series for reservoirs were indirectly estimated as a water balance between water storages
and  releases.  The  regulated  component  corresponds  to  the  water  release,  which  is
subtracted from the water storage to calculate the input flow to the reservoir. The latter is
then equated with the streamflow of the catchment, and therefore there is no influence of
the reservoir on streamflow as the input flow to the reservoir is not regulated.

- Methods

The model performance was evaluated using NSE and its decomposition into γ, α, and β.
However, to my understanding, γ, α, and β are the decomposition of KGE rather than NSE.
NSE actually  only  quantifies  the  bias  characteristic.  I  suggest  the  authors  modify  this
expression. Additionally, please add the equations for these three metrics.

Both KGE and NSE can be decomposed into r (correlation coefficient), α (variability term),
and β (bias term), and therefore both constitute integrative metrics of model performance.
Thus, NSE not only quantifies the bias characteristic (i.e., β), but also the dynamics (i.e., r)
and the variability (i.e., α). The expression for NSE as a function of r, α, and β is given by
(e.g., Knoben et al., 2019):

NSE=2αr−α2− (β−1 )2

CV obs
2
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where CVobs is the coefficient of variation of the observations. The equation of NSE as a
function of r, α, and β and the equations for α, and β will be indicated in the revised version
of  the  manuscript.  The  correlation  coefficient  does  not  need  to  be  defined  given  its
widespread use.

Knoben, W. J. M., Freer, J. E., & Woods, R. A. (2019). Technical note: Inherent benchmark
or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrology and Earth
System Sciences, 23(10), 4323–4331. https://doi.org/10.5194/hess-23-4323-2019

I am a little confused about the SST test. If I understand correctly, this seems to be the
common practice in model calibration, i.e., to divide calibration and evaluation periods, with
a warm-up period  in  each.  Please correct  me if  I  am wrong,  but  if  this  is  indeed the
common practice, I suggest not referring to it using a special term.

The pioneering work of Klemeš (1986) defines two splitting strategies: the Split-Sample
Test (SST) and the Differential  Split-Sample Test (DSST). Both approaches have been
extensively used in hydrology, and the terms SST and DSST are specifically referred to in a
large number of hydrologic studies (e.g., Fowler et al., 2018, 2021; Gharari et al., 2013;
Melsen et al., 2019; Rakovec et al., 2019) as it is a direct way to indicate which calibration
approach has been applied. Therefore, we consider that it is important to use the term SST
as it  can help the hydrologic community  to clearly identify the practice followed in our
study. In alignment with all  the previous studies in which this terminology is specifically
used, we have decided to keep our reference to the SST test.
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- Sensitivity Analysis

The authors calculate the sensitivity of model performance to parameters and analyze the
correlation between sensitivity and physiographic hydroclimatic characteristics.  I  think it
would be interesting to discuss the mechanism behind this correlation, e.g., why NSE(Q) is
more  sensitive  to  rout1  in  catchments  with  larger  precipitation.  This  can  also  provide
guidance  on  selecting  sensitivity  parameters  in  regions  with  different  conditions.  I
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encourage the authors to delve deeper into this analysis or discussion. Currently, this is
only  discussed  by  comparing  with  other  studies,  without  addressing  the  underlying
reasons.

We thank the reviewer for his/her suggestion. We think that investigating the mechanisms
behind the correlations between the parameter  sensitivities and the physiographic and
hydroclimatic  characteristics  will  positively  contribute  to  improve  the  manuscript.  The
following  discussion  revolves  around  two  axes:  1)  NSE(Q)  sensitivities,  2)  NSE(E)
sensitivities.

 NSE(Q)  sensitivities:  as  stated  in  Section  4.1,  the  highest  NSE(Q)  sensitivities
correspond  to  the  soil  parameters  (bi,  DS,  WS,  Dm and  d2)  and  the  routing
parameters (rout1 and rout2) (Fig. 4). The soil parameters presented an opposite
pattern (i.e., negative correlations) to mean annual precipitation, aridity index, NDVI
and  to  a  lesser  extent  slope  (Fig.  6).  These  parameters  control  the  runoff
generation process in VIC, and the negative correlations indicate that they are more
important for catchments characterized by a more arid climate. As the precipitation
volume to be transformed into runoff is lower for such catchments, the role of the
five soil parameters becomes critical in modulating the runoff generation, whereas
their effect is less relevant for catchments belonging to a more humid climate given
the higher water availability. The generated runoff volume is subsequently routed to
the  catchment  outlet  according  to  a  gamma-based  unit  hydrograph  in  a  post-
processing phase. The two routing parameters control  the delay between runoff
generation and catchment discharge (i.e.,  streamflow) and exhibited a matching
pattern (i.e., positive correlations) to the previous four attributes (Fig. 6), suggesting
that both parameters are important for the humid catchments as a consequence of
the higher runoff volumes to be routed. 

 NSE(E) sensitivities: NSE(E) was greatly influenced by the vegetation parameters,
in particular by rminf and LAIf (Fig. 5). Among the soil parameters, d2 was revealed
as the most  important  soil  parameter  to  NSE(E),  and as expected,  the  routing
parameters showed a null effect. The high NSE(E) sensitivities for rminf and LAIf

reflected negative correlations to mean annual precipitation, aridity index and NDVI
(Fig. 6), denoting a greater impact for arid catchments that is likely associated to
the  limiting  effect  on  the  evaporative  processes  entailed  by  a  lower  vegetation
density. As for the soil parameters, the high NSE(E) sensitivities for d2 could be
related to the water uptake by vegetation in the root zone as it is directly affected by
the thickness of the VIC soil layers. The positive correlations associated to the five
soil parameters with respect to the previous characteristics are likely connected to
the  implementation  of  the  closed water  balance equation  VIC and manifest  an
opposite behaviour to that observed NSE(Q). This effect was also appreciated in
Yeste et al. (2020) for the sensitivities of the VIC soil parameters.

The previous discussion will  be integrated in Section 5.1 in  the revised version of the
manuscript.

The Y-axis of Figure 7 is incorrect.

We thank the reviewer for pointing out this mistake. It will be modified in the revised version
of the manuscript.


